Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (787)

Search Parameters:
Keywords = visco-elastic system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2231 KB  
Article
Mechanisms of Mobility Control and Enhanced Oil Recovery of Weak Gels in Heterogeneous Reservoirs
by Zhengxiao Xu, Ming Sun, Lei Tao, Jiajia Bai, Wenyang Shi, Na Zhang and Yuyao Peng
Gels 2025, 11(11), 854; https://doi.org/10.3390/gels11110854 (registering DOI) - 26 Oct 2025
Abstract
At present, most oilfields in China have entered the late, high-water-cut stage, commonly facing declining single-well productivity and increasingly pronounced reservoir heterogeneity. Prolonged waterflooding has further exacerbated permeability contrast, yielding complex, hard-to-produce residual-oil distributions. Accordingly, the development of efficient enhanced oil recovery (EOR) [...] Read more.
At present, most oilfields in China have entered the late, high-water-cut stage, commonly facing declining single-well productivity and increasingly pronounced reservoir heterogeneity. Prolonged waterflooding has further exacerbated permeability contrast, yielding complex, hard-to-produce residual-oil distributions. Accordingly, the development of efficient enhanced oil recovery (EOR) technologies has become a strategic priority and an urgent research focus in oil and gas field development. Weak gels, typical non-Newtonian fluids, exhibit both viscous and elastic responses, and their distinctive rheology shows broad application potential for crude oil extraction in porous media. Targeting medium–high-permeability reservoirs with high water cut, this study optimized and evaluated a weak gel system. Experimental results demonstrate that the optimized weak gel system achieves remarkable oil displacement performance. The one-dimensional dual-sandpack flooding tests yielded a total recovery of 72.26%, with the weak gel flooding stage contributing an incremental recovery of 14.52%. In the physical three-dimensional model experiments, the total recovery reached 46.12%, of which the weak gel flooding phase accounted for 16.36%. Through one-dimensional sandpack flow experiments and three-dimensional physical model simulations, the oil displacement mechanisms and synergistic effects of the optimized system in heterogeneous reservoirs were systematically elucidated from macro to micro scales. The optimized system demonstrates integrated synergistic performance during flooding, effectively combining mobility control, displacement, and oil-washing mechanisms. Macroscopically, it effectively strips residual oil in high-permeability zones via viscosity enhancement and viscoelastic effects, efficiently blocks high-permeability channels, diverts flow to medium-permeability regions, and enhances macroscopic sweep efficiency. Microscopically, it mobilizes residual oil via normal stress action and a filamentous transport mechanism, improving oil-washing efficiency and increasing ultimate oil recovery. This study demonstrates the technical feasibility and practical effectiveness of the optimized weak gel system for enhancing oil recovery in heterogeneous reservoirs, providing critical technical support for the efficient development of medium–high-permeability reservoirs with high water cut. Full article
(This article belongs to the Special Issue Applications of Gels for Enhanced Oil Recovery)
Show Figures

Figure 1

16 pages, 2634 KB  
Article
Cold Plasma-Treated Chickpea Protein Isolate: Effects on Rheological Behavior and Quality Characteristics of Allergen-Free Rice Muffins
by Jiayu Sun, Jian Wang, Zimo Wen, Ye Liu, Daodong Pan and Lihui Du
Foods 2025, 14(21), 3635; https://doi.org/10.3390/foods14213635 (registering DOI) - 24 Oct 2025
Viewed by 152
Abstract
Allergen-free (AF) baked goods usually show inferior texture and mouth-feel due to lack of functional proteins. This study evaluated the quality characteristics of AF muffins incorporated with three different sources of chickpea protein isolate (CPI), including commercial CPI, laboratory CPI, and cold plasma-modified [...] Read more.
Allergen-free (AF) baked goods usually show inferior texture and mouth-feel due to lack of functional proteins. This study evaluated the quality characteristics of AF muffins incorporated with three different sources of chickpea protein isolate (CPI), including commercial CPI, laboratory CPI, and cold plasma-modified laboratory CPI at varying addition levels (5%, 10%, and 15%). Results indicate that commercially available CPI exhibits high viscoelasticity in whole wheat muffin batter due to mixed protein types and severe denaturation, but the finished muffins are excessively hard with insufficient elasticity. Adding 15% laboratory CPI treated with cold plasma significantly enhanced the viscoelasticity of the muffin batter. The final product achieved a volume of 99.43 cm3, representing a 20.1% increase compared to the protein-free control group. This resulted in a superior product with enhanced elasticity, moderate hardness, and improved color. This study confirms that cold plasma modification technology effectively unlocks the structural and functional potential of chickpea protein in AF baking systems, offering an innovative solution for developing high-quality, high-protein AF foods. Future research will focus on the industrial scalability of this technology, product sensory characteristics, and shelf-life evaluation. Full article
Show Figures

