Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = volcanic aerosol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2651 KiB  
Article
Investigation of the Influence of Atmospheric Scattering on Photolysis Rates Using the Cloud-J Module
by Anastasia Imanova, Eugene Rozanov, Sergei Smyshlyaev, Vladimir Zubov and Tatiana Egorova
Atmosphere 2025, 16(1), 58; https://doi.org/10.3390/atmos16010058 - 8 Jan 2025
Cited by 1 | Viewed by 816
Abstract
This study analyses the wide-band algorithm, Cloud-J v.8.0, from the point of view of the validity of the choice of wide spectral intervals to accelerate the calculations of photolysis rates in the lower and middle atmosphere, considering the features of solar radiation propagation, [...] Read more.
This study analyses the wide-band algorithm, Cloud-J v.8.0, from the point of view of the validity of the choice of wide spectral intervals to accelerate the calculations of photolysis rates in the lower and middle atmosphere, considering the features of solar radiation propagation, and to assess the influence of the processes of reflection and scattering on molecules, aerosols, and clouds. The results show that the calculations performed using Cloud-J v.8.0 are in agreement with the data obtained using the high-resolution LibRadtran model. The study also considers the factors influencing the propagation of the solar flux through the atmosphere in Cloud-J v.8.0, which occurs following theoretical concepts. It is shown that the presence of cloud layers can increase photolysis rates by up to 40% in the above-cloud layer and decrease them by up to 20% below the cloud layer. The presence of volcanic aerosol can increase the photolysis rates in the upper part of the layer and above it by up to 75% and decrease them by up to 75% in the underlying atmosphere. Rayleigh scattering can both enhance photolysis rates in the troposphere and reduce them at large zenith angles. Thus, Cloud-J offers a robust method for modelling atmospheric photodissociation processes with high computational efficiency. Full article
(This article belongs to the Section Air Pollution Control)
Show Figures

Figure 1

14 pages, 4248 KiB  
Article
Impact of Saharan Dust Intrusions on Atmospheric Boundary Layer Height over Madrid
by Francisco Molero, Pedro Salvador and Manuel Pujadas
Atmosphere 2024, 15(12), 1451; https://doi.org/10.3390/atmos15121451 - 3 Dec 2024
Viewed by 948
Abstract
Atmospheric pollution caused by aerosols deteriorates air quality, increasing public health risks. Anthropogenic aerosols are usually located within the atmospheric boundary layer (ABL), which presents a daytime evolution that determines the air pollutants’ vertical mixing of those produced near the surface and, therefore, [...] Read more.
Atmospheric pollution caused by aerosols deteriorates air quality, increasing public health risks. Anthropogenic aerosols are usually located within the atmospheric boundary layer (ABL), which presents a daytime evolution that determines the air pollutants’ vertical mixing of those produced near the surface and, therefore, their ground-level concentration from local sources. Precise and complete characterization of the mixing layer is of crucial importance for numerical weather forecasting and climate models, but traditional methods such as radiosounding present some spatial and temporal limitations. Better resolutions have been obtained using lidar, which provides the aerosol vertical distribution. A particular type of lidar, the ceilometer, has demonstrated continuous measurement capabilities, providing vertical profiles with sub-minute time resolution and several-meter spatial resolution. Advanced methods, such as the recently developed STRATfinder algorithm, are required to estimate the ABL height in the presence of residual layers. More complex situations occur due to the advection of aerosols (e.g., due to long-range transport of desert dust, volcanic eruptions, or pyrocloud convection), producing a lofted layer in the free troposphere that may remain decoupled from the local ABL but can also be mixed. Aerosol-based methods for determination of the ABL height are challenging in those situations. The main objective of this research is the assessment of the impact of Saharan dust intrusions on the ABL using ceilometer signals, over a period of four years, 2020–2023. The ABL height database, obtained from ceilometer measurements every hour, is analyzed based on the most frequent synoptic patterns. A reduction in the ABL height was obtained from high dust load days (1576 ± 876 m) with respect to low dust load days (1857 ± 914 m), although it was still higher than clean days (1423 ± 772 m). This behavior is further studied discriminating by season and synoptic patterns. These results are relevant for health advice during Saharan dust intrusion days. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

