Frequency Domain Identification of a 1-DoF and 3-DoF Fractional-Order Duffing System Using Grünwald–Letnikov Characterization
Abstract
1. Introduction
2. Mathematical Modeling
2.1. Classical vs. Fractional Duffing Oscillator
Motivation for Including Both Integer- and Fractional-Order Damping
- Physical Completeness: The coexistence of fast (viscous) and slow (memory-based) damping mechanisms justifies the inclusion of both terms, especially in composite or hybrid materials.
- Model Flexibility: The inclusion of both terms allows the model to interpolate between purely viscous and purely fractional behavior, enabling better fitting to experimental data.
- Control-Theoretic Robustness: From a control and identification perspective, retaining the viscous term ensures well-posedness and helps avoid numerical instabilities, particularly when the fractional order or .
- Avoiding Oversimplification: Simply replacing with a fractional term may oversimplify the damping dynamics, especially when fractional damping is not dominant or the order is uncertain.
2.2. Multi-DOF Coupling
3. Fractional Derivative Characterization
4. Steady-State Extraction and Fourier Analysis
4.1. Harmonic Balance Method
- Frequency Domain Approach: Unlike time domain methods that solve differential equations by direct integration over time, the HB method operates in the frequency domain. It assumes that the steady-state response of the system is periodic and can be represented as a sum of sinusoidal components (a truncated Fourier series).
- Balancing Harmonics: The method “balances” the harmonics generated by the nonlinearities in the system. When a nonlinear system is excited by a sinusoidal input, it generally responds not only at the input frequency but also at its harmonics. The HB method seeks a solution where the sum of all harmonics satisfies the system’s equations as closely as possible.
- Assume a truncated Fourier series for the periodic solution.
- Substitute the series into the nonlinear differential equation.
- Equate the coefficients of like harmonics (sines and cosines) on both sides of the equation (“balance” the harmonics).
- Solve the resulting set of nonlinear algebraic equations for the Fourier coefficients.
- Reconstruct the time domain solution from the obtained coefficients.
- Express as a truncated Fourier series;
- Substitute into the equation;
- Collect terms for each harmonic;
- Solve for the unknown coefficients using algebraic methods (often with numerical solvers).
4.2. Extracting Periodic Segment
4.3. Fourier Coefficients
4.4. Fourier Reconstruction in the 1-DOF Fractional System
4.4.1. Extraction of a Single Period
4.4.2. Computation of Fourier Coefficients
4.4.3. Analytic Reconstruction of Kinematics
4.4.4. Fractional Derivative Reconstruction
4.4.5. General Regressor Construction
4.4.6. Reconstructed vs. Simulated Results
4.4.7. Extraction of a Single Period
4.4.8. Computation of Fourier Coefficients
4.4.9. Analytic Reconstruction of Kinematics
4.4.10. Fractional Derivative Reconstruction
4.4.11. Populating the -Matrix
4.5. Fourier Reconstruction in the 3-DOF Fractional System
5. System Identification
5.1. Linear System Structure
5.2. System Identification of 1-DOF System
5.2.1. Fourier-Based Regressor Matrix
5.2.2. Building the Q-Matrices for the Coupled System
5.2.3. Solving for Parameters Using Pseudoinverse
5.2.4. Identified Parameters and Interpretation
- Nonlinearity: The fractional terms introduced in the system’s dynamics can lead to nonlinear behavior, especially at higher oscillation frequencies. The identification of fractional-order term is crucial for understanding how the system deviates from traditional linear models, providing a more accurate representation of real-world materials and structures that exhibit viscoelastic and memory effects.
- Damping Distribution: The distribution of damping coefficients across the masses reveals the influence of the coupling terms and fractional effects. If the identified damping coefficients vary significantly between the masses, it indicates that the damping distribution is non-uniform, reflecting the inherent complexities of the system’s energy dissipation mechanisms.
- Coupling Effects: The off-diagonal elements of the Q-matrix represent the interaction between the masses. A strong coupling between adjacent masses suggests that their motions are tightly coordinated, while weaker coupling indicates more independent behavior. These couplings are critical for understanding how forces are transferred between the masses and how they influence the system’s overall response.
5.3. System Identification via Reconstructed Dynamics of 3-DOF System
5.3.1. Equations of Motion
- is the reconstructed acceleration;
- are basis functions (e.g. displacement, velocity differences, fractional derivatives, nonlinear terms);
- are the unknown parameters (stiffnesses, damping coefficients, coupling constants, etc.);
- is the known external force (, ).
