Probiotic Sheep Milk: Physicochemical Properties of Fermented Milk and Viability of Bacteria Under Simulated Gastrointestinal Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fermented Sheep Milk Preparation
2.3. Acidity
2.4. Syneresis
2.5. Color
2.6. Organoleptic Evaluation
2.7. In Vitro Digestion Simulation
2.8. Microbiological Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties of Fermented Sheep Milk
3.2. Organoleptic Evaluation of Fermented Sheep Milk
3.3. Viability and Survival of Probiotic Bacteria
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. FAOSTAT: Dairy Production and Sheep Milk Statistics. Food and Agriculture Organization of the United Nations. 2020. Available online: https://www.fao.org/faostat/ (accessed on 15 September 2025).
- Ranadheera, C.S.; Naumovski, N.; Ajlouni, S. Non-Bovine Milk Products as Functional Food Alternatives: Nutritional and Health Perspectives. Int. J. Food Sci. Technol. 2018, 53, 1265–1273. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Salman, S.H.M.; Redha, A.A.; Zannou, O.; Chabi, I.B.; Oussou, K.F.; Bhowmik, S.; Nirmal, N.P.; Maqsood, S. Physicochemical and Nutritional Properties of Different Non-Bovine Milk and Dairy Products: A Review. Int. Dairy J. 2024, 148, 105790. [Google Scholar] [CrossRef]
- Raynal-Ljutovac, K.; Lagriffoul, G.; Paccard, P.; Guillet, I.; Chilliard, Y. Composition of Goat and Sheep Milk Products: An Update. Small Rumin. Res. 2008, 79, 57–72. [Google Scholar] [CrossRef]
- Hati, S.; Prajapati, J.B. Use of Probiotics for Nutritional Enrichment of Dairy Products. Funct. Foods Health Dis. 2022, 12, 713–733. [Google Scholar] [CrossRef]
- Arrichiello, A.; Auriemma, G.; Sarubbi, F. Comparison of Nutritional Value of Different Ruminant Milks in Human Nutrition. Int. J. Funct. Nutr. 2022, 3, 5. [Google Scholar] [CrossRef]
- Li, S.; Delger, M.; Dave, A.; Singh, H.; Ye, A. Acid and Rennet Gelation Properties of Sheep, Goat, and Cow Milks: Effects of Processing and Seasonal Variation. J. Dairy Sci. 2023, 106, 1611–1625. [Google Scholar] [CrossRef]
- Ahlborn, N.G.; Montoya, C.A.; Roy, D.; Roy, N.C.; Stroebinger, N.; Ye, A.; Samuelsson, L.M.; Moughan, P.J.; McNabb, W.C. Differences in Small Intestinal Apparent Amino Acid Digestibility of Raw Bovine, Caprine, and Ovine Milk Are Explained by Gastric Amino Acid Retention in Piglets as an Infant Model. Front. Nutr. 2023, 10, 1226638. [Google Scholar] [CrossRef]
- Dinkçi, N.; Akdeniz, V.; Akalın, A.S. Probiotic Whey-Based Beverages from Cow, Sheep and Goat Milk: Antioxidant Activity, Culture Viability, Amino Acid Contents. Foods 2023, 12, 610. [Google Scholar] [CrossRef]
- Chandrasekaran, P.; Weiskirchen, S.; Weiskirchen, R. Effects of Probiotics on Gut Microbiota: An Overview. Int. J. Mol. Sci. 2024, 25, 6022. [Google Scholar] [CrossRef]
- Chai, C.; Oh, S.; Imm, J.Y. Roles of Milk Fat Globule Membrane on Fat Digestion and Infant Nutrition. Food Sci. Anim. Resour. 2022, 42, 351–371. [Google Scholar] [CrossRef]
- Żulewska, J.; Baranowska, M.; Bielecka, M.M.; Dąbrowska, A.Z.; Tarapata, J.; Kiełczewska, K.; Łobacz, A. Effect of Fortification with High-Milk-Protein Preparations on Yogurt Quality. Foods 2025, 14, 80. [Google Scholar] [CrossRef] [PubMed]