27 pages, 14376 KiB  
Article
Investigating Synoptic Influences on Tropospheric Volcanic Ash Dispersion from the 2015 Calbuco Eruption Using WRF-Chem Simulations and Satellite Data
by Douglas Lima de Bem, Vagner Anabor, Franciano Scremin Puhales, Damaris Kirsch Pinheiro, Fabio Grasso, Luiz Angelo Steffenel, Leonardo Brenner and Umberto Rizza
Remote Sens. 2024, 16(23), 4455; https://doi.org/10.3390/rs16234455 - 27 Nov 2024
Viewed by 1141
Abstract
We used WRF-Chem to simulate ash transport from eruptions of Chile’s Calbuco volcano on 22–23 April 2015. Massive ash and SO2 ejections reached the upper troposphere, and particulates transported over South America were observed over Argentina, Uruguay, and Brazil via satellite and [...] Read more.
We used WRF-Chem to simulate ash transport from eruptions of Chile’s Calbuco volcano on 22–23 April 2015. Massive ash and SO2 ejections reached the upper troposphere, and particulates transported over South America were observed over Argentina, Uruguay, and Brazil via satellite and surface data. Numerical simulations with the coupled Weather Research and Forecasting–Chemistry (WRF-Chem) model from 22 to 27 April covered eruptions and particle propagation. Chemical and aerosol parameters utilized the GOCART (Goddard Chemistry Aerosol Radiation and Transport) model, while the meteorological conditions came from NCEP-FNL reanalysis. In WRF-Chem, we implemented a more efficient methodology to determine the Eruption Source Parameters (ESP). This permitted each simulation to consider a sequence of eruptions and a time varying ESP, such as the eruption height and mass and the SO2 eruption rate. We used two simulations (GCTS1 and GCTS2) differing in the ash mass fraction in the finest bins (0–15.6 µm) by 2.4% and 16.5%, respectively, to assess model efficiency in representing plume intensity and propagation. Analysis of the active synoptic components revealed their impact on particle transport and the Andes’ role as a natural barrier. We evaluated and compared the simulated Aerosol Optical Depth (AOD) with VIIRS Deep Blue Level 3 data and SO2 data from Ozone Mapper and Profiler Suite (OMPS) Limb Profiler (LP), both of which are sensors onboard the Suomi National Polar Partnership (NPP) spacecraft. The model successfully reproduced ash and SO2 transport, effectively representing influencing synoptic systems. Both simulations showed similar propagation patterns, with GCTS1 yielding better results when compared with AOD retrievals. These results indicate the necessity of specifying lower mass fraction in the finest bins. Comparison with VIIRS Brightness Temperature Difference data confirmed the model’s efficiency in representing particle transport. Overestimation of SO2 may stem from emission inputs. This study demonstrates the feasibility of our implementation of the WRF-Chem model to reproduce ash and SO2 patterns after a multi-eruption event. This enables further studies into aerosol–radiation and aerosol–cloud interactions and atmospheric behavior following volcanic eruptions. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

16 pages, 1035 KiB  
Article
Volcanic Terroirs: Exploring Minerals in Canary Red Wine
by Jesus Heras-Roger, Carlos Díaz-Romero, Javier Darias-Rosales and Jacinto Darias-Martín
Beverages 2024, 10(4), 107; https://doi.org/10.3390/beverages10040107 - 7 Nov 2024
Viewed by 1683
Abstract
The mineral composition of monovarietal red wines from the Canary Islands was analyzed to evaluate the potential of mineral content as a marker for wine authenticity by geographical origin. Key minerals—K, Na, Mg, Mn, Fe, Cu, and Co—were quantified in 190 wine samples [...] Read more.
The mineral composition of monovarietal red wines from the Canary Islands was analyzed to evaluate the potential of mineral content as a marker for wine authenticity by geographical origin. Key minerals—K, Na, Mg, Mn, Fe, Cu, and Co—were quantified in 190 wine samples using flame absorption spectrometry. The study revealed slight mineral profile differences between recently introduced international grape cultivars and traditional ungrafted varieties. A significant correlation was found between K and Mg, highlighting their roles in vine physiology. The results indicated that Tenerife wines had elevated Fe and Mn, Lanzarote wines showed higher Na (likely from marine aerosols), and La Gomera wines had significantly high Mn. Linear discriminant analysis demonstrated that Mn, Mg, and Na differentiated wines by island with 85% classification accuracy, while Cu and Fe correlated with wine ageing. These findings emphasize the influence of volcanic soils and microclimate on mineral profiles, supporting mineral analysis as a cost-effective tool for classifying red wines by origin. This study offers insights into how terroir, grape cultivar, and winemaking practises define the unique characteristics of Canary Island wines. Full article
(This article belongs to the Section Wine, Spirits and Oenological Products)
Show Figures