Figure 1

26 pages, 663 KB  
Article
Probiotic Sheep Milk: Physicochemical Properties of Fermented Milk and Viability of Bacteria Under Simulated Gastrointestinal Conditions
by Małgorzata Pawlos, Katarzyna Szajnar and Agata Znamirowska-Piotrowska
Nutrients 2025, 17(21), 3340; https://doi.org/10.3390/nu17213340 - 24 Oct 2025
Viewed by 250
Abstract
Background/Objectives: Within the spectrum of lactic acid bacteria, Lacticaseibacillus casei and Lactobacillus johnsonii are of particular technological and nutritional significance. Protein fortification of fermented dairy systems offers dual benefits: it improves product quality while enhancing probiotic resilience. Supplementary proteins supply bioavailable nitrogen and [...] Read more.
Background/Objectives: Within the spectrum of lactic acid bacteria, Lacticaseibacillus casei and Lactobacillus johnsonii are of particular technological and nutritional significance. Protein fortification of fermented dairy systems offers dual benefits: it improves product quality while enhancing probiotic resilience. Supplementary proteins supply bioavailable nitrogen and peptides that stimulate bacterial metabolism and contribute to a viscoelastic gel matrix that buffers cells against gastric acidity and bile salts. The aim of this study was to clarify the functional potential of such formulations by assessing probiotic survival under in vitro digestion simulating oral, gastric, and intestinal phases. Methods: Sheep milk was fermented with L. casei 431 or L. johnsonii LJ in the presence of whey protein isolate (WPI), soy protein isolate (SPI), or pea protein isolate (PPI) at concentrations of 1.5% and 3.0%. Physicochemical parameters (pH, titratable acidity, color, syneresis), organoleptic properties, and microbiological counts were evaluated. The viability of L. casei and L. johnsonii was determined at each digestion stage, and probiotic survival rates were calculated. Results: Samples with L. johnsonii consistently exhibited lower pH values compared to L. casei. Across both bacterial strains, the addition of 1.5% protein isolate more effectively limited syneresis than 3.0%, regardless of protein type. Samples fortified with WPI at 1.5% (JW1.5) and 3.0% (JW3.0) were rated highest by the panel, demonstrating smooth, homogeneous textures without grittiness. The greatest bacterial survival (>70%) was observed in WPI-fortified samples (JW1.5, JW3.0) and in SPI-fortified JS3. Conclusions: Protein isolates of diverse origins are suitable for the enrichment of fermented sheep milk, with 1.5% supplementation proving optimal. Such formulations maintained desirable fermentation dynamics and, in most cases, significantly improved the survival of L. casei and L. johnsonii under simulated gastrointestinal conditions, underscoring their potential in the development of functional probiotic dairy products. Full article
(This article belongs to the Special Issue Probiotics, Postbiotics, Gut Microbiota and Gastrointestinal Health)
Show Figures

