Interfacial Viscoelastic Moduli of Surfactant- and Nanoparticle-Laden Oil/Water Interfaces Surrounded by a Weak Gel
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Bulk Rheology
2.3. Interfacial Rheology: With a Drop-Profile Tensiometer
3. Results
3.1. Bulk Properties of KC Solutions
3.2. Surfactant-Laden Interfaces
3.2.1. Kinetic of Surfactant Adsorption at O/W Interface
3.2.2. Interfacial Viscoelasticity of Span-Laden O/KC-W Interfaces
3.3. Nanoparticles-Laden Interfaces
3.3.1. Kinetic of Nanoparticles Adsorption at O/W Interface
3.3.2. Interfacial Viscoelasticity of NP-Laden O/KC-W Interfaces
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chevalier, Y.; Bolzinger, M.-A. Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids Surf. A 2013, 439, 23–34. [Google Scholar] [CrossRef]
- Schmitt, V.; Destribats, M.; Backov, R. Colloidal particles as liquid dispersion stabilizer: Pickering emulsions and materials thereof. C. R. Phys. 2014, 15, 761–774. [Google Scholar] [CrossRef]
- Binks, B.P. Particles as surfactants—Similarities and differences. Curr. Opin. Colloid Interface Sci. 2002, 7, 21–41. [Google Scholar] [CrossRef]
- Vialetto, J.; Zanini, M.; Isa, L. Attachment and detachment of particles to and from fluid interface. Curr. Opin. Colloid Interface Sci. 2022, 58, 101560. [Google Scholar] [CrossRef]
- Miller, R.; Aksenenko, E.V.; Fainerman, V.B. Dynamic interfacial tension of surfactant solutions. Adv. Colloid Interface Sci. 2017, 247, 115–129. [Google Scholar] [CrossRef]
- Roques-Carmes, T.; Gigante, A.; Commenge, J.-M.; Corbel, S. Use of surfactants to reduce the driving voltage of switchable optical elements based on electrowetting. Langmuir 2009, 25, 12771–12779. [Google Scholar] [CrossRef]
- Dekker, R.I.; Velandia, S.F.; Kibbelaar, H.V.M.; Morcy, A.; Sadtler, V.; Roques-Carmes, T.; Groenewold, J.; Kegel, W.K.; Velikov, K.P.; Bonn, D. Is there a difference between surfactant-stabilised and Pickering emulsions? Soft Matter 2023, 19, 1941–1951. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Zhou, J.; Zhao, R.; Benz, G.; Tcheimou, S.; Meredith, J.C.; Behrens, S.H. Interfacial activity of nonamphiphilic particles in fluid–fluid interfaces. Langmuir 2017, 33, 4511–4519. [Google Scholar] [CrossRef] [PubMed]
- Velandia, S.F.; Marchal, P.; Sadtler, V.; Arnoux, P.; Bonn, D.; Roques-Carmes, T. Globular proteins as Pickering emulsion stabilizers: Particles or surfactants? Colloids Surf. A 2025, 704, 135469. [Google Scholar] [CrossRef]
- Roques-Carmes, T.; Lebrun, M.; Wang, Y.; Ramos, D.; Marchal, P.; Sadtler, V. Comparison of rheological methods to obtain a sufficient sensitivity with shear interfacial rheology in the presence of nanoparticles at liquid/liquid interfaces. Silicon 2023, 15, 2113–2123. [Google Scholar] [CrossRef]
- Kamkar, M.; Bazazi, P.; Kannan, A.; Suja, V.C.; Hejazi, S.H.; Fuller, G.G.; Sundararaj, U. Polymeric-nanofluids stabilized emulsions: Interfacial versus bulk rheology. J. Colloid Interface Sci. 2020, 576, 252–263. [Google Scholar] [CrossRef]
- Velandia, S.F.; Ramos, D.; Lebrun, M.; Marchal, P.; Lemaitre, C.; Sadtler, V.; Roques-Carmes, T. Exploring the link between interfacial and bulk viscoelasticity in reverse Pickering emulsions. Colloids Surf. A 2021, 624, 126785. [Google Scholar] [CrossRef]