- Szopa, K.; Znamirowska-Piotrowska, A.; Szajnar, K.; Pawlos, M. Effect of Collagen Types, Bacterial Strains and Storage Duration on the Quality of Probiotic Fermented Sheep’s Milk. Molecules 2022, 27, 3028. [Google Scholar] [CrossRef]
- Pimentel, T.C.; Brandão, L.R.; de Oliveira, M.P.; da Costa, W.K.A.; Magnani, M. Health Benefits and Technological Effects of Lacticaseibacillus casei-01: An Overview of the Scientific Literature. Trends Food Sci. Technol. 2021, 114, 722–737. [Google Scholar] [CrossRef]
- Lao, J.; Yan, S.; Yong, Y.; Li, Y.; Wen, Z.; Zhang, X.; Ju, X.; Li, Y. Lacticaseibacillus casei IB1 Alleviates DSS-Induced Inflammatory Bowel Disease by Regulating the Microbiota and Restoring the Intestinal Epithelial Barrier. Microorganisms 2024, 12, 1379. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, L.; Jiao, Y.; Lu, X.; Zhang, N.; Li, X.; Zheng, S.; Li, B.; Liu, F.; Zuo, P. Lacticaseibacillus paracasei L21 and Its Postbiotics Ameliorate Ulcerative Colitis Through Gut Microbiota Modulation, Intestinal Barrier Restoration, and HIF1α/AhR-IL-22 Axis Activation: Combined In Vitro and In Vivo Evidence. Nutrients 2025, 17, 2537. [Google Scholar] [CrossRef]
- Zhou, J.; Ma, S.; Huang, Z.; Yao, Q.; Yu, Z.; Chen, J.; Yao, L.; Zhu, L.; Chen, X. Unveiling the Potential of Lactobacillus johnsonii in Digestive Diseases: A Comprehensive Review. Front. Microbiol. 2025, 16, 1508382. [Google Scholar] [CrossRef] [PubMed]
- Arzola-Martínez, L.; Ravi, K.; Huffnagle, G.B.; Lukacs, N.W.; Fonseca, W. Lactobacillus johnsonii and Host Communication: Insight into Modulatory Mechanisms during Health and Disease. Front. Microbiomes 2024, 2, 1345330. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Y.; Fan, D.; Zhang, J.; Diao, Q.; Cui, K. Sheep-Derived Lactobacillus johnsonii M5 Enhances Immunity and Antioxidant Capacity, Alleviates Diarrhea, and Improves Intestinal Health in Early-Weaned Lambs. Microorganisms 2025, 13, 404. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Li, S.; Ogamune, K.J.; Yuan, P.; Shi, X.; Ennab, W.; Ahmed, A.A.; Kim, I.H.; Hu, P.; Cai, D. Probiotic Lactobacillus johnsonii Reduces Intestinal Inflammation and Rebalances Splenic Treg/Th17 Responses in Dextran Sulfate Sodium-Induced Colitis. Antioxidants 2025, 14, 433. [Google Scholar] [CrossRef]
- Zhao, M.; Li, Y.; Zhang, Y.; Li, G. Genomic analysis and functional properties of Lactobacillus johnsonii GJ231 isolated from healthy beagles. Front. Microbiol. 2024, 15, 1437036. [Google Scholar] [CrossRef]
- Hashim, M.A.; Nadtochii, L.A.; Muradova, M.B.; Proskura, A.V.; Alsaleem, K.A.; Hammam, A.R.A. Non-Fat Yogurt Fortified with Whey Protein Isolate: Physicochemical, Rheological, and Microstructural Properties. Foods 2021, 10, 1762. [Google Scholar] [CrossRef]
- Arab, M.; Yousefi, M.; Khanniri, E.; Azari, M.; Ghasemzadeh-Mohammadi, V.; Mollakhalili-Meybodi, N. A Comprehensive Review on Yogurt Syneresis: Effect of Processing Conditions and Added Additives. J. Food Sci. Technol. 2023, 60, 1656–1665. [Google Scholar] [CrossRef]
- An, F.; Wu, J.; Feng, Y.; Pan, G.; Ma, Y.; Jiang, J.; Yang, X.; Xue, R.; Wu, R.; Zhao, M. A systematic review on the flavor of soy-based fermented foods: Core fermentation microbiome, multisensory flavor substances, key enzymes, and metabolic pathways. Compr. Rev. Food Sci. Food Saf. 2023, 22, 2773–2801. [Google Scholar] [CrossRef]
- Lima Nascimento, L.G.; Odelli, D.; Fernandes de Carvalho, A.; Martins, E.; Delaplace, G.; Peres de sá Peixoto Júnior, P.; Nogueira Silva, N.F.; Casanova, F. Combination of Milk and Plant Proteins to Develop Novel Food Systems: What Are the Limits? Foods 2023, 12, 2385. [Google Scholar] [CrossRef]
- do Prado, F.G.; Pagnoncelli, M.G.B.; de Melo Pereira, G.V.; Karp, S.G.; Soccol, C.R. Fermented Soy Products and Their Potential Health Benefits: A Review. Microorganisms 2022, 10, 1606. [Google Scholar] [CrossRef] [PubMed]
- Çabuk, B.; Nosworthy, M.G.; Stone, A.K.; Korber, D.R.; Tanaka, T.; House, J.D.; Nickerson, M.T. Effect of Fermentation on the Protein Digestibility and Levels of Non-Nutritive Compounds of Pea Protein Concentrate. Food Technol. Biotechnol. 2018, 56, 257–264. [Google Scholar] [CrossRef]
- Homayouni Rad, A. Soy ice cream as a carrier for efficient delivering of Lactobacillus casei. Nutr. Food Sci. 2020, 51, 61–70. [Google Scholar] [CrossRef]
- Ainsley-Reid, A.; Vuillemard, J.C.; Britten, M.; Arcand, Y.; Farnworth, E.; Champagne, C.P. Microentrapment of Probiotic Bacteria in a Ca2+-Induced Whey Protein Gel and Effects on Their Viability in a Dynamic Gastro-Intestinal Model. J. Microencapsul. 2005, 22, 603–619. [Google Scholar] [CrossRef]
- Pawlos, M.; Szajnar, K.; Kowalczyk, M.; Znamirowska-Piotrowska, A. Probiotic Milk Enriched with Protein Isolates: Physicochemical, Organoleptic, and Microbiological Properties. Foods 2024, 13, 3160. [Google Scholar] [CrossRef]
- Gantumur, M.-A.; Sukhbaatar, N.; Jiang, Q.; Enkhtuya, E.; Hu, J.; Gao, C.; Jiang, Z.; Li, A. Effect of Modified Fermented Whey Protein Fortification on the Functional, Physical, Microstructural, and Sensory Properties of Low-Fat Yogurt. Food Control 2024, 155, 110032. [Google Scholar] [CrossRef]
- Afzal, A.; Afzaal, M.; Saeed, F.; Shah, Y.A.; Raza, M.A.; Khan, M.H.; Teferi Asres, D. Milk Protein Based Encapsulation of Probiotics and Other Food Material: Comprehensive Review. Int. J. Food Prop. 2024, 27, 245–262. [Google Scholar] [CrossRef]
- Szajnar, K.; Pawlos, M.; Kowalczyk, M.; Drobniak, J.; Znamirowska-Piotrowska, A. Fermented Milk Supplemented with Sodium Butyrate and Inulin: Physicochemical Characterization and Probiotic Viability Under In Vitro Simulated Gastrointestinal Digestion. Nutrients 2025, 17, 2249. [Google Scholar] [CrossRef]
- ADPI. Analytical Method #007 Titratable Acidity v2.0 Effective 9 August 2023. pp. 1–6. Available online: https://adpi.org/wp-content/uploads/2024/12/007-Titratable-Acidity-v2.0-Effective-09082023.pdf (accessed on 9 August 2025).
- Menezes, E.; Deliza, R.; Chan, H.L.; Guinard, J.-X. Preferences and attitudes towards açaí-based products among North American consumers. Food Res. Int. 2011, 44, 1997–2008. [Google Scholar] [CrossRef]
- Wichchukit, S.; O’Mahony, M. The 9-point hedonic scale and hedonic ranking in food science: Some reappraisals and alternatives. J. Sci. Food Agric. 2014, 95, 2167–2178. [Google Scholar] [CrossRef]
- Baryłko-Pikielna, N.; Matuszewska, I. Sensoryczne Badania Żywności. Podstawy—Metody—Zastosowania [Sensory Food Testing. Fundamentals-Methods-Applications]. Wyd. Nauk. PTTŻ Krakow 2014, 66, 150–157. [Google Scholar]
- PN-ISO 22935-2:2013-07; Milk and Milk Products—Sensory Analysis—Part 2: Recommended Methods for Sensory Evaluation. Polish Committee for Standardization: Warsaw, Poland, 2013.
- Znamirowska, A.; Szajnar, K.; Pawlos, M. Effect of Vitamin C Source on Its Stability During Storage and the Properties of Milk Fermented by Lactobacillus rhamnosus. Molecules 2021, 26, 6187. [Google Scholar] [CrossRef]
- Pawlos, M.; Szajnar, K.; Znamirowska-Piotrowska, A. Probiotic Milk and Oat Beverages with Increased Protein Content: Survival of Probiotic Bacteria Under Simulated In Vitro Digestion Conditions. Nutrients 2024, 16, 3673. [Google Scholar] [CrossRef] [PubMed]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A Standardised Static In Vitro Digestion Method Suitable for Food—An International Consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST Static In Vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Stilling, K. Health Benefits of Pea Protein Isolate: A Comparative Review. Stud. Undergrad. Res. Guelph 2020, 12, 1–10. [Google Scholar] [CrossRef]
- Overduin, J.; Guérin-Deremaux, L.; Wils, D.; Lambers, T.T. NUTRALYS® Pea Protein: Characterization of In Vitro Gastric Digestion and In Vivo Gastrointestinal Peptide Responses Relevant to Satiety. Food Nutr. Res. 2015, 59, 25622. [Google Scholar] [CrossRef]
- Pelaes Vital, A.C.; Itoda, C.; Hokazono, T.Y.; Crepaldi, S.Y.; Saraiva, B.R.; Rosa, C.I.L.F. Use of Soy as a Source of Protein in Low-Fat Yogurt Production: Microbiological, Functional and Rheological Properties. Res. Soc. Dev. 2020, 9, e779119472. [Google Scholar] [CrossRef]
- Espinosa-Martos, I.; Rupérez, P. Soybean Oligosaccharides: Potential as New Ingredients in Functional. Food. Nutr. Hosp. 2006, 21, 92–96. [Google Scholar]
- McCann, T.H.; Fabre, F.; Day, L. Microstructure, Rheology and Storage Stability of Low-Fat Yoghurt Structured by Carrot Cell Wall Particles. Food Res. Int. 2011, 44, 884–892. [Google Scholar] [CrossRef]
- Donkor, O.N.; Nilmini, S.L.I.; Stolic, P.; Vasiljevic, T.; Shah, N.P. Survival and Activity of Selected Probiotic Organisms in Set-Type Yoghurt during Cold Storage. Int. Dairy J. 2007, 17, 657–665. [Google Scholar] [CrossRef]
- Domagała, J.; Wszołek, M.; Tamime, A.Y.; Kupiec-Teahan, B. The Effect of Transglutaminase Concentration on the Texture, Syneresis and Microstructure of Set-Type Goat’s Milk Yoghurt During the Storage Period. Small Rumin. Res. 2013, 112, 154–161. [Google Scholar] [CrossRef]
- Malaki Nik, A.; Alexander, M.; Poysa, V.; Woodrow, L.; Corredig, M. Effect of Soy Protein Subunit Composition on the Rheo-logical Properties of Soymilk during Acidification. Food Biophys. 2011, 6, 26–36. [Google Scholar] [CrossRef]
- Puppo, M.C.; Lupano, C.E.; Anon, M.C. Gelation of Soybean Protein Isolates in Acidic Conditions: Effects of pH and Protein Concentration. J. Agric. Food Chem. 1995, 43, 2356–2361. [Google Scholar] [CrossRef]
- Klost, M.; Brzeski, C.; Drusch, S. Effect of Protein Aggregation on Rheological Properties of Pea Protein Gels. Food Hydrocoll. 2020, 108, 106036. [Google Scholar] [CrossRef]
- Lu, Z.X.; He, J.F.; Zhang, Y.C.; Bing, D.J. Composition, Physicochemical Properties of Pea Protein and Its Application in Functional Foods. Crit. Rev. Food Sci. Nutr. 2020, 60, 2593–2605. [Google Scholar] [CrossRef] [PubMed]
- Nicolai, T.; Chassenieux, C. Heat-Induced Gelation of Plant Globulins. Curr. Opin. Food Sci. 2019, 27, 18–22. [Google Scholar] [CrossRef]
- Barbosa, A.C.L.; Lajolo, F.M.; Genovese, M.I. Influence of temperature, pH and ionic strength on the production of isoflavone-rich soy protein isolates. Food Chem. 2006, 98, 757–766. [Google Scholar] [CrossRef]
- Tan, S.T.; Tan, S.S.; Tan, C.X. Soy protein, bioactive peptides, and isoflavones: A review of their safety and health benefits. PharