Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (768)

Search Parameters:
Keywords = viscoelastic systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1642 KB  
Article
Effect of Vanillin and Chitin Particles on the Chitosan-Based Oleogels Produced by the Emulsion-Templated Method
by Leticia Montes, Sofía Viciana, Daniel Franco, Jorge Sineiro and Ramón Moreira
Gels 2025, 11(10), 799; https://doi.org/10.3390/gels11100799 - 3 Oct 2025
Abstract
This study presents the first assessment of the combined effect of vanillin and chitin particles on the rheological, oil retention, textural, and oxidative properties of chitosan-based oleogels formulated with olive oil. Oleogels were prepared with and without vanillin; in the latter case, the [...] Read more.
This study presents the first assessment of the combined effect of vanillin and chitin particles on the rheological, oil retention, textural, and oxidative properties of chitosan-based oleogels formulated with olive oil. Oleogels were prepared with and without vanillin; in the latter case, the vanillin-to-chitosan ratio was kept constant (1.3), while chitin concentrations (% w/w) were variable (0.0, 0.5, 1.5, and 2.0). Fresh oleogels and those stored for 15 days were characterized. Results demonstrated that vanillin promotes the formation of compact viscoelastic networks, enhances the elastic modulus by approximately 1.3 times, improves oil binding capacity from 75.1% to 89.2%, and significantly improves oxidative stability by minimizing lipid degradation. In contrast, the influence of chitin was dependent on its content and the presence of vanillin. At intermediate content, chitin positively affected cohesiveness and elasticity, particularly in vanillin-free systems. However, in formulations containing vanillin, even low chitin concentration disrupted the gel network, leading to a decrease in hardness, low oil retention, and a higher oxidation degree. Significant correlations between hardness and elastic modulus, oil binding capacity, adhesiveness, and damping factor were obtained for fresh and stored oleogels. Full article
(This article belongs to the Special Issue Modification of Gels in Creating New Food Products (2nd Edition))
16 pages, 892 KB  
Article
Mechanically Activated Transition from Linear Viscoelasticity to Yielding: Correlation-Based Unification
by Maxim S. Arzhakov, Irina G. Panova, Aleksandr A. Kiushov and Aleksandr A. Yaroslavov
Polymers 2025, 17(19), 2665; https://doi.org/10.3390/polym17192665 - 1 Oct 2025
Abstract
The mechanically activated transition (MAT) from linear viscoelasticity to yielding is considered an essential part of the operational behavior of ductile materials. The MAT region is restricted by proportional limit at σ0 and ε0 and the yield point at σy [...] Read more.
The mechanically activated transition (MAT) from linear viscoelasticity to yielding is considered an essential part of the operational behavior of ductile materials. The MAT region is restricted by proportional limit at σ0 and ε0 and the yield point at σy and εy, or, in terms of this paper, E0=σ0/ε0 and ε0 and Ey=σy/εy and εy, respectively. This stage precedes yielding and controls the parameters of the yield point. For bulk plastic (co)polymers and cellular polymeric foams, the quantitative correlations between E0, ε0, Ey, and εy were determined. The ratios E0Ey=1.55±0.15 and εyε0=2.1±0.2 were specified as yielding criteria. For all the samples studied, their mechanical response within the MAT region was unified in terms of master curve constructed via re-calculation of the experimental “stress–strain” diagrams in the reduced coordinates lg Elg E0lg E0lg Ey=flgεlgε0lgεylgε0, where E=σ/ε and ε are the current modulus and strain, respectively. To generalize these regularities found for bulk plastics and foams, our earlier experimental results concerning the rheology of soil-based pastes and data from the literature concerning the computer simulation of plastic deformation were invoked. Master curves for (1) dispersed pastes, (2) bulk plastics, (3) polymeric foams, and (4) various virtual models were shown to be in satisfactory coincidence. For the materials analyzed, this result was considered as the unification of their mechanical response within the MAT region. An algorithm for the express analysis of the mechanical response of plastic systems within the MAT region is proposed. The limitations and advances of the proposed methodological approach based on correlation studies followed by construction of master curves are outlined. Full article
(This article belongs to the Special Issue Mechanic Properties of Polymer Materials)
21 pages, 2132 KB  
Article
Optimized Ion-Sensitive Hydrogels Based on Gellan Gum and Arabinogalactan for the Treatment of Dry Eye Disease
by Valentina Paganini, Silvia Tampucci, Sofia Gisella Brignone, Mariacristina Di Gangi, Daniela Monti, Susi Burgalassi and Patrizia Chetoni
Gels 2025, 11(10), 787; https://doi.org/10.3390/gels11100787 - 1 Oct 2025
Abstract
Dry eye disease (DED) is a multifactorial condition characterized by insufficient tear film stability and ocular discomfort. Conventional artificial tears offer limited efficacy due to short precorneal residence time. This study aimed to develop and optimize ion-sensitive in situ gelling formulations based on [...] Read more.
Dry eye disease (DED) is a multifactorial condition characterized by insufficient tear film stability and ocular discomfort. Conventional artificial tears offer limited efficacy due to short precorneal residence time. This study aimed to develop and optimize ion-sensitive in situ gelling formulations based on low-acyl gellan gum (GG) and arabinogalactan (AG) to enhance retention and therapeutic efficacy in DED. Various buffer systems were screened to identify optimal gelation conditions upon interaction with artificial tear fluid (ATF). Formulations were characterized by pH, osmolality, wettability, thermal behavior, viscosity, and viscoelastic properties. A Design of Experiments (DoE) approach was employed to understand the influence of GG and AG concentrations on rheological behavior. The selected formulation, GG(0.1%)/AG(0.2%), demonstrated a significant viscosity increase upon ATF dilution, suitable viscoelastic properties, enhanced mucoadhesion compared to hyaluronic acid, improved ferning patterns, no cytotoxic effects, and stability over time. In vivo studies in rabbits confirmed prolonged precorneal retention of the fluorescently labeled formulation. These results suggest that the GG/AG-based hydrogel is a promising strategy for improving the performance of artificial tears in DED treatment. Full article
(This article belongs to the Special Issue Novel Gels for Topical Applications)
Show Figures