Graphical abstract

20 pages, 2241 KiB  
Article
Can the Artificial Release of Fluorinated Gases Offset Global Cooling Due to Supervolcanic Eruptions?
by Yangyang Xu, Nathanael P. Ribar, Jeffrey Sachnik, Gunnar W. Schade, Andrew John Lockley, Yi Ge Zhang, Pengfei Yu, Jianxin Hu and Guus J. M. Velders
Atmosphere 2024, 15(11), 1322; https://doi.org/10.3390/atmos15111322 - 2 Nov 2024
Cited by 1 | Viewed by 2070
Abstract
Large volcanic eruptions, such as the prehistoric Yellowstone eruption, induce abrupt global cooling—by some estimates at a rate of ~1 °C/year, lasting for more than a decade. An abrupt global cooling of several °C—even if only lasting a few years—would present immediate, drastic [...] Read more.
Large volcanic eruptions, such as the prehistoric Yellowstone eruption, induce abrupt global cooling—by some estimates at a rate of ~1 °C/year, lasting for more than a decade. An abrupt global cooling of several °C—even if only lasting a few years—would present immediate, drastic stress on biodiversity and food production. This cooling poses a global catastrophic risk to human society beyond the immediate and direct impact of eruptions. Using a simple climate model, this paper discusses the possibility of counteracting large volcanic cooling with the intentional release of greenhouse gases. Longer-lived compounds (e.g., CO2 and CH4) are unsuitable for this purpose, but selected fluorinated gases (F-gases), either individually or in combinations, could be released at gigaton scale to offset large volcanic cooling substantially. We identify candidate F-gases (e.g., C4F6 and CH3F) and derive radiative and chemical properties of ‘ideal’ compounds matching specific cooling events. Geophysical constraints on manufacturing and stockpiling due to mineral availability are considered, alongside technical and economic implications based on present-day market assumptions. The effects and uncertainty due to atmospheric chemistry related to aerosol injection, F-gases release, and solar dimming are discussed in the context of large volcanic perturbation. The caveats and future steps using more complex chemistry–climate models are discussed. Despite the speculative nature of the magnitude and composition of F-gases, our conceptual analysis has implications for testing the possibility of mitigating certain global catastrophic cooling risks (e.g., nuclear winter, asteroid impact, and glacier transition) via intentional intervention. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

16 pages, 2739 KiB  
Article
Temperature and Ozone Response to Different Forcing in the Lower Troposphere and Stratosphere
by Margarita Usacheva, Eugene Rozanov, Vladimir Zubov and Sergei Smyshlyaev
Atmosphere 2024, 15(11), 1289; https://doi.org/10.3390/atmos15111289 - 27 Oct 2024
Viewed by 2370
Abstract
To evaluate the contributions of different forcings to the temperature and atmospheric composition changes between 1980 and 2020, we exploited the chemistry-climate model (CCM) SOCOLv3. The study examined ozone content and atmospheric temperature response to (1) ozone-depleting substances; (2) greenhouse gas concentrations, ocean [...] Read more.
To evaluate the contributions of different forcings to the temperature and atmospheric composition changes between 1980 and 2020, we exploited the chemistry-climate model (CCM) SOCOLv3. The study examined ozone content and atmospheric temperature response to (1) ozone-depleting substances; (2) greenhouse gas concentrations, ocean surface temperature, and sea ice coverage; (3) solar irradiance; and (4) stratospheric aerosol loading and, separately, (5) greenhouse gas concentrations, (6) ocean surface temperature and sea ice coverage, and (7) NOx surface emissions. To evaluate the impacts of specific factors, we performed model runs driven by each factor (1–7) variability as well as a reference experiment that accounted for the influence of all factors simultaneously. We identified the relative contribution of different factors to the evolution of the temperature and ozone content of the lower troposphere and stratosphere from 1980 to 2020. The model results were in good agreement with the reanalyses (MERRA2 and ERA5). We showed that stratospheric ozone depletion before the Montreal Protocol introduction and partial recovery after that were chiefly driven by ODS. Stratospheric aerosol from major volcanic eruptions caused only short-term (up to 5 years) ozone decline. Increased greenhouse gas emissions dominate the ongoing long-term stratospheric cooling as well as tropospheric and surface warming. Solar irradiance contributed to short-term fluctuations but had a minimal long-term impact. Furthermore, our analysis of the solar signal in the tropical stratosphere underscores the complex interplay of solar radiation with volcanic, oceanic, and atmospheric factors, revealing significant altitudinal distributions of temperature and ozone responses to solar activity. Our findings advocate further innovative methodologies to take into account the nonlinearity of the atmospheric processes. Full article
(This article belongs to the Special Issue Ozone Evolution in the Past and Future (2nd Edition))
Show Figures