5.3.2. Choice of Basis Functions
- Mass 1: with an optional fractional term .
- Coupling 1→2:
- Mass 2: with an optional fractional term .
- Coupling 2→3:
- Mass 3: with an optional fractional term .
5.3.3. Block Assembly of Q
5.3.4. Global Regressor and Parameter Estimation
5.3.5. Physical Interpretation
- Stiffness (): coefficients on .
- Damping (, fractional ): coefficients on and .
- Coupling (, nonlinear): coefficients on difference terms and .
6. Results and Discussion
6.1. 1-DOF Fractional-Order Duffing System
- The Grünwald–Letnikov fractional derivative introduces temporal nonlocality that smooths energy exchange, resulting in nearly circular phase trajectories and stable harmonic motion.
- This reconstruction with symmetric harmonic selection yields sub-percent errors in both displacement and velocity, enabling accurate computation of all regressors.
- The subsequent pseudoinverse- or regularized-pseudoinverse identification recovers mass, damping, stiffness, and fractional coefficients with a relative error of .
- Finite memory truncation balances computational efficiency with retention of power law memory, avoiding artificial damping or phase lag.
6.2. 3-DOF Fractional-Order Duffing System
Parameter | Symbol | Value |
---|---|---|
Time step | s | |
Total simulation time | 200 s | |
Fractional derivative order | 0.9 | |
Number of time steps | ||
External force amplitude | 1 N | |
Forcing frequency | 1 rad/s | |
Number of Fourier terms | 1000 |
Parameter | Symbol | Value |
---|---|---|
Mass vector | ||
Spring constant vector | ||
Linear damping coefficient vector | ||
Cubic nonlinearity coefficient vector |
6.2.1. System Response Dynamics:
6.2.2. Fourier Reconstruction Validation:
6.2.3. Performance Metrics
6.2.4. Theoretical Implications:
6.3. Identification of System Parameters in the Presence of Noise
7. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1998. [Google Scholar]
- Chakraverty, S.; Jena, R.M.; Jena, S.K. Computational Fractional Dynamical Systems: Fractional Differential Equations and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Chen, Y.; Moore, K.L. Fractional order control—A tutorial. In Proceedings of the 2009 American Control Conference, St. Louis, MO, USA, 10–12 June 2009; pp. 1397–1411. [Google Scholar]
- Mainardi, F. Fractional calculus: Some basic problems in continuum and statistical mechanics. Fractals Fract. Calc. Contin. Mech. 1997, 378, 291–348. [Google Scholar]
- Herrmann, R. Fractional Calculus: An Introduction for Physicists; World Scientific: Singapore, 2011. [Google Scholar]
- Chen, B.; Li, C.; Wilson, B.; Huang, Y. Fractional Modeling and Analysis of Coupled MR Damping System. IEEE/CAA J. Autom. Sin. 2016, 3, 288–294. [Google Scholar] [CrossRef]
- Noël, J.P.; Kerschen, G. Nonlinear vibration modes of symmetric and asymmetric systems: Theory and applications. Mech. Syst. Signal Process. 2015, 74, 18–36. [Google Scholar]
- Mikhlin, Y.; Avramov, K.V. Nonlinear Normal Modes of Vibrating Mechanical Systems: 10 Years of Progress. Appl. Mech. Rev. 2024, 76, 050801. [Google Scholar] [CrossRef]
- Tang, Y.; Peng, Y.; He, G.; Liang, W.; Zhang, W. P-Bifurcation Analysis for a Fractional Damping Stochastic Nonlinear Equation with Gaussian White Noise. Fractal Fract. 2023, 7, 408. [Google Scholar] [CrossRef]
- Li, G.; Xie, R.; Yang, H. Study on fractional-order coupling of high-order Duffing oscillator and its application. Chaos Solitons Fractals 2024, 186, 115255. [Google Scholar] [CrossRef]
- Baleanu, D.; Sajjadi, S.S.; Jajarmi, A.; Defterli, Ö. On a nonlinear dynamical system with both chaotic and nonchaotic behaviors: A new fractional analysis and control. Adv. Differ. Equ. 2021, 2021, 234. [Google Scholar] [CrossRef]