Figure 1

17 pages, 3180 KB  
Article
Influence of Well Spacing on Polymer Driving in E Reservoir of Daqing Oilfield
by Yanchang Su, Jiantao Du, Hongnan Li, Yao Zhou, Zhiyu Wei, Wenbo Zhao, Zhiqiang Wang and Yanfu Pi
Appl. Sci. 2025, 15(21), 11386; https://doi.org/10.3390/app152111386 - 24 Oct 2025
Viewed by 154
Abstract
The E reservoir in Daqing Oilfield exhibits strong heterogeneity, resulting in inconsistent performance of conventional development methods. Polymer flooding is currently implemented using 106 m and 150 m well patterns. To characterize the influence of well spacing variations on polymer flooding effectiveness and [...] Read more.
The E reservoir in Daqing Oilfield exhibits strong heterogeneity, resulting in inconsistent performance of conventional development methods. Polymer flooding is currently implemented using 106 m and 150 m well patterns. To characterize the influence of well spacing variations on polymer flooding effectiveness and enhance oil recovery, we conducted experiments to evaluate the apparent viscosity, solution concentration, viscoelasticity, plugging resistance, and profile modification performance of polymer solutions at different relative migration distances. Subsequent experiments employing differently scaled intra-layer heterogeneous models investigated polymer flooding’s oil recovery enhancement at various migration distances. Results indicate the following: (1) At identical relative migration distances, polymer systems in shorter sand-packed tubes demonstrate a higher effective migration distance proportion and superior viscoelasticity compared to 30 cm models, enabling more effective remaining oil mobilization and improved microscopic displacement efficiency. (2) The 20 cm sand-packed tube model exhibits enhanced plugging resistance and profile modification capabilities with higher maintained viscosity and concentration retention. Polymer solutions at 20%, 40%, 60%, and 80% migration distances in longer tubes established resistance factors of 30, 15, 7.8, and 3.6, and residual resistance factors of 9.6, 5.6, 2.2, and 1.5, respectively. These solutions effectively migrate to reservoir depths, forming efficient plugs and demonstrating superior deep profile control compared to their longer tube counterparts. (3) Polymer flooding response occurred at 0.194 PV injection in the 40 cm model with a maximum water cut reduction of 36.04%, whereas the 60 cm model required 0.31 PV injection to achieve a response, yielding only a 26.7% maximum water cut reduction. This comparative result demonstrates that smaller well spacing enables faster establishment of effective displacement pressure systems, suppresses high-permeability layer channeling, and significantly improves medium- and low-permeability layer utilization efficiency. (4) Crude oil mobilization in medium- and low-permeability layers is substantially reduced in larger well-spacing models. Collectively, reduced well spacing accelerates polymer flooding response, mitigates reservoir heterogeneity impacts, and extends the operational range of polymer plugging resistance and profile modification capabilities, thereby increasing recovery in heterogeneous reservoirs. Full article
(This article belongs to the Special Issue Sustainability and Challenges of Underground Gas Storage Engineering)
Show Figures

Figure 1

27 pages, 4483 KB  
Article
Advancing Viscoelastic Material Characterization Through Computer Vision and Robotics: MIRANDA and RELAPP
by Antonio Monleón-Getino, Victor Madarnás-Gómez, Mario Cobos-Soler, Eduard Almacellas, Juan Ramos-Castro, Xavier Bielsa, Pere López-Brosa, Àngels Sahuquillo-Estrugo, Inés Marsà-González and Alejandro Rodríguez-Mena
Materials 2025, 18(21), 4827; https://doi.org/10.3390/ma18214827 - 22 Oct 2025
Viewed by 192
Abstract
This study introduces MIRANDA, a computer vision system, and RELAPP, a complementary force measurement system, developed for characterizing viscoelastic materials. Our aim was to evaluate their combined ability to predict key rheological parameters and demonstrate their utility in material analysis, offering an alternative [...] Read more.
This study introduces MIRANDA, a computer vision system, and RELAPP, a complementary force measurement system, developed for characterizing viscoelastic materials. Our aim was to evaluate their combined ability to predict key rheological parameters and demonstrate their utility in material analysis, offering an alternative to traditional methods. We analyzed five distinct flour dough samples, correlating MIRANDA and RELAPP variables with established rheological reference values. Support Vector Machine (SVM) regression models were trained using MIRANDA’s stable TR and elasticity data to predict industrially relevant parameters: baking strength (W), tenacity (P), extensibility (L), and final viscosity (RVU) from Chopin alveograph and viscosimeter. The predictive models showed promising results, with R2 values of 0.594 (p = 0) for W, 0.575 (p = 0) for P, and 0.612 (p = 0.03763) for viscosity, all statistically significant. While these findings are promising, it is important to note that the small sample size may limit the generalizability of these models. The synergy between the systems was evident, exemplified by strong positive correlations, such as between MIRANDA’s Elasticity and RELAPP’s c_exp (parameter ‘c’ of its mathematical model m1, r = 0.858) and final resistive force (r = 0.839). Despite the limited sample size, these findings highlight MIRANDA’s versatility and speed for efficient material characterization. MIRANDA and RELAPP offer significant industrial implications for viscoelastic materials, including accelerating development cycles and enhancing continuous quality control. This approach has strong potential to reduce reliance on slower, traditional methods, warranting further validation with larger datasets. Full article
Show Figures