- Yarranton, H.W.; Sztukowski, D.M.; Urrutia, P. Effect of interfacial rheology on model emulsion coalescence: I. Interfacial rheology. J. Colloid Interface Sci. 2007, 310, 246–252. [Google Scholar] [CrossRef]
- Langevin, D. Influence of interfacial rheology on foam and emulsion properties. Adv. Colloid Interface Sci. 2000, 88, 209–222. [Google Scholar] [CrossRef]
- Santini, E.; Liggieri, L.; Sacca, L.; Clausse, D.; Ravera, F. Interfacial rheology of Span 80 adsorbed layers at paraffin oil–water interface and correlation with the corresponding emulsion properties. Colloids Surf. A 2007, 309, 270–279. [Google Scholar] [CrossRef]
- Meinders, M.B.; van Vliet, T. The role of interfacial rheological properties on Ostwald ripening in emulsions. Adv. Colloid Interface Sci. 2004, 108–109, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Golemanov, K.; Tcholakova, S.; Denkov, N.; Pelan, E.; Stoyanov, S.D. Surface shear rheology of saponin adsorption layers. Langmuir 2012, 28, 12071–12084. [Google Scholar] [CrossRef]
- Krägel, J.; Derkatch, S.R. Interfacial shear rheology. Curr. Opin. Colloid Interface Sci. 2010, 15, 246–255. [Google Scholar] [CrossRef]
- Klein, C.O.; Theodoratou, A.; Rühs, P.A.; Jonas, U.; Loppinet, B.; Wilhelm, M.; Fischer, P.; Vermant, J.; Vlassopoulos, D. Interfacial Fourier transform shear rheometry of complex fluid interfaces. Rheol. Acta 2019, 58, 29–45. [Google Scholar] [CrossRef]
- Jaensson, N.; Vermant, J. Tensiometry and rheology of complex interfaces. Curr. Opin. Colloid Interface Sci. 2018, 37, 136–150. [Google Scholar] [CrossRef]
- Sagis, L.M.C.; Fischer, P. Nonlinear rheology of complex fluid–fluid interfaces. Curr. Opin. Colloid Interface Sci. 2014, 19, 520–529. [Google Scholar] [CrossRef]
- Dinkgreve, M.; Velikov, K.P.; Bonn, D. Stability of LAPONITE®-stabilized high internal phase Pickering emulsions under shear. Phys. Chem. Chem. Phys. 2016, 18, 22973–22977. [Google Scholar] [CrossRef]
- Ramos, D.M.; Sadtler, V.; Marchal, P.; Lemaitre, C.; Niepceron, F.; Benyahia, L.; Roques-Carmes, T. Particles’ organization in direct oil-in-water and reverse water-in-oil Pickering emulsions. Nanomaterials 2023, 13, 371. [Google Scholar] [CrossRef] [PubMed]
- Macedo Fernandes Barros, F.; Chassenieux, C.; Nicolai, T.; de Souza Lima, M.M.; Benyahia, L. Effect of the hydrophobicity of fumed silica particles and the nature of oil on the structure and rheological behavior of Pickering emulsions. J. Dispers. Sci. Technol. 2019, 40, 1169–1178. [Google Scholar] [CrossRef]
- Velandia, S.F.; Marchal, P.; Lemaitre, C.; Sadtler, V.; Roques-Carmes, T. Evaluation of the repartition of the particles in Pickering emulsions in relation with their rheological properties. J. Colloid Interface Sci. 2021, 589, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Ramos, D.M.; Sadtler, V.; Marchal, P.; Lemaitre, C.; Benyahia, L.; Roques-Carmes, T. Properties of non-conventional direct O/W Pickering emulsions stabilized by partially hydrophobic silica particles controlled by rotor-stator or ultrasonic emulsification. Colloids Surf. A 2023, 673, 131782. [Google Scholar] [CrossRef]
- Boujlel, J.; Coussot, P. Measuring the surface tension of yield stress fluids. Soft Matter 2013, 9, 5898–5908. [Google Scholar] [CrossRef]