Figure 1

24 pages, 6596 KiB  
Article
A Deep Learning Lidar Denoising Approach for Improving Atmospheric Feature Detection
by Patrick Selmer, John E. Yorks, Edward P. Nowottnick, Amanda Cresanti and Kenneth E. Christian
Remote Sens. 2024, 16(15), 2735; https://doi.org/10.3390/rs16152735 - 26 Jul 2024
Cited by 6 | Viewed by 3263
Abstract
Space-based atmospheric backscatter lidars provide critical information about the vertical distribution of clouds and aerosols, thereby improving our understanding of the climate system. They are additionally useful for detecting hazards to aviation and human health, such as volcanic plumes and man-made pollution events. [...] Read more.
Space-based atmospheric backscatter lidars provide critical information about the vertical distribution of clouds and aerosols, thereby improving our understanding of the climate system. They are additionally useful for detecting hazards to aviation and human health, such as volcanic plumes and man-made pollution events. The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP, 2006–2023), Cloud-Aerosol Transport System (CATS, 2015–2017), and Advanced Topographic Laser Altimeter System (ATLAS 2018–present) are three such lidars that operated within the past 20 years. The signal-to-noise ratio (SNR) for these lidars is significantly lower in daytime data compared with nighttime data due to the solar background signal increasing the detector response noise. Averaging horizontally across profiles has been the standard way to increase SNR, but this comes at the expense of resolution. Modern, deep learning-based denoising algorithms can be applied to improve the SNR without coarsening resolution. This paper describes how one such model architecture, Dense Dense U-Net (DDUNet), was trained to denoise CATS 1064 nm raw signal data (photon counts) using artificially noised nighttime data. Simulated CATS daytime 1064 nm data were then created to assess the model’s performance. The denoised simulated data increased the daytime SNR by a factor of 2.5 (on average) and decreased minimum detectable backscatter (MDB) to ~7.3×104 km−1sr−1, which is lower than the CALIOP 1064 nm night MDB value of 8.6×104 km−1sr−1. Layer detection was performed on simulated 2 km horizontal resolution denoised and 60 km averaged data. Despite the finer resolution input, the denoised layers had more true positives, fewer false positives, and an overall Jaccard Index of 0.54 versus 0.44 when compared to the layers detected on averaged data. Layer detection was also performed on a full month of denoised daytime CATS data (Aug. 2015) to detect layers for comparison with CATS standard Level 2 (L2) product layers. The detection on the denoised data yielded 2.33 times more, higher-quality bins within detected layers at 2.7–33 times finer resolution than the CATS L2 products. Full article
Show Figures