Figure 1

19 pages, 3310 KB  
Article
The Preparation and Evaluation of Carvacrol-Added Hyaluronic Acid for Early Osteoarthritis Treatment
by Yu-Ping Chen, Jhih-Ni Lin, Chia-Tien Chang, Yu-Ying Lin, Che-Yung Kuan, Yu-Chun Chen and Feng-Huei Lin
Antioxidants 2025, 14(10), 1265; https://doi.org/10.3390/antiox14101265 - 21 Oct 2025
Viewed by 434
Abstract
Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by cartilage degradation, synovial inflammation, and subchondral bone remodeling, leading to chronic pain and reduced mobility. In early-stage OA, sustained oxidative stress and inflammation drive chondrocyte dysfunction and extracellular matrix (ECM) loss. Hyaluronic acid [...] Read more.
Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by cartilage degradation, synovial inflammation, and subchondral bone remodeling, leading to chronic pain and reduced mobility. In early-stage OA, sustained oxidative stress and inflammation drive chondrocyte dysfunction and extracellular matrix (ECM) loss. Hyaluronic acid (HA), a key component of synovial fluid responsible for lubrication and viscoelasticity, is prone to enzymatic and oxidative degradation under inflammatory conditions, limiting its therapeutic effect. To address this, we developed an HA-based system incorporating the natural antioxidant and anti-inflammatory molecule carvacrol. The potential of this formulation was assessed in interleukin-1b-stimulated chondrocytes, which mimic the inflammatory environment of OA. The carvacrol-added HA combination upregulated antioxidant enzyme expression, attenuated pro-inflammatory signaling, and promoted ECM preservation by up regulating cartilage-specific markers and glycosaminoglycan production. In vivo efficacy was further evaluated in a rat model of monosodium iodoacetate-induced OA. HA-Carvacrol treatment alleviated pain-related behaviors and preserved cartilage structure, as confirmed by behavioral assessments and histological analyses. This dual-function formulation integrates the lubricating benefits of HA with the bioactivity of carvacrol, providing preclinical proof-of-concept evidence for its potential in early-stage OA. Full article
(This article belongs to the Special Issue Inflammation and Oxidative Stress in Articular Cartilage)
Show Figures

Graphical abstract

19 pages, 4385 KB  
Article
On the Film Stiffness Characteristics of Water-Lubricated Rubber Bearings in Deep-Sea Environments
by Liwu Wang, Qilong Zhao, Wei Feng and Guo Xiang
Lubricants 2025, 13(10), 451; https://doi.org/10.3390/lubricants13100451 - 17 Oct 2025
Viewed by 302
Abstract
Rubber bearings play a critical role as core components within the transmission systems of marine equipment. Investigating the evolution of their water-film stiffness coefficient under deep-sea conditions can provide deeper insights into the dynamic characteristics of water-lubricated transmission systems. Employing a viscoelastic mixed-lubrication [...] Read more.
Rubber bearings play a critical role as core components within the transmission systems of marine equipment. Investigating the evolution of their water-film stiffness coefficient under deep-sea conditions can provide deeper insights into the dynamic characteristics of water-lubricated transmission systems. Employing a viscoelastic mixed-lubrication framework designed for water lubricated rubber bearings, this paper examines the necessity of accounting for rubber hyperelasticity and extreme subsea conditions (high pressure and low temperature) when analyzing the water-film stiffness coefficient of such bearings (at a depth of 1000 m, the relative error in the kxz component between the linear viscoelastic model and the visco-hyperelastic model reaches as high as 18.41%.). On this basis, the influence of subsea environments together with rotational velocity on the water-film stiffness coefficient is further investigated, and the dependence of the dimensionless critical mass on the eccentricity ratio for water-lubricated rubber bearings operating under deep-ocean conditions is explored. The results provide a theoretical analysis tool for evaluating the water-film stiffness coefficient of subsea rubber bearings, and offer guidance for the forward design of water-lubricated rubber bearings applied in deep-sea service. Full article
(This article belongs to the Special Issue Friction–Vibration Interactions)
Show Figures