- Jørgensen, L.; Le Merrer, M.; Delanoë-Ayari, H.; Barentin, C. Yield stress and elasticity influence on surface tension measurements. Soft Matter 2015, 11, 5111–5121. [Google Scholar] [CrossRef]
- Freer, E.M.; Wong, H.; Radke, C.J. Oscillating drop/bubble tensiometry: Effect of viscous forces on the measurement of interfacial tension. J. Colloid Interface Sci. 2005, 282, 128–132. [Google Scholar] [CrossRef]
- Yeung, A.; Zhang, L. Shear effects in interfacial rheology and their implications on oscillating pendant drop experiments. Langmuir 2006, 22, 693–701. [Google Scholar] [CrossRef]
- Jaber, A.; Roques-Carmes, T.; Marchal, P.; Hamieh, T.; Benyahia, L. Interfacial viscoelastic moduli in a weak gel. J. Colloid Interface Sci. 2022, 622, 126–134. [Google Scholar] [CrossRef]
- Necas, J.; Bartosikova, L. Carrageenan: A review. Vet. Med. 2013, 58, 187–205. [Google Scholar] [CrossRef]
- Viebke, C.; Piculell, L.; Nilsson, S. On the mechanism of gelation of helix-forming biopolymers. Macromolecules 1994, 27, 4160–4166. [Google Scholar] [CrossRef]
- Rochas, C.; Rinaudo, M. Activity coefficients of counterions and conformation in kappa-carrageenan systems. Biopolymers 1980, 19, 1675–1687. [Google Scholar] [CrossRef]
- Hermansson, A.-M.; Eriksson, E.; Jordansson, E. Effects of potassium, sodium and calcium on the microstructure and rheological behaviour of kappa-carrageenan gels. Carbohydr. Polym. 1991, 16, 297–320. [Google Scholar] [CrossRef]
- Garrec, D.A.; Guthrie, B.; Norton, I.T. Kappa carrageenan fluid gel material properties. Part 1: Rheology. Food Hydrocoll. 2013, 33, 151–159. [Google Scholar] [CrossRef]
- Deshmukh, O.S.; van den Ende, D.; Stuart, M.C.; Mugele, F.; Duits, M.H.G. Hard and soft colloids at fluid interfaces: Adsorption, interactions, assembly & rheology. Adv. Colloid Interface Sci. 2015, 222, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Bamboriya, O.P.; Tirumkudulu, M.S. Effective modulus of particle-packing containing hard and soft particles. Soft Matter 2025, 16, 2986–2993. [Google Scholar] [CrossRef] [PubMed]
- Marquez, R.; Salager, J.L.. Measurement techniques for interfacial rheology of surfactant, asphaltene, and protein-stabilized interfaces in emulsions and foams. Colloids Interfaces 2025, 9, 14. [Google Scholar] [CrossRef]
- Ravera, F.; Loglio, G.; Kovalchuk, V.I. Interfacial dilational rheology by oscillating bubble/drop methods. Curr. Opin. Colloid Interface Sci. 2010, 15, 217–228. [Google Scholar] [CrossRef]
- Guzmán, E.; Maestro, A.; Carbone, C.; Ortega, F.; Rubio, R.G. Dilational rheology of fluid/fluid interfaces: Foundations and tools. Fluids 2022, 7, 335. [Google Scholar] [CrossRef]
- Leser, M.E.; Acquistapace, S.; Cagna, A.; Makievski, A.V.; Miller, R. Limits of oscillation frequencies in drop and bubble shape tensiometry. Colloids Surf. A 2005, 261, 25–28. [Google Scholar] [CrossRef]
- Egry, I.; Giffard, H.; Schneider, S. The oscillating drop technique revisited. Meas. Sci. Technol. 2005, 16, 426–431. [Google Scholar] [CrossRef]
- Aalilija, A.; Gandin, C.A.; Hachem, E. On the analytical and numerical simulation of an oscillating drop in zero-gravity. Comput. Fluids 2020, 197, 104362. [Google Scholar] [CrossRef]