Figure 1

18 pages, 5138 KB  
Article
Model Order Reduction for Rigid–Flexible–Thermal Coupled Viscoelastic Multibody System via the Modal Truncation with Complex Global Modes
by Qinglong Tian, Chengyu Pan, Zhuo Liu and Xiaoming Chen
Actuators 2025, 14(10), 479; https://doi.org/10.3390/act14100479 - 30 Sep 2025
Abstract
A spacecraft is a typical rigid–flexible–thermal coupled multibody system, and the study of such rigid–flexible–thermal coupled systems has important engineering significance. The dissipation effect of material damping has a significant impact on the response of multibody system dynamics. Owing to the increasing multitude [...] Read more.
A spacecraft is a typical rigid–flexible–thermal coupled multibody system, and the study of such rigid–flexible–thermal coupled systems has important engineering significance. The dissipation effect of material damping has a significant impact on the response of multibody system dynamics. Owing to the increasing multitude of computational dimensions, computational efficiency has remained a significant bottleneck hindering their practical applications in engineering. However, due to the fact that the stiffness matrix is a highly nonlinear function of generalized coordinates, traditional methods of modal truncation are difficult to apply directly. In this study, the absolute nodal coordinate formulation (ANCF) is used to uniformly describe the modeling of rigid–flexible–thermal coupled multibody systems with large-scale motion and deformation. The constant tangent stiffness matrix and damping matrix can be obtained by locally linearizing the dynamic equation and heat transfer equations, which are based on the Taylor expansion. The dynamic and heat transfer equations obtained by reducing the order of complex modes are transformed into a unified first-order equation, which is solved simultaneously. The orthogonal complement matrix of the constraint equation is proposed to eliminate the nonlinear constraints. A strategy based on energy preservation was proposed to update the reduced-order basis vectors, which improved the calculation accuracy and efficiency. Finally, a systematic method for rigid–flexible–thermal coupled viscoelastic multibody systems via modal truncation with complex global modes is developed. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