Figure 1

17 pages, 4100 KB  
Article
A Distributed-Order Fractional Hyperchaotic Detuned Laser Model: Dynamics, Multistability, and Dual Combination Synchronization
by Hesham Khalaf, Gamal M. Mahmoud, Tassos Bountis and Atef M. AboElkher
Fractal Fract. 2025, 9(10), 668; https://doi.org/10.3390/fractalfract9100668 - 17 Oct 2025
Viewed by 210
Abstract
The aim of this article is to introduce the distributed-order hyperchaotic detuned (DOHD) laser model. Its dissipative dynamics, invariance, and fixed points (FPs) and their stability are investigated. Numerical solutions of the DOHD laser model are computed using the modified Predictor–Corrector approach. Its [...] Read more.
The aim of this article is to introduce the distributed-order hyperchaotic detuned (DOHD) laser model. Its dissipative dynamics, invariance, and fixed points (FPs) and their stability are investigated. Numerical solutions of the DOHD laser model are computed using the modified Predictor–Corrector approach. Its viscoelasticity is described by the so-called DO derivative, allowing for the study of different technical systems and materials, and the model is found to have a whole circle of FPs as a hyperchaotic attractor. We discuss the coexistence of more attractors under various initial conditions and the same sets of parameters for our model (multistability). We also introduce the notion of dual combination synchronization (DCS), using four integer-order drive models and two DO response models. A theorem is stated and proved to obtain an analytical control function that ensures DCS for our models. Numerical simulations are presented to support these analytical results. Regarding the use of the well–known Caputo derivative, the results are very similar to those of DO, except when the Caputo order, 0<σ1, is very close to 1, where the dynamics shows a “spiralling behavior” towards a fixed point. In all other cases, both Caputo and DO exhibit a very similar behavior. Full article
(This article belongs to the Special Issue Advances in Fractional-Order Chaotic and Complex Systems)
Show Figures

Figure 1

22 pages, 11599 KB  
Article
Development and Modeling of a Novel Magnetorheological Elastomer Isolator in Hybrid Mode with a Compression–Shear Hybrid Fractional-Derivative Parametric Model
by Yun Tian, Zhongwei Hu, Yingqing Guo, Lihua Zhu, Jun Dai, Yuxuan Tao and Xin Wang
Sensors 2025, 25(20), 6376; https://doi.org/10.3390/s25206376 - 15 Oct 2025
Viewed by 699
Abstract
Magnetorheological elastomers (MREs) are composed of soft silicone rubber, carbonyl iron particles (CIPs), and various additives. This study designs and fabricates a novel hybrid-mode MRE isolator that can operate in both compression and shear modes simultaneously. Experimental and modeling investigations are conducted to [...] Read more.
Magnetorheological elastomers (MREs) are composed of soft silicone rubber, carbonyl iron particles (CIPs), and various additives. This study designs and fabricates a novel hybrid-mode MRE isolator that can operate in both compression and shear modes simultaneously. Experimental and modeling investigations are conducted to examine the dynamic mechanical properties of the hybrid-mode MRE isolator under varying excitation frequencies, displacement amplitudes, and magnetic field strengths. The equivalent stiffness, energy dissipation, and equivalent damping of the MRE isolator are determined. Experimental results reveal that the hybrid-mode MRE isolator exhibits a pronounced MR effect by utilizing a hybrid magnetic field generation system, with all three parameters significantly increasing as the magnetic field strength increases. However, as the excitation frequency increases, the equivalent stiffness and energy dissipation increase, while the equivalent damping decreases. Based on the experimental findings, a compression–shear hybrid fractional-derivative parametric (CSHF) model is proposed to describe the impact of different operating conditions on the dynamic viscoelastic properties of the MRE isolator. A comparative analysis of the experimental results and model predictions indicates that the proposed mechanical model can accurately describe the dynamic mechanical characteristics of the hybrid-mode MRE isolator. Full article
(This article belongs to the Special Issue Structural Health Monitoring and Smart Disaster Prevention)
Show Figures