Graphical abstract

10 pages, 1781 KiB  
Article
Exposure to Acid Aerosols in the Visiting Areas of the Poás Volcano National Park, Costa Rica
by Christian Vargas Jiménez, José Pablo Sibaja Brenes, Rosa Alfaro Solís, Henry Borbón Alpízar, Mónica Brenes Ortiz and Maricruz Arguedas González
Atmosphere 2024, 15(7), 848; https://doi.org/10.3390/atmos15070848 - 19 Jul 2024
Viewed by 1458
Abstract
Poás Volcano made a magmatic eruption in April 2017. The volcanic outburst resulted in an ash and vapor column towering over three kilometers high. Since that time, there has been a continual release of gases, aerosols, and more recently, ash, posing potential issues [...] Read more.
Poás Volcano made a magmatic eruption in April 2017. The volcanic outburst resulted in an ash and vapor column towering over three kilometers high. Since that time, there has been a continual release of gases, aerosols, and more recently, ash, posing potential issues for visitors and park rangers. In this work, the potential for exposure to acid gases and aerosols faced by park rangers, officials, and visitors to the Poás Volcano National Park was evaluated, and the concentrations found were compared with the exposure limits established by the Occupational Safety and Health Administration (OSHA). The study was conducted between October 2021 and November 2022. the concentrations of HCl(g), HNO3(ac), HF(g), and H2SO4(ac) were determined at three strategic points: the ranger station, the visitor center, and the main crater viewpoint. The maximum concentrations obtained were (7.0 ± 1.6) ppb for HCl(g), (6.2 ± 2.8) ppb for HNO3(ac), and (0.029 ± 0.044) ppm for H2SO4(ac). There were no concentration values above the detection limit (0.94 μg/m3) for HF(g). By comparing the data obtained with similar studies, it is concluded that the measured values in Poás Volcano National Park are low and only show similarities to the results found in volcanoes within the national territory. The exposure limit established by OSHA (0.02 ppm) was only surpassed by H2SO4(ac), and could be the cause of health effects experienced over the years by park rangers. To minimize these risks, the use of personal protective equipment and air quality monitoring is essential. Full article
(This article belongs to the Special Issue Impact of Volcanic Eruptions on the Atmosphere)
Show Figures

Figure 1

10 pages, 1124 KiB  
Article
Five Large 13th Century C.E. Volcanic Eruptions Recorded in Antarctica Ice Cores
by Jihong Cole-Dai, Derek L. Brandis and Dave G. Ferris
Atmosphere 2024, 15(6), 661; https://doi.org/10.3390/atmos15060661 - 30 May 2024
Cited by 1 | Viewed by 1736
Abstract
Major explosive volcanic eruptions impact the climate by altering the radiative balance of the atmosphere and through feedback mechanisms in the climate system. The extent of the impact depends on the magnitude (aerosol mass loading) and the number or frequency of such eruptions. [...] Read more.
Major explosive volcanic eruptions impact the climate by altering the radiative balance of the atmosphere and through feedback mechanisms in the climate system. The extent of the impact depends on the magnitude (aerosol mass loading) and the number or frequency of such eruptions. Multiple Antarctica ice core records of past volcanic eruptions reveal that the number (5) of major eruptions (volcanic sulfate deposition flux greater than 10 kg km−2) was the highest in the 13th century over the last two millennia. Signals of four of the five eruptions are dated to the second half of the century, indicating consecutive major eruptions capable of causing sustained climate impact via known feedback processes. The fact that signals of four corresponding eruptions have been found in a Greenland ice core indicates that four of the five 13th century eruptions were probably by volcanoes in the low latitudes (between 20° N and 20° S) with substantial aerosol mass loading. These eruptions in the low latitudes likely exerted the strongest volcanic impact on climate in the last two millennia. Full article
(This article belongs to the Special Issue Impact of Volcanic Eruptions on the Atmosphere)
Show Figures