- Bagher Seighalani, F.Z.; Mc Mahon, D.J.; Sharma, P. Determination of critical gel-sol transition point of highly concentrated micellar casein concentrate using multiple waveform rheological technique. Food Hydrocoll. 2021, 120, 106886. [Google Scholar] [CrossRef]
- Winter, H.H.; Chambon, F. Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J. Rheol. 1986, 30, 367–382. [Google Scholar] [CrossRef]
- Liu, S.; Huang, S.; Li, L. Thermoreversible gelation and viscoelasticity of κ-carrageenan hydrogels. J. Rheol. 2016, 60, 203–214. [Google Scholar] [CrossRef]
- Mo, G.; Zhang, R.; Wang, Y.; Yan, Q. Rheological and optical investigation of the gelation with and without phase separation in PAN/DMSO/H2O ternary blends. Polymer 2016, 84, 243–253. [Google Scholar] [CrossRef]
- Mucic, N.; Javadi, A.; Kovalchuk, N.M.; Aksenenko, E.V.; Miller, R. Dynamics of interfacial layers—Experimental feasibilities of adsorption kinetics and dilational rheology. Adv. Colloid Interface Sci. 2011, 168, 167–178. [Google Scholar] [CrossRef]
- Firouzi, M.; Kovalchuk, V.I.; Loglio, G.; Miller, R. Salt effects on the dilational viscoelasticity of surfactant adsorption layers. Curr. Opin. Colloid Interface Sci. 2022, 57, 101538. [Google Scholar] [CrossRef]
- Fainerman, V.B.; Aksenenko, E.V.; Lylyk, S.V.; Makievski, A.V.; Raverad, F.; Petkov, J.T.; Yorke, J.; Miller, R. Adsorption layer characteristics of Tritons surfactants: 3. Dilational visco-elasticity. Colloids Surf. A 2009, 334, 16–21. [Google Scholar] [CrossRef]
- Sharipova, A.; Aidarova, S.; Mucic, N.; Miller, R. Dilational rheology of polymer/surfactant mixtures at water/hexane interface. Colloids Surf. A 2011, 391, 130–134. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, B.; Yuan, F.; Jiang, Z.; Pan, B.; Yu, Q.; Shi, J.; Zhang, L.; Gong, J.; Zhang, W. Dilational rheological properties of extended anionic surfactants at decane-water interface. J. Mol. Liq. 2024, 414, 126182. [Google Scholar] [CrossRef]
- Keal, L.; Colosqui, C.E.; Tromp, R.H.; Monteux, C. Colloidal particle adsorption at water-water interfaces with ultralow interfacial tension. Phys. Rev. Lett. 2018, 120, 208003. [Google Scholar] [CrossRef]
- Li, M.; Li, D. Bidirectional transfer of particles across liquid-liquid interface under electric pulse. J. Colloid Interface Sci. 2020, 560, 436–446. [Google Scholar] [CrossRef]
- Du, K.; Glogowski, E.; Emrick, T.; Russell, T.P.; Dinsmore, A.D. Adsorption energy of nano- and microparticles at liquid−liquid interfaces. Langmuir 2010, 26, 12518–12522. [Google Scholar] [CrossRef]
- Guzmán, E.; Martinez-Pedrero, F.; Calero, C.; Maestro, A.; Ortega, F.; Rubio, R.G. A broad perspective to particle-laden fluid interfaces systems: From chemically homogeneous particles to active colloids. Adv. Colloid Interface Sci. 2022, 302, 102620. [Google Scholar] [CrossRef]
- Guzmán, E.; Ortega, F.; Rubio, R.G. Forces controlling the assembly of particles at fluid interfaces. Langmuir 2022, 38, 13313–13321. [Google Scholar] [CrossRef]
- Martinez-Pedrero, F.; Carbone, C.; Rubio, R.G.; Ortega, F.; Guzmán, E. A critical examination of the physics behind the formation of particle-laden interfaces. Curr. Opin. Colloid Interface Sci. 2024, 74, 101868. [Google Scholar] [CrossRef]