Figure 1

20 pages, 3107 KB  
Article
Observer-Based Volumetric Flow Control in Nonlinear Electro-Pneumatic Extrusion Actuator with Rheological Dynamics
by Ratchatin Chancharoen, Chaiwuth Sithiwichankit, Kantawatchr Chaiprabha, Setthibhak Suthithanakom and Gridsada Phanomchoeng
Actuators 2025, 14(10), 496; https://doi.org/10.3390/act14100496 - 14 Oct 2025
Viewed by 224
Abstract
Consistent volumetric flow control is essential in extrusion-based additive manufacturing, particularly when printing viscoelastic materials with complex rheological properties. This study proposes a control framework incorporating simplified rheological dynamics via a Kelvin–Voigt model that integrates nonlinear dynamic modeling, an unknown input observer (UIO), [...] Read more.
Consistent volumetric flow control is essential in extrusion-based additive manufacturing, particularly when printing viscoelastic materials with complex rheological properties. This study proposes a control framework incorporating simplified rheological dynamics via a Kelvin–Voigt model that integrates nonlinear dynamic modeling, an unknown input observer (UIO), and a closed-loop PID controller to regulate material flow in a motorized electro-pneumatic extrusion system. A comprehensive state-space model is developed, capturing both mechanical and rheological dynamics. The UIO estimates unmeasurable internal states—specifically, syringe plunger velocity—which are critical for real-time flow regulation. Simulation results validate the observer’s accuracy, while experimental trials with a curing silicone resin confirm that the system can achieve steady extrusion and maintain stable linewidth once transient disturbances settle. The proposed system leverages a dual-mode actuation mechanism—combining pneumatic buffering and motor-based adjustment—to achieve responsive and robust control. This architecture offers a compact, sensorless solution well-suited for high-precision applications in bioprinting, electronics, and soft robotics, and provides a foundation for intelligent flow regulation under dynamic material behaviors. Full article
Show Figures

Figure 1

16 pages, 3215 KB  
Article
Adsorption and Dilational Viscoelasticity of Saponin at the β-Pinene/Water and Air/Water Interfaces
by Feng Lin
Colloids Interfaces 2025, 9(5), 68; https://doi.org/10.3390/colloids9050068 - 11 Oct 2025
Viewed by 202
Abstract
Understanding adsorption and interfacial properties of surface-active agents at interfaces is crucial to the formation and stability of colloidal systems such as emulsions and foams. In this work, interfacial tension and viscoelasticity of saponin at the β-pinene/water interface were studied using drop tensiometry [...] Read more.
Understanding adsorption and interfacial properties of surface-active agents at interfaces is crucial to the formation and stability of colloidal systems such as emulsions and foams. In this work, interfacial tension and viscoelasticity of saponin at the β-pinene/water interface were studied using drop tensiometry and dilational rheology measurement. For comparison, saponin at the air/water interface was also evaluated. Both saponin and β-pinene are bio-based, eco-friendly, and abundant in plants, trees, and agricultural wastes. Results showed that dynamic interfacial tensions σ(t) of saponin adsorbed at β-pinene/water and air/water interfaces could be well described by the Ward and Tordai model, suggesting that the saponin adsorption kinetics at both interfaces are controlled by a kinetically limited mechanism. The equilibrium interfacial pressure πe data prior to critical micelle concentration (cmc) were adequately fitted by the Gibbs adsorption isotherm. At the β-pinene/water interface, a higher cmc and a larger area per molecule, but a lower πe, were observed compared to the air/water interface. Interestingly, the dilational moduli of saponin at β-pinene/water increased with increasing oscillating frequency, but with less significant frequency dependence than their counterparts at the air/water interface. The dilational moduli of saponin at β-pinene/water passed through a minimum with increasing saponin bulk concentration, while the air/water interface exhibited a strikingly different trend in terms of concentration dependence and a higher magnitude for the dilational moduli. The correlation between adsorption behaviors and dilational properties of saponin at the two interfaces is discussed. Fundamental knowledge gained from this study will be beneficial for the rational development of new biocompatible emulsions and foam products for more sustainable applications. Full article
Show Figures