- Qian, K.; Tian, L.; Bao, J. Frequency-domain physical constrained neural network for nonlinear system dynamic prediction. Eng. Appl. Artif. Intell. 2023, 122, 106127. [Google Scholar] [CrossRef]
- Breunung, T.; Balachandran, B. Frequency response based identification of nonlinear oscillators. J. Sound Vib. 2025, 594, 118651. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, C.; Lai, S.-K.; Chen, Z.; Chen, L. Frequency-dependent equivalent impedance analysis for optimizing vehicle inertial suspensions. Nonlinear Dyn. 2025, 113, 9373–9398. [Google Scholar] [CrossRef]
- Franczyk, B.; Maniowski, M.; Gołdasz, J. Frequency-dependent automotive suspension damping systems: State of the art review. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2024, 238, 2491–2503. [Google Scholar] [CrossRef]
- Al-Souqi, K.; Kadri, K.; Emam, S. A Review on Vibration Control Using Piezoelectric Shunt Circuits. Appl. Sci. 2025, 15, 6035. [Google Scholar] [CrossRef]
- Franczyk, B.; Gołdasz, J. Modelling and experimental study of a passive frequency-dependent vehicle suspension damper. Acta Mech. Et Autom. 2024, 18, 409–418. [Google Scholar] [CrossRef]
- Tuwa, P.R.N.; Molla, T.; Noubissie, S.; Kingni, S.T.; Rajagopal, K. Analysis of a quarter car suspension based on a Kelvin–Voigt viscoelastic model with fractional-order derivative. Int. J. -Non-Linear Mech. 2021, 137, 103818. [Google Scholar] [CrossRef]
- Sofi, A. Nonlinear vibrations of beams with fractional derivative elements crossed by moving loads. Int. J. -Non-Linear Mech. 2024, 159, 104567. [Google Scholar] [CrossRef]
- Han, Y.X.; Zhang, J.X.; Wang, Y.L. Dynamic behavior of a two-mass nonlinear fractional-order vibration system. Front. Phys. 2024, 12, 1452138. [Google Scholar] [CrossRef]
- Yang, X.; Zeng, S.; Liu, C.; Liu, X.; Wang, Z.; Yang, Y. Optimal design and performance evaluation of HMDV inertial suspension based on generalized skyhook control. Int. J. Struct. Stab. Dyn. B 2025, 25, 2550069. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, C.; Zheng, X.; Zhao, L.; Qiu, Y. Advancements in semi-active automotive suspension systems with magnetorheological dampers: A review. Appl. Sci. 2024, 14, 7866. [Google Scholar] [CrossRef]
- Kimball, J.B.; DeBoer, B.; Bubbar, K. Adaptive control and reinforcement learning for vehicle suspension control: A review. Annu. Rev. Control 2024, 58, 100974. [Google Scholar] [CrossRef]
- Yu, M.; Evangelou, S.A.; Dini, D. Advances in active suspension systems for road vehicles. Engineering 2024, 33, 160–177. [Google Scholar] [CrossRef]
- Koeller, R. Applications of Fractional Calculus to the Theory of Viscoelasticity. J. Appl. Mech. 1984, 51, 299–307. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; World Scientific: Singapore, 2022. [Google Scholar]
- Valério, D.; Sá da Costa, J.S. Identifying Digital and Fractional Transfer Functions from a Frequency Response. Int. J. Control 2011, 84, 445–457. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, W. Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations. Appl. Math. Comput. 2010, 216, 2276–2285. [Google Scholar] [CrossRef]
- Guariglia, E.; Guido, R.C.; Dalalana, G.J. From Wavelet Analysis to Fractional Calculus: A Review. Mathematics 2023, 11, 1606. [Google Scholar] [CrossRef]
- Li, Y.; Sun, N. Numerical Solution of Fractional Differential Equations Using the Generalized Block Pulse Operational Matrix. Comput. Math. Appl. 2011, 62, 1046–1054. [Google Scholar] [CrossRef]
- Boyd, J.P. Chebyshev and Fourier Spectral Methods; Courier Corporation: Mumbai, India, 2001. [Google Scholar]
- Shen, J.; Tang, T.; Wang, L.L. Spectral Methods: Algorithms, Analysis and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; Volume 41. [Google Scholar]
- Fornberg, B. A Practical Guide to Pseudospectral Methods; Cambridge University Press: Cambridge, UK, 1998; Volume 1. [Google Scholar]