18 pages, 2156 KB  
Article
Interfacial Viscoelastic Moduli of Surfactant- and Nanoparticle-Laden Oil/Water Interfaces Surrounded by a Weak Gel
by Lazhar Benyahia, Ahmad Jaber, Philippe Marchal, Tayssir Hamieh and Thibault Roques-Carmes
Nanomaterials 2025, 15(19), 1489; https://doi.org/10.3390/nano15191489 - 29 Sep 2025
Abstract
This work aims to study the effect of the bulk rheology of a complex system on the apparent interfacial viscoelastic response of a rising oil droplet of a paraffinic oil (Indopol) undergoing sinusoidal volume dilatations insidean aqueous phase containing a hydrogel. The modulation [...] Read more.
This work aims to study the effect of the bulk rheology of a complex system on the apparent interfacial viscoelastic response of a rising oil droplet of a paraffinic oil (Indopol) undergoing sinusoidal volume dilatations insidean aqueous phase containing a hydrogel. The modulation of the interfacial viscoelasticity is obtained using Span 80 surfactant or fumed silica nanoparticles. The rheology of the continuous phase is tuned by adding 3 to 5 g/L of κ-carrageenan (KC) to switch the continuous aqueous phase from a liquid to a gel state at 15 °C. When KC is liquid, the presence of Span 80 or nanoparticles at the liquid/liquid interface increases the apparent interfacial elastic modulus. However, when KC becomes a weak gel, the apparent interfacial elastic modulus depends on the nature of the surface-active agents. Indeed, if the presence of silica hard nanoparticles enhances the apparent elasticity of the interface, adding Span 80 weakens the apparent elasticity of the interface. These trends are discussed in terms of the localization of the deformation and slippage at the interfaces. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

35 pages, 7715 KB  
Article
Micro-Interface Slip Damping in a Compressed Coir Vibration Isolator
by Jem A. Rongong, Jin-Song Pei, Joseph P. Wright and Gerald A. Miller
Materials 2025, 18(19), 4521; https://doi.org/10.3390/ma18194521 - 29 Sep 2025
Abstract
The micro-interface slip damping mechanism is insensitive to temperature, making it suitable for applications where the operating environment makes viscoelastic polymers ineffective. Damping material systems that rely on micro-interface slip typically embody randomly disposed interlocking units leading to complex material behaviors. This work [...] Read more.
The micro-interface slip damping mechanism is insensitive to temperature, making it suitable for applications where the operating environment makes viscoelastic polymers ineffective. Damping material systems that rely on micro-interface slip typically embody randomly disposed interlocking units leading to complex material behaviors. This work studies a compressed coir vibration isolator that provides a lightweight, low cost and environmentally friendly alternative to common polymer devices. Under cyclic loading, it displays highly nonlinear hysteresis and a gradual change in properties based on the load history. The nonlinear hysteresis is captured with a Masing model, which has been shown to provide an adequate phenomenological representation of systems with large numbers of miniature stick-slip contacts. This study further explores a new way to enrich the Masing model by encoding time evolution using restoring force or displacement time integral, directly adopted from mem-models, a new family of models transferred from electrical engineering. In addition to using the data from the coir isolator, two additional datasets from clayey soil, another application of micro-interface slip damping, are used to validate the modeling approach. Full article
Show Figures

Figure 1

15 pages, 2166 KB  
Article
Spectroscopic and Rheological Characterization of Polyvinyl Alcohol/Hyaluronic Acid-Based Systems: Effect of Polymer Ratio and Riboflavin on Hydrogel Properties
by Iulia Matei, Marius Alexandru Mihai, Sorina-Alexandra Leau, Ludmila Aricov, Anca Ruxandra Leonties, Elvira Alexandrescu and Gabriela Ionita
Gels 2025, 11(10), 773; https://doi.org/10.3390/gels11100773 - 25 Sep 2025
Abstract
We report a systematic investigation on the physicochemical properties of polymer systems consisting of polyvinyl alcohol (PVA) and hyaluronic acid (HA) mixed in various volume ratios (1/4, 2/3, 1/1, 3/2, and 4/1). At PVA/HA ratios above 1/1, in the presence of glutaraldehyde and [...] Read more.
We report a systematic investigation on the physicochemical properties of polymer systems consisting of polyvinyl alcohol (PVA) and hyaluronic acid (HA) mixed in various volume ratios (1/4, 2/3, 1/1, 3/2, and 4/1). At PVA/HA ratios above 1/1, in the presence of glutaraldehyde and divinyl sulfone as crosslinking agents, hydrogels are formed. Their swelling behavior is dependent on the polymer ratio, with the highest water uptake determined for PVA/HA 4/1. The in situ generation of reactive oxygen species (HO radicals) under UV-A irradiation, in the presence of riboflavin as a photoinitiator, is evidenced by electron paramagnetic resonance (EPR) spectroscopy. The diffusion of small paramagnetic molecules across the interface of two PVA/HA 4/1 gel pieces placed in direct contact reveals the occurrence of molecular exchange, which could indicate some degree of self-repair of the hydrogel network. When the paramagnetic moiety is attached to the HA polymer by spin labeling, the absence of diffusion demonstrates the stability of the crosslinked HA chains within the PVA/HA network. The structural modifications induced by crosslinking, by the presence of riboflavin, and by exposure to UV-A light, and the resulting alterations in the mechanical behavior of the hydrogels are monitored by infrared spectroscopy and rheology. Only a slight decrease in the viscoelastic moduli values is noted, indicating that the formation of HO radicals has minimal impact on the macroscopic properties of the hydrogels. Full article
(This article belongs to the Special Issue State-of-the-Art Gel Research in Romania)
Show Figures