Graphical abstract

21 pages, 5514 KB  
Article
Dynamic Constitutive Model of Basalt Fiber Concrete After High Temperature Based on Fractional Calculus
by Wenbiao Liang, Kai Ding, Yan Li, Yue Zhai, Lintao Li and Yi Tian
Materials 2025, 18(20), 4657; https://doi.org/10.3390/ma18204657 - 10 Oct 2025
Viewed by 360
Abstract
Concrete materials undergo a series of physical and chemical changes under high temperature, leading to the degradation of mechanical properties. This study investigates basalt fiber-reinforced concrete (BFRC) through high-temperature testing using the split Hopkinson pressure bar (SHPB) apparatus. Impact compression tests were conducted [...] Read more.
Concrete materials undergo a series of physical and chemical changes under high temperature, leading to the degradation of mechanical properties. This study investigates basalt fiber-reinforced concrete (BFRC) through high-temperature testing using the split Hopkinson pressure bar (SHPB) apparatus. Impact compression tests were conducted on specimens after exposure to elevated temperatures to analyze the effects of varying fiber content, temperature levels, and impact rates on the mechanical behaviors of BFRC. Based on fractional calculus theory, a dynamic constitutive equation was established to characterize the viscoelastic properties and high-temperature damage of BFRC. The results indicate that the dynamic compressive strength of BFRC decreases significantly with increasing temperature but increases gradually with higher impact rates, demonstrating fiber-toughening effects, thermal degradation effects, and strain rate strengthening effects. The proposed constitutive model aligns well with the experimental data, effectively capturing the dynamic mechanical behaviors of BFRC after high-temperature exposure, including its transitional mechanical characteristics across elastic, viscoelastic, and viscous states. The viscoelastic behaviors of BFRC are fundamentally attributed to the synergistic response of its multi-phase composite system across different scales. Basalt fibers enhance the material’s elastic properties by improving the stress transfer mechanism, while high-temperature exposure amplifies its viscous characteristics through microstructural deterioration, chemical transformations, and associated thermal damage. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

22 pages, 2880 KB  
Article
Tailoring Rheological, Viscoelastic, and Starch Structural Properties in Plant-Based Beverages via Homolactic Fermentation of Quinoa and Chickpea Flour Blends
by John Hurtado-Murillo, Wendy Franco and Ingrid Contardo
Polysaccharides 2025, 6(4), 92; https://doi.org/10.3390/polysaccharides6040092 - 10 Oct 2025
Viewed by 443
Abstract
This study investigated the effects of homolactic fermentation on the rheological, viscoelastic, and starch structural properties of quinoa–chickpea flour-based beverages. Three formulations with increasing proportions of chickpea flour (10, 25, and 50%) were fermented for 10 h with Lactobacillus acidophilus LA-5. Apparent viscosity, [...] Read more.
This study investigated the effects of homolactic fermentation on the rheological, viscoelastic, and starch structural properties of quinoa–chickpea flour-based beverages. Three formulations with increasing proportions of chickpea flour (10, 25, and 50%) were fermented for 10 h with Lactobacillus acidophilus LA-5. Apparent viscosity, deformation capacity, storage modulus (G′), and pasting behavior were measured along with FTIR-based analysis of the starch molecular structure. All fermented samples reached pH values < 4.5 and exhibited improved rheological properties with significant increases in viscosity and storage modulus (G′), particularly in the 50:50 blend. These enhancements were attributed to the synergistic effects of homolactic fermentation and inherent properties of chickpea starch, particularly its high amylose content, large granule size, and long amylopectin chains. FTIR analysis revealed that the short-range molecular order of starches was preserved after fermentation in all beverages, except for the 50:50 blend, as evidenced by the increased degree of order (DO) and double helix (DD) ratios. Overall, these findings demonstrate that integrating chickpea flour and controlled homolactic fermentation is an effective strategy for tailoring the viscosity and stability of plant-based probiotic beverages, providing a theoretical basis for the development of clean-label and functional fermented plant-based systems. Full article
Show Figures