Figure 1

36 pages, 5859 KiB  
Article
The Recovery and Re-Calibration of a 13-Month Aerosol Extinction Profiles Dataset from Searchlight Observations from New Mexico, after the 1963 Agung Eruption
by Juan-Carlos Antuña-Marrero, Graham W. Mann, John Barnes, Abel Calle, Sandip S. Dhomse, Victoria E. Cachorro, Terry Deshler, Zhengyao Li, Nimmi Sharma and Louis Elterman
Atmosphere 2024, 15(6), 635; https://doi.org/10.3390/atmos15060635 - 24 May 2024
Cited by 1 | Viewed by 1269
Abstract
The recovery and re-calibration of a dataset of vertical aerosol extinction profiles of the 1963/64 stratospheric aerosol layer measured by a searchlight at 32° N in New Mexico, US, is reported. The recovered dataset consists of 105 aerosol extinction profiles at 550 nm [...] Read more.
The recovery and re-calibration of a dataset of vertical aerosol extinction profiles of the 1963/64 stratospheric aerosol layer measured by a searchlight at 32° N in New Mexico, US, is reported. The recovered dataset consists of 105 aerosol extinction profiles at 550 nm that cover the period from December 1963 to December 1964. It is a unique record of the portion of the aerosol cloud from the March 1963 Agung volcanic eruption that was transported into the Northern Hemisphere subtropics. The data-recovery methodology involved re-digitizing the 105 original aerosol extinction profiles from individual Figures within a research report, followed by the re-calibration. It involves inverting the original equation used to compute the aerosol extinction profile to retrieve the corresponding normalized detector response profile. The re-calibration of the original aerosol extinction profiles used Rayleigh extinction profiles calculated from local soundings. Rayleigh and aerosol slant transmission corrections are applied using the MODTRAN code in transmission mode. Also, a best-estimate aerosol phase function was calculated from observations and applied to the entire column. The tropospheric aerosol phase function from an AERONET station in the vicinity of the searchlight location was applied between 2.76 to 11.7 km. The stratospheric phase function, applied for a 12.2 to 35.2 km altitude range, is calculated from particle-size distributions measured by a high-altitude aircraft in the vicinity of the searchlight in early 1964. The original error estimate was updated considering unaccounted errors. Both the re-calibrated aerosol extinction profiles and the re-calibrated stratospheric aerosol optical depth magnitudes showed higher magnitudes than the original aerosol extinction profiles and the original stratospheric aerosol optical depth, respectively. However, the magnitudes of the re-calibrated variables show a reasonable agreement with other contemporary observations. The re-calibrated stratospheric aerosol optical depth demonstrated its consistency with the tropics-to-pole decreasing trend, associated with the major volcanic eruption stratospheric aerosol pattern when compared to the time-coincident stratospheric aerosol optical depth lidar observations at Lexington at 42° N. Full article
(This article belongs to the Special Issue Ozone in Stratosphere and Its Relation to Stratospheric Dynamics)
Show Figures

Figure 1

10 pages, 2002 KiB  
Review
The Impact of the Hunga Tonga–Hunga Ha’apai Volcanic Eruption on the Stratospheric Environment
by Qian Sun, Taojun Lu, Dan Li and Jingyuan Xu
Atmosphere 2024, 15(4), 483; https://doi.org/10.3390/atmos15040483 - 13 Apr 2024
Cited by 3 | Viewed by 2879
Abstract
In this study, an overview of two years of research findings concerning the 2022 Hunga Tonga–Hunga Ha’apai (HTHH) volcanic eruption in the stratospheric environment is provided, focusing on water vapor, aerosols, and ozone. Additionally, the potential impacts of these changes on aviation equipment [...] Read more.
In this study, an overview of two years of research findings concerning the 2022 Hunga Tonga–Hunga Ha’apai (HTHH) volcanic eruption in the stratospheric environment is provided, focusing on water vapor, aerosols, and ozone. Additionally, the potential impacts of these changes on aviation equipment materials are discussed. The HTHH volcanic eruption released a large amount of particles (e.g., ash and ice) and gases (e.g., H2O, SO2, and HCl), significantly affecting the redistribution of stratospheric water vapor and aerosols. Stratospheric water vapor increased by approximately 140–150 Tg (8–10%), with a concentration peak observed in the height range of 22.2–27 km (38–17 hPa). Satellite measurements indicate that the HTHH volcano injected approximately 0.2–0.5 Tg of sulfur dioxide into the stratosphere, which was partially converted into sulfate aerosols. In-situ observations revealed that the volcanic aerosols exhibit hygroscopic characteristics, with particle sizes ranging from 0.22–0.42 μm under background conditions to 0.42–1.27 μm. The moist stratospheric conditions increased the aerosol surface area, inducing heterogeneous chlorine chemical reactions on the aerosol surface, resulting in stratospheric ozone depletion in the HTHH plume within one week. In addition, atmospheric disturbances and ionospheric disruptions triggered by volcanic eruptions may adversely affect aircraft and communication systems. Further research is required to understand the evolution of volcanic aerosols and the impact of volcanic activity on aviation equipment materials. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