- Guzmán, E.; Abelenda-Nunez, I.; Maestro, A.; Ortega, F.; Santamaria, A.; Rubio, R.G. Particle-laden fluid/fluid interfaces: Physio-chemical foundations. J. Condens. Matter Phys. 2021, 33, 333001. [Google Scholar] [CrossRef]
- Manga, M.S.; Hunter, T.N.; Cayre, O.J.; York, D.W.; Reichert, M.D.; Anna, S.L.; Walker, L.M.; Williams, R.A.; Biggs, S.R. Measurements of submicron particle adsorption and particle film elasticity at oil–water interfaces. Langmuir 2016, 32, 4125–4133. [Google Scholar] [CrossRef]
- Powell, K.C.; Chauhan, A. Interfacial tension and surface elasticity of carbon black (CB) covered oil–water interface. Langmuir 2014, 30, 12287–12296. [Google Scholar] [CrossRef]
- Ji, X.; Wang, X.; Zhang, Y.; Zang, D. Interfacial viscoelasticity and jamming of colloidal particles at fluid–fluid interfaces: A review. Rep. Prog. Phys. 2020, 83, 126601. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, A.J.; Guzman, E.; Martinez-Pedrero, F.; Ritacco, H.; Rubio, R.G.; Ortega, F.; Starov, V.M.; Miller, R. Particle laden fluid interfaces: Dynamics and interfacial rheology. Adv. Colloid Interface Sci. 2014, 206, 303–319. [Google Scholar] [CrossRef] [PubMed]
- Thijssen, J.H.J.; Vermant, J. Interfacial rheology of model particles at liquid interfaces and its relation to (bicontinuous) Pickering emulsions. J. Phys. Condens. Matter 2018, 30, 023002. [Google Scholar] [CrossRef]
- Brown, B.; de la Pena, A.; Razavi, S. Interfacial rheology insights: Particle texture and Pickering foam stability. J. Phys. Condens. Matter 2023, 35, 384002. [Google Scholar] [CrossRef]
- Tatry, M.C.; Laurichesse, E.; Vermant, J.; Ravaine, V.; Schmitt, V. Interfacial rheology of model water–air microgels laden interfaces: Effect of cross-linking. J. Colloid Interface Sci. 2023, 629, 288–299. [Google Scholar] [CrossRef]
- Huang, X.; Kakuda, Y.; Cui, W. Hydrocolloids in emulsions: Particle size distribution and interfacial activity. Food Hydrocoll. 2001, 15, 533–542. [Google Scholar] [CrossRef]
- Nakajima, S.; Matsumoto, T.; Akiyama, A.; Masuda, M.; Sakiya, N.; Watanabe, Y.; Ueda, Y. Effect of food-grade polysaccharide gelling agents on high-oil-containing gels and their physical properties. J. Home Econ. Jpn. 2019, 70, 522–534. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benyahia, L.; Jaber, A.; Marchal, P.; Hamieh, T.; Roques-Carmes, T. Interfacial Viscoelastic Moduli of Surfactant- and Nanoparticle-Laden Oil/Water Interfaces Surrounded by a Weak Gel. Nanomaterials 2025, 15, 1489. https://doi.org/10.3390/nano15191489
Benyahia L, Jaber A, Marchal P, Hamieh T, Roques-Carmes T. Interfacial Viscoelastic Moduli of Surfactant- and Nanoparticle-Laden Oil/Water Interfaces Surrounded by a Weak Gel. Nanomaterials. 2025; 15(19):1489. https://doi.org/10.3390/nano15191489
Chicago/Turabian StyleBenyahia, Lazhar, Ahmad Jaber, Philippe Marchal, Tayssir Hamieh, and Thibault Roques-Carmes. 2025. "Interfacial Viscoelastic Moduli of Surfactant- and Nanoparticle-Laden Oil/Water Interfaces Surrounded by a Weak Gel" Nanomaterials 15, no. 19: 1489. https://doi.org/10.3390/nano15191489
APA StyleBenyahia, L., Jaber, A., Marchal, P., Hamieh, T., & Roques-Carmes, T. (2025). Interfacial Viscoelastic Moduli of Surfactant- and Nanoparticle-Laden Oil/Water Interfaces Surrounded by a Weak Gel. Nanomaterials, 15(19), 1489. https://doi.org/10.3390/nano15191489