Figure 1

15 pages, 2015 KB  
Communication
Combined Effect of Size and Charge on the Interaction of Nanoparticles with Mucus-Mimicking Mucin Hydrogels
by Natalia N. Porfiryeva, Ivan Zlotver and Alejandro Sosnik
Pharmaceuticals 2025, 18(10), 1498; https://doi.org/10.3390/ph18101498 - 5 Oct 2025
Viewed by 592
Abstract
Background/Objectives: Understanding the interactions between nanoparticles and mucosal tissues is crucial for the development of advanced drug delivery systems, as the diffusion behavior of nanoparticles through mucus is strongly influenced by their size and surface properties, and the viscoelastic nature of the hydrogel [...] Read more.
Background/Objectives: Understanding the interactions between nanoparticles and mucosal tissues is crucial for the development of advanced drug delivery systems, as the diffusion behavior of nanoparticles through mucus is strongly influenced by their size and surface properties, and the viscoelastic nature of the hydrogel matrix. In this study, we investigated the impact of nanoparticle size, surface charge, and hydrogel crosslinking density on nanoparticle diffusion in a mucus model in vitro. Method: Citrate-stabilized and PEGylated 30 and 100 nm gold nanoparticles were used as a model of nanoparticle and their diffusion through mucus-mimicking mucin-based hydrogels of two different crosslinking densities was assessed. Results: Citrate-stabilized 30 nm nanoparticles demonstrated greater diffusion in hydrogels mimicking native mucus compared to more densely crosslinked ones, reaching approximately 50.3 ± 0.2% diffusion within the first 5 min of the assay. This size-dependent effect was not observed for the 100 nm citrate-stabilized nanoparticles, which showed limited diffusion in both hydrogel types. To confer different surface charge, gold nanoparticles were functionalized by the conjugation of poly(ethylene glycol) (PEG) derivatives of identical molecular weight with different terminal moieties (neutral, and positively and negatively charged) to modulate the surface charge and assess their interaction with the negatively charged mucin matrix. PEGylated particles exhibited significantly greater mobility than their citrate-stabilized counterparts, regardless of size or hydrogel density owing to the muco-penetration effect of PEG. Among PEGylated particles, the neutral and negatively charged 30 nm variants demonstrated higher diffusion than the positively charged ones due to weaker interactions with the negatively charged mucin hydrogel. For the 100 nm particles, the neutral PEGylated nanoparticles exhibited greater diffusion than their positively charged counterparts. Conclusions: Overall findings could provide valuable insights into the more rational design of nanoparticle-based drug delivery systems targeting mucosal tissues. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

14 pages, 3757 KB  
Article
Effect of Vanillin and Chitin Particles on the Chitosan-Based Oleogels Produced by the Emulsion-Templated Method
by Leticia Montes, Sofía Viciana, Daniel Franco, Jorge Sineiro and Ramón Moreira
Gels 2025, 11(10), 799; https://doi.org/10.3390/gels11100799 - 3 Oct 2025
Viewed by 268
Abstract
This study presents the first assessment of the combined effect of vanillin and chitin particles on the rheological, oil retention, textural, and oxidative properties of chitosan-based oleogels formulated with olive oil. Oleogels were prepared with and without vanillin; in the latter case, the [...] Read more.
This study presents the first assessment of the combined effect of vanillin and chitin particles on the rheological, oil retention, textural, and oxidative properties of chitosan-based oleogels formulated with olive oil. Oleogels were prepared with and without vanillin; in the latter case, the vanillin-to-chitosan ratio was kept constant (1.3), while chitin concentrations (% w/w) were variable (0.0, 0.5, 1.5, and 2.0). Fresh oleogels and those stored for 15 days were characterized. Results demonstrated that vanillin promotes the formation of compact viscoelastic networks, enhances the elastic modulus by approximately 1.3 times, improves oil binding capacity from 75.1% to 89.2%, and significantly improves oxidative stability by minimizing lipid degradation. In contrast, the influence of chitin was dependent on its content and the presence of vanillin. At intermediate content, chitin positively affected cohesiveness and elasticity, particularly in vanillin-free systems. However, in formulations containing vanillin, even low chitin concentration disrupted the gel network, leading to a decrease in hardness, low oil retention, and a higher oxidation degree. Significant correlations between hardness and elastic modulus, oil binding capacity, adhesiveness, and damping factor were obtained for fresh and stored oleogels. Full article
(This article belongs to the Special Issue Modification of Gels in Creating New Food Products (2nd Edition))
Show Figures

Figure 1

Back to TopTop