17 pages, 6147 KiB  
Article
Upgraded Three-Wavelength Lidar for Real-Time Observations of Volcanic Aerosol Optical and Microphysical Properties at Etna (Italy): Calibration Procedures and Measurement Tests
by Matteo Manzo, Gianpiero Aiesi, Antonella Boselli, Salvatore Consoli, Riccardo Damiano, Guido Di Donfrancesco, Benedetto Saraceno and Simona Scollo
Sensors 2024, 24(6), 1762; https://doi.org/10.3390/s24061762 - 8 Mar 2024
Cited by 1 | Viewed by 1362
Abstract
An innovative mobile lidar device, developed to monitor volcanic plumes during explosive eruptions at Mt. Etna (Italy) and to analyse the optical properties of volcanic particles, was upgraded in October 2023 with the aim of improving volcanic plume retrievals. The new configuration of [...] Read more.
An innovative mobile lidar device, developed to monitor volcanic plumes during explosive eruptions at Mt. Etna (Italy) and to analyse the optical properties of volcanic particles, was upgraded in October 2023 with the aim of improving volcanic plume retrievals. The new configuration of the lidar allows it to obtain new data on both the optical and the microphysical properties of the atmospheric aerosol. In fact, after the upgrade, the lidar is able to measure three backscattering coefficients, two extinction coefficients and two depolarisation ratios in a configuration defined as “state-of-the-art lidar”, where properties such as particle size distribution and the refractive index can be derived. During the lidar implementation, we were able to test the system’s performance through specific calibration measurements. A comparison in an aerosol-free region (7.2–12 km) between lidar signals at 1064 nm, 532 nm and 355 nm and the corresponding pure molecular profiles showed a relative difference of <1% between them for all the wavelengths, highlighting the good dynamic of the signals. The overlap correction allowed us to reduce the underestimation of the backscattering coefficient from 50% to 10% below 450 m and 750 m at both 355 and 532 nm, respectively. The correct alignment between the laser beam and the receiver optical chain was tested using the signal received from the different quadrants of the telescope, and the relative differences between the four directions were comparable to zero, within the margin of error. Finally, the first measurement results are shown and compared with results obtained by other instruments, with the aim of proving the ability of the upgraded system to more precisely characterise aerosol optical and microphysical properties. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

17 pages, 4417 KiB  
Article
Investigation of Icelandic Dust Presence in the Aerosols Collected at Hornsund (Svalbard, Norwegian Arctic) in Spring 2019
by Beatrice Moroni, Stefano Crocchianti, Adam Nawrot, Pavla Dagsson Waldhauserova and David Cappelletti
Atmosphere 2024, 15(3), 322; https://doi.org/10.3390/atmos15030322 - 4 Mar 2024
Cited by 1 | Viewed by 1786
Abstract
An integrated morphological and chemical analysis of Arctic aerosols was undertaken for Icelandic dust and Svalbard aerosols to be compared by scanning electron microscopy coupled with EDS microanalysis (SEM–EDS) via imaging and chemical analysis techniques. Results of the characterization of the particles from [...] Read more.
An integrated morphological and chemical analysis of Arctic aerosols was undertaken for Icelandic dust and Svalbard aerosols to be compared by scanning electron microscopy coupled with EDS microanalysis (SEM–EDS) via imaging and chemical analysis techniques. Results of the characterization of the particles from both surface sediments and suspended dust from desert areas in Iceland confirmed that volcanic glass is an excellent marker of Icelandic dust origin. Classification diagrams of particle chemical composition clearly distinguished the volcanic glass particles from the local surface sediments at Hornsund, Svalbard. In the same diagrams, a few particles were found in the aerosols from Hornsund which were morphologically and chemically similar to the Icelandic volcanic glass particles. Such properties, in principle, cannot be considered exclusive to volcanic glass. However, since Iceland is the largest and the most active source of long-range transported dust in the northern European high latitudes, and air mass trajectories reaching Hornsund did, actually, pass Iceland before the aerosol collection in the period under consideration, these particles likely originated in Iceland. On the other hand, the comparison with local and Icelandic sediments revealed the presence in the aerosols from Hornsund of particle types that cannot be attributed to either local or Icelandic dust. This observation highlights the possibility of extending and validating the application of the proposed geochemical criterion to different dust sources across the Arctic and the sub-Arctic, provided a consistent geochemical databank of representative dust sources from these areas is arranged. Full article
(This article belongs to the Special Issue Chemical and Morphological Characterization of Atmospheric Aerosols)
Show Figures