- Ljung, L.; Glad, T.; Hansson, A. Modeling and Identification of Dynamic Systems; Studentlitteratur: Lund, Sweden, 2021. [Google Scholar]
- Scherer, R.; Kalla, S.L.; Tang, Y.; Huang, J. The Grünwald–Letnikov method for fractional differential equations. Comput. Math. Appl. 2011, 62, 902–917. [Google Scholar] [CrossRef]
- Macías-Díaz, J.E. Fractional calculus—Theory and applications. Axioms 2022, 11, 43. [Google Scholar] [CrossRef]
- Naifar, O.; Makhlouf, A.B. Fractional Order Systems—Control Theory and Applications; Springer International Publishing: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Duffing, G.W.C. Erzwungene Schwingungen bei veräNderlicher Eigenfrequenz; F. Vieweg: Braunschweig, Germany, 1918. [Google Scholar]
- Li, Z.L.; Sun, D.G.; Han, B.H.; Sun, B.; Zhang, X.; Meng, J.; Liu, F.X. Response of viscoelastic damping system modeled by fractional viscoelastic oscillator. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2017, 231, 3169–3180. [Google Scholar] [CrossRef]
- Ortiz, A.; Yang, J.; Coccolo, M.; Seoane, J.M.; Sanjuán, M.A. Fractional damping enhances chaos in the nonlinear Helmholtz oscillator. Nonlinear Dyn. 2020, 102, 2323–2337. [Google Scholar] [CrossRef]
- Agila, A.; Baleanu, D. A study of multi-degree of freedom fractional order damped oscillatory system. Upb Sci. Bull. Ser. D 2018, 80, 52–62. [Google Scholar]
- Narayanan, M.D.; Narayanan, S.; Padmanabhan, C. Parametric identification of nonlinear systems using multiple trials. Nonlinear Dyn. 2007, 48, 341–360. [Google Scholar] [CrossRef]
- Failla, G.; Zingales, M. Advanced materials modelling via fractional calculus: Challenges and perspectives. Philos. Trans. R. Soc. A 2020, 378, 20200050. [Google Scholar] [CrossRef]
- Bahloul, M.A.; Aboelkassem, Y.; Belkhatir, Z.; Laleg-Kirati, T.M. Fractional-Order Modeling of Arterial Compliance in Vascular Aging: A Computational Biomechanical Approach for Investigating Cardiovascular Dynamics. IEEE Open J. Eng. Med. Biol. 2023, 5, 650–660. [Google Scholar] [CrossRef]
- Li, Z.; Chen, D.; Zhu, J.; Liu, Y. Nonlinear dynamics of fractional order Duffing system. Chaos, Solitons Fractals 2015, 81, 111–116. [Google Scholar] [CrossRef]
- Khader, M.M.; Kumar, S. An efficient computational method for solving a system of FDEs via fractional finite difference method. Appl. Appl. Math. Int. J. (Aam) 2019, 14, 32. [Google Scholar]
- Das, D.; Taralova, I.; Loiseau, J.J. Time-delay feedback control of fractional chaotic Rössler oscillator. Ifac-Papersonline 2024, 58, 90–95. [Google Scholar] [CrossRef]
- Diethelm, K.; Ford, N.J. The Analysis of Fractional Differential Equations; Lecture notes in mathematics; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Meerschaert, M.M.; Tadjeran, C. Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 2004, 172, 65–77. [Google Scholar] [CrossRef]
- Chang, Y.; Zhu, Y.; Li, Y.; Wang, M. Dynamical analysis of a fractional-order nonlinear two-degree-of-freedom vehicle system by incremental harmonic balance method. J. Low Freq. Noise, Vib. Act. Control 2024, 43, 706–728. [Google Scholar] [CrossRef]
- Yan, Z.; Dai, H.; Wang, Q.; Atluri, S.N. Harmonic Balance Methods: A Review and Recent Developments. Comput. Model. Eng. Sci. 2023, 137, 1419–1459. [Google Scholar] [CrossRef]
- Koç, E.; Koç, A. Fractional Fourier Transform in Time Series Prediction. IEEE Signal Process. Lett. 2022, 29, 2542–2546. [Google Scholar] [CrossRef]
- Cui, R.; Wei, Y.; Chen, Y.; Cheng, S.; Wang, Y. An Innovative Parameter Estimation for Fractional-Order Systems in the Presence of Outliers. Nonlinear Dyn. 2017, 89, 453–463. [Google Scholar] [CrossRef]