Figure 1

20 pages, 5226 KB  
Article
Design and Performance of 3D-Printed Hybrid Polymers Exhibiting Shape Memory and Self-Healing via Acrylate–Epoxy–Thiol–Ene Chemistry
by Ricardo Acosta Ortiz, Alan Isaac Hernández Jiménez, José de Jesús Ku Herrera, Roberto Yañez Macías and Aida Esmeralda García Valdez
Polymers 2025, 17(19), 2594; https://doi.org/10.3390/polym17192594 - 25 Sep 2025
Abstract
This study presents a novel strategy for designing photocurable resins tailored for the additive manufacturing of smart thermoset materials. A quaternary formulation was developed by integrating bis(2-methacryloyl)oxyethyl disulfide (DADS) with an epoxy/thiol-ene system (ETES) composed of diglycidyl ether of bisphenol A (EP), pentaerythritol [...] Read more.
This study presents a novel strategy for designing photocurable resins tailored for the additive manufacturing of smart thermoset materials. A quaternary formulation was developed by integrating bis(2-methacryloyl)oxyethyl disulfide (DADS) with an epoxy/thiol-ene system (ETES) composed of diglycidyl ether of bisphenol A (EP), pentaerythritol tetrakis(3-mercaptopropionate) (PTMP), and 4,4′-methylenebis(N,N-diallylaniline) (ACA4). This unique combination enables the simultaneous activation of four polymerization mechanisms: radical photopolymerization, thiol-ene coupling, thiol-Michael addition, and anionic ring-opening, within a single resin matrix. A key innovation lies in the exothermic nature of DADS photopolymerization, which initiates and sustains ETES curing at room temperature, enabling 3D printing without thermal assistance. This represents a significant advancement over conventional systems that require elevated temperatures or post-curing steps. The resulting hybrid poly(acrylate–co-ether–co-thioether) network exhibits enhanced mechanical integrity, shape memory behavior, and intrinsic self-healing capabilities. Dynamic Mechanical Analysis revealed a shape fixity and recovery of 93%, while self-healing tests demonstrated a 94% recovery of viscoelastic properties, as evidenced by near-overlapping storage modulus curves compared to a reference sample. This integrated approach broadens the design space for multifunctional photopolymers and establishes a versatile platform for advanced applications in soft robotics, biomedical devices, and sustainable manufacturing. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Graphical abstract

37 pages, 11818 KB  
Review
Research Progress and Application of Vibration Suppression Technologies for Damped Boring Tools
by Han Zhang, Jian Song, Jinfu Zhao, Xiaoping Ren, Aisheng Jiang and Bing Wang
Machines 2025, 13(10), 883; https://doi.org/10.3390/machines13100883 - 25 Sep 2025
Abstract
Deep hole structures are widely used in the fields of aerospace, engineering machinery, marine, etc. During the deep hole machining processes, especially for boring procedures, the vibration phenomenon caused by the large aspect ratio of boring tools seriously restricts the machining accuracy and [...] Read more.
Deep hole structures are widely used in the fields of aerospace, engineering machinery, marine, etc. During the deep hole machining processes, especially for boring procedures, the vibration phenomenon caused by the large aspect ratio of boring tools seriously restricts the machining accuracy and production efficiency. Therefore, extensive research has been devoted to the design and development of damped boring tools with different structures to suppress machining vibration. According to varied vibration reduction technologies, the damped boring tools can be divided into active and passive categories. This paper systematically reviews the advancements of vibration reduction principles, structure design, and practical applications of typical active and passive damped boring tools. Active damped boring tools rely on the synergistic action of sensors, actuators, and control systems, which can monitor vibration signals in real-time during the machining process and achieve dynamic vibration suppression through feedback adjustment. Their advantages include strong adaptability and wide adjustment capability for different machining conditions, including precision machining scenarios. Comparatively, vibration-absorbing units, such as mass dampers and viscoelastic materials, are integrated into the boring bars for passive damped tools, while an energy dissipation mechanism is utilized with the aid of boring tool structures to suppress vibration. Their advantages include simple structure, low manufacturing cost, and independence from an external energy supply. Furthermore, the potential development directions of vibration damped boring bars are discussed. With the development of intelligent manufacturing technologies, the multifunctional integration of damped boring tools has become a research hotspot. Future research will focus more on the development of an intelligent boring tool system to further improve the processing efficiency of deep hole structures with difficult-to-machine materials. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