Figure 1

34 pages, 4425 KiB  
Article
Atmospheric Processes over the Broader Mediterranean Region: Effect of the El Niño–Southern Oscillation?
by Harry D. Kambezidis
Atmosphere 2024, 15(3), 268; https://doi.org/10.3390/atmos15030268 - 23 Feb 2024
Cited by 1 | Viewed by 2735
Abstract
The Mediterranean area is considered a hot spot on our planet because it represents the crossroads of various aerosols. Several studies have shown that the weather in the region is affected by the North-Atlantic Oscillation, which, in turn, is well connected with the [...] Read more.
The Mediterranean area is considered a hot spot on our planet because it represents the crossroads of various aerosols. Several studies have shown that the weather in the region is affected by the North-Atlantic Oscillation, which, in turn, is well connected with the El Niño–Southern Oscillation (ENSO) phenomenon. Nevertheless, no study has investigated the ENSO effect on the solar radiation and atmospheric aerosols in this region. The present study considers a greater area around the Mediterranean Sea over the period 1980–2022. The results show that there exists a loose but significant dependence, in some cases, of the optical properties of aerosols (aerosol optical depth, Ångström exponent, cloud optical depth) and solar radiation (net short-wave and net long-wave radiation, direct aerosol radiative forcing) on ENSO events. The results of this study provide motivation for further investigations, since such results can increase the accuracy of general circulation models that deal with climate change. Besides the ENSO effect, the enrichment of the Mediterranean atmosphere in suspended particles from great volcanic eruptions is shown. The inter-annual variation of the examined parameters is presented. A classification of the existing aerosols over the area is also provided. Full article
(This article belongs to the Special Issue Atmospheric Aerosols and Their Impact on Air Quality and the Climate)
Show Figures

Figure 1

21 pages, 11514 KiB  
Article
Investigating a Persistent Stratospheric Aerosol Layer Observed over Southern Europe during 2019
by Kalliopi Artemis Voudouri, Konstantinos Michailidis, Maria-Elissavet Koukouli, Samuel Rémy, Antje Inness, Ghassan Taha, Georgia Peletidou, Nikolaos Siomos, Dimitrios Balis and Mark Parrington
Remote Sens. 2023, 15(22), 5394; https://doi.org/10.3390/rs15225394 - 17 Nov 2023
Cited by 4 | Viewed by 2078
Abstract
A persistent stratospheric aerosol layer first appeared during July 2019 above Thessaloniki, Greece (40.5°N, 22.9°E). It was initially at 12 km and, during August 2019, was even up to 20 km, with increased thickness and reduced attenuated backscatter levels till the end of [...] Read more.
A persistent stratospheric aerosol layer first appeared during July 2019 above Thessaloniki, Greece (40.5°N, 22.9°E). It was initially at 12 km and, during August 2019, was even up to 20 km, with increased thickness and reduced attenuated backscatter levels till the end of the year. In this study, we analyze the geometrical and optical properties of this stratospheric layer, using ground-based Lidar measurements, CALIOP/CALIPSO & OMPS-LP space-borne observations, as well as CAMS/ECMWF assimilation experiments. The main aim of the paper is to present an overview of this atmospheric feature and to identify any temporal changes in the aerosol properties that would signify substantial changes in the composition of this long-lasting stratospheric plume over Thessaloniki. This aim is further enhanced by emphasizing the importance of the combined information based on active ground- and space-borne lidars, passive remote sensing, and models during the complex stratospheric aerosol conditions as those encountered during 2019. The layer’s origin is linked to the Raikoke volcanic eruption in the Kuril Islands in June 2019, yielding a particle linear depolarization ratio less than 0.05, while some indications exist that the intense forest fires at mid and high northern latitudes throughout the summer of 2019 also contributed to the persistent layer. We report that in July, mainly volcanic sulphate aerosol layers with a 1–3 km vertical extent were identified in the stratosphere at ~15 km over Thessaloniki, while after August and until the end of 2019, the plume heights showed a significant month-to-month variability and a broadening (with thickness greater than 3 km) towards lower altitudes. The aerosol optical thickness was found to be in the range between 0.004 and 0.125 (visible) and 0.001 and 0.095 (infrared) and the particle depolarization of the detected stratospheric plume was found to be 0.03 ± 0.04, indicative of spherical particles, such as sulphate aerosols. Full article
Show Figures

Figure 1

Back to TopTop