- Mani, A.K.; Narayanan, M.D.; Sen, M. Parametric Identification of Fractional-Order Nonlinear Systems. Nonlinear Dyn. 2018, 93, 945–960. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Tian, W.; Zhou, H.; Deng, W. A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 2015, 84, 1703–1727. [Google Scholar] [CrossRef]
- Alqahtani, A.; Mach, T.; Reichel, L. Solution of ill-posed problems with Chebfun. Numer. Algorithms 2023, 92, 2341–2364. [Google Scholar] [CrossRef]
- Oppenheim, A.V. Discrete-Time Signal Processing; Pearson Education India: Noida, India, 1999. [Google Scholar]
- Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick, Proceedings of the a Symposium Held at the University of Warwick, Berlin/Heidelberg, Germany, 7 October 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 366–381. [Google Scholar]
- Sauer, T.; Yorke, J.A.; Casdagli, M. Embedology. J. Stat. Phys. 1991, 65, 579–616. [Google Scholar] [CrossRef]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 1985, 16, 285–317. [Google Scholar] [CrossRef]
- Pecora, L.M.; Carroll, T.L. Synchronization in chaotic systems. Phys. Rev. Lett. 1990, 64, 821. [Google Scholar] [CrossRef]
- Abarbanel, H. Analysis of Observed Chaotic Data; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Parlitz, U. Estimating model parameters from time series by autosynchronization. Phys. Rev. Lett. 1996, 76, 1232–1235. [Google Scholar] [CrossRef]
- Momtahan, S.; Saeedi, H.; Moghaddam, M.M. A fractional block pulse operational method for solving a class of fractional partial differential equations. J. Fract. Calc. Appl. 2017, 8, 166–181. [Google Scholar]
- Li, L.; Wang, D. Numerical stability of Grünwald–Letnikov method for time fractional delay differential equations. Bit Numer. Math. 2021, 62, 995–1027. [Google Scholar] [CrossRef]
- Jin, B. Fractional Differential Equations; Springer International Publishing: Cham, Switzerland, 2010. [Google Scholar]
- Mirzaee, F.; Sayevand, K.; Rezaei, S.; Samadyar, N. Finite Difference and Spline Approximation for Solving Fractional Stochastic Advection-Diffusion Equation. Iran. J. Sci. Technol. Trans. A Sci. 2021, 45, 607–617. [Google Scholar] [CrossRef]
- Zhang, C.H.; Yu, J.W.; Wang, X. A Fast Second-Order Scheme for Nonlinear Riesz Space-Fractional Diffusion Equations. Numer. Algorithms 2023, 92, 1813–1836. [Google Scholar] [CrossRef]
- Ren, H.; Ma, J.; Liu, H. A Convolution Quadrature Using Derivatives and Its Application. Bit Numer. Math. 2024, 64, 8. [Google Scholar] [CrossRef]
- Valério, D.; Sá da Costa, J.S. Identifying Fractional Models from Frequency and Time Responses. In Proceedings of the 3rd IFAC Workshop on Fractional Differentiation and Its Applications, Ankara, Turkey, 5–7 November 2008. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, D.; Taralova, I.; Loiseau, J.J.; Slavov, T.; Pandey, M. Frequency Domain Identification of a 1-DoF and 3-DoF Fractional-Order Duffing System Using Grünwald–Letnikov Characterization. Fractal Fract. 2025, 9, 581. https://doi.org/10.3390/fractalfract9090581
Das D, Taralova I, Loiseau JJ, Slavov T, Pandey M. Frequency Domain Identification of a 1-DoF and 3-DoF Fractional-Order Duffing System Using Grünwald–Letnikov Characterization. Fractal and Fractional. 2025; 9(9):581. https://doi.org/10.3390/fractalfract9090581
Chicago/Turabian StyleDas, Devasmito, Ina Taralova, Jean Jacques Loiseau, Tsonyo Slavov, and Manoj Pandey. 2025. "Frequency Domain Identification of a 1-DoF and 3-DoF Fractional-Order Duffing System Using Grünwald–Letnikov Characterization" Fractal and Fractional 9, no. 9: 581. https://doi.org/10.3390/fractalfract9090581
APA StyleDas, D., Taralova, I., Loiseau, J. J., Slavov, T., & Pandey, M. (2025). Frequency Domain Identification of a 1-DoF and 3-DoF Fractional-Order Duffing System Using Grünwald–Letnikov Characterization. Fractal and Fractional, 9(9), 581. https://doi.org/10.3390/fractalfract9090581