22 pages, 3364 KB  
Article
Empirical Rules for Oscillation and Harmonic Approximation of Fractional Kelvin–Voigt Oscillators
by Paweł Łabędzki
Appl. Sci. 2025, 15(19), 10385; https://doi.org/10.3390/app151910385 - 24 Sep 2025
Viewed by 5
Abstract
Fractional Kelvin–Voigt (FKV) oscillators describe vibrations in viscoelastic structures with memory effects, leading to dynamics that are often more complex than those of classical harmonic oscillators. Since the harmonic oscillator is a simple, widely known, and broadly applied model, it is natural to [...] Read more.
Fractional Kelvin–Voigt (FKV) oscillators describe vibrations in viscoelastic structures with memory effects, leading to dynamics that are often more complex than those of classical harmonic oscillators. Since the harmonic oscillator is a simple, widely known, and broadly applied model, it is natural to ask under which conditions the dynamics of an FKV oscillator can be reliably approximated by a classical harmonic oscillator. In this work, we develop practical tools for such analysis by deriving approximate formulas that relate the parameters of an FKV oscillator to those of a best-fitting harmonic oscillator. The fitting is performed by minimizing a so-called divergence coefficient, a discrepancy measure that quantifies the difference between the responses of the FKV oscillator and its harmonic counterpart, using a genetic algorithm. The resulting data are then used to identify functional relationships between FKV parameters and the corresponding frequency and damping ratio of the approximating harmonic oscillator. The quality of these approximations is evaluated across a broad range of FKV parameters, leading to the identification of parameter regions where the approximation is reliable. In addition, we establish an empirical criterion that separates oscillatory from non-oscillatory FKV systems and employ statistical tools to validate both this classification and the accuracy of the proposed formulas over a wide parameter space. The methodology supports simplified modeling of viscoelastic dynamics and may contribute to applications in structural vibration analysis and material characterization. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

16 pages, 2496 KB  
Article
Surface Properties of Recombinant Pea Vicilin and Cupin-1.2 Solutions in 8M Urea
by Nikolay Isakov, Dmitry Angel, Mikhail Belousov, Giuseppe Loglio, Reinhard Miller, Anton Nizhnikov and Boris Noskov
Polymers 2025, 17(18), 2463; https://doi.org/10.3390/polym17182463 - 11 Sep 2025
Viewed by 347
Abstract
The kinetic dependencies of the surface pressure, the dilational dynamic surface elasticity and ellipsometric angles of cupin-1.2 and vicilin solutions in 8M urea were measured at different concentrations. The analysis of these kinetics dependencies and the obtained master curves allowed us to determine [...] Read more.
The kinetic dependencies of the surface pressure, the dilational dynamic surface elasticity and ellipsometric angles of cupin-1.2 and vicilin solutions in 8M urea were measured at different concentrations. The analysis of these kinetics dependencies and the obtained master curves allowed us to determine a few adsorption steps in the investigated systems and showed that the master curves are individual characteristics of the protein for a given solvent. At the same time, the shape of these curves can be different for adsorbed and spread layers of plant proteins indicating different structures of these layers. The dependencies of the dynamic surface elasticity on surface pressure are non-monotonic, unlike the corresponding results for most of the solutions of the investigated plant proteins. The extremums of these dependencies can be connected to the formation of the distal region of the surface layer in agreement with the theory for the surface viscoelasticity of polymer solutions. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

32 pages, 10218 KB  
Article
A Study of the Collision Characteristics of Colloidal Particles in Fuel Servo Valves
by Jin Zhang, Ranheng Du, Jie Ni, Wenlong Yin, Geng Cao, Ying Li and Huan Wang
Aerospace 2025, 12(9), 812; https://doi.org/10.3390/aerospace12090812 - 8 Sep 2025
Viewed by 269
Abstract
The fuel electro-hydraulic servo valve is a core component of the aero-engine fuel control system, playing a crucial role in engine performance. Due to the operational characteristics of the aviation fuel supply and injection system, fuel is directly sprayed through the nozzle for [...] Read more.
The fuel electro-hydraulic servo valve is a core component of the aero-engine fuel control system, playing a crucial role in engine performance. Due to the operational characteristics of the aviation fuel supply and injection system, fuel is directly sprayed through the nozzle for combustion after passing through the pipeline. The working environment and medium are subject to a wide temperature range, and the medium lacks a circulating filtration process, making it difficult to effectively remove impurities. As a result, the fuel contains a high concentration of contaminant particles. Under high-temperature conditions, colloidal particles precipitated from the fuel medium collide and adhere to metallic and other contaminant particles carried by the fuel, subsequently attaching to the internal surfaces of the fuel servo valve, causing valve sticking. This study aims to establish an adhesion criterion suitable for colloidal particles in fuel systems based on a traditional particle collision model. The adhesion criterion incorporates the viscoelastic and surface energy characteristics of colloidal particles, providing a more accurate description of their deposition behavior under the conditions studied. A particle–particle and particle–wall collision test apparatus was designed, and experiments were conducted. A comparison between experimental results and theoretical calculations shows that the overall error for collisions between colloidal particles and walls is controlled within 10%, validating the feasibility of the adhesion criterion. The Young’s modulus, Poisson’s ratio, and surface free energy of the colloidal particles were measured as 688 MPa, 0.39, and 77 mJ/m2, respectively. These results provide theoretical and experimental foundations for particle migration and deposition processes in fuel systems. The analytical method clarifies the key mechanism of adhesion caused by colloidal particles, providing guidance for improving the reliability, safety, and maintenance of fuel servo valves in aero-engine applications. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

17 pages, 2503 KB  
Article
Modeling and Validation of Oocyte Mechanical Behavior Using AFM Measurement and Multiphysics Simulation
by Yue Du, Yu Cai, Zhanli Yang, Ke Gao, Mingzhu Sun and Xin Zhao
Sensors 2025, 25(17), 5479; https://doi.org/10.3390/s25175479 - 3 Sep 2025
Viewed by 808
Abstract
Mechanical models are capable of simulating the deformation and stress distribution of oocytes under external forces, thereby providing insights into the underlying mechanisms of intracellular mechanical responses. Interactions with micromanipulation tools involve forces like compression and punction, which are effectively analyzed using principles [...] Read more.
Mechanical models are capable of simulating the deformation and stress distribution of oocytes under external forces, thereby providing insights into the underlying mechanisms of intracellular mechanical responses. Interactions with micromanipulation tools involve forces like compression and punction, which are effectively analyzed using principles of solid mechanics. Alternatively, fluid–structure interactions, such as shear stress at fluid junctions or pressure gradients within microchannels, are best described by a multiphase flow model. Developing the two models instead of a single comprehensive model is necessary due to the distinct nature of cell–tool interactions and cell–fluid interactions. In this study, we developed a finite element (FE) model of porcine oocytes that accounts for the viscoelastic properties of the zona pellucida (ZP) and cytoplasm for the case when the oocytes interacted with a micromanipulation tool. Atomic force microscopy (AFM) was employed to measure the Young’s modulus and creep behavior of these subcellular components that were incorporated into the FE model. When the oocyte was solely interacting with the fluids, we simulated oocyte deformation in microfluidic channels by modeling the oocyte-culture-medium system as a three-phase flow, considering the non-Newtonian behavior of the oocyte’s components. Our results show that the Young’s modulus of the ZP and cytoplasm were determined to be 7 kPa and 1.55 kPa, respectively, highlighting the differences in the mechanical properties between these subcomponents. Using the developed layered FE model, we accurately simulated oocyte deformation during their passage through a narrow-necked micropipette, with a deformation error of approximately 5.2% compared to experimental results. Using the three-phase flow model, we effectively simulated oocyte deformation in microfluidic channels under various pressures, validating the model’s efficacy through close agreement with experimental observations. This work significantly contributes to assessing oocyte quality and serves as a valuable tool for advancing cell mechanics studies. Full article
Show Figures

Figure 1

11 pages, 1251 KB  
Article
AI-Enhanced Model for Integrated Performance Prediction and Classification of Vibration-Reducing Gloves for Hand-Transmitted Vibration Control
by Yumeng Yao, Wei Xiao, Alireza Moezi, Marco Tarabini, Paola Saccomandi and Subhash Rakheja
Actuators 2025, 14(9), 436; https://doi.org/10.3390/act14090436 - 3 Sep 2025
Viewed by 395
Abstract
This study presents a human-centric, data-driven modeling framework for the intelligent evaluation and classification of vibration-reducing (VR) gloves used in hand-transmitted vibration environments. Recognizing the trade-offs between protection and functionality, the integrated performance assessment incorporates three critical and often conflicting metrics: manual dexterity, [...] Read more.
This study presents a human-centric, data-driven modeling framework for the intelligent evaluation and classification of vibration-reducing (VR) gloves used in hand-transmitted vibration environments. Recognizing the trade-offs between protection and functionality, the integrated performance assessment incorporates three critical and often conflicting metrics: manual dexterity, grip strength, and distributed vibration transmissibility at the palm and fingers. Three independent experiments involving fifteen participants were conducted to evaluate the individual performance of ten commercially available VR gloves fabricated from air bladders, polymers, and viscoelastic gels. The effects of VR gloves on manual dexterity, grip strength, and distributed vibration transmission were investigated. The resulting experimental data were used to train and tune seven different machine learning models. The results suggested that the AdaBoost model demonstrated superior predictive performance, achieving 92% accuracy in efficiently evaluating the integrated performance of VR gloves. It is further shown that the proposed data-driven model could be effectively applied to classify the performances of VR gloves in three workplace conditions based on the dominant vibration frequencies (low-, medium-, and high-frequency). The proposed framework demonstrates the potential of AI-enhanced intelligent actuation systems to support personalized selection of wearable protective equipment, thereby enhancing occupational safety, usability, and task efficiency in vibration-intensive environments. Full article
Show Figures

Figure 1

31 pages, 2841 KB  
Article
Frequency Domain Identification of a 1-DoF and 3-DoF Fractional-Order Duffing System Using Grünwald–Letnikov Characterization
by Devasmito Das, Ina Taralova, Jean Jacques Loiseau, Tsonyo Slavov and Manoj Pandey
Fractal Fract. 2025, 9(9), 581; https://doi.org/10.3390/fractalfract9090581 - 2 Sep 2025
Viewed by 420
Abstract
Fractional-order models provide a powerful framework for capturing memory-dependent and viscoelastic dynamics in mechanical systems, which are often inadequately represented by classical integer-order characterizations. This study addresses the identification of dynamic parameters in both single-degree-of-freedom (1-DOF) and three-degree-of-freedom (3-DOF) Duffing oscillators with fractional [...] Read more.
Fractional-order models provide a powerful framework for capturing memory-dependent and viscoelastic dynamics in mechanical systems, which are often inadequately represented by classical integer-order characterizations. This study addresses the identification of dynamic parameters in both single-degree-of-freedom (1-DOF) and three-degree-of-freedom (3-DOF) Duffing oscillators with fractional damping, modeled using the Grünwald–Letnikov characterization. The 1-DOF system includes a cubic nonlinear restoring force and is excited by a harmonic input to induce steady-state oscillations. For both systems, time domain simulations are conducted to capture long-term responses, followed by Fourier decomposition to extract steady-state displacement, velocity, and acceleration signals. These components are combined with a GL-based fractional derivative approximation to construct structured regressor matrices. System parameters—including mass, stiffness, damping, and fractional-order effects—are then estimated using pseudoinverse techniques. The identified models are validated through a comparison of reconstructed and original trajectories in the phase space, demonstrating high accuracy in capturing the underlying dynamics. The proposed framework provides a consistent and interpretable approach for frequency domain system identification in fractional-order nonlinear systems, with relevance to applications such as mechanical vibration analysis, structural health monitoring, and smart material modeling. Full article
Show Figures

Figure 1

Back to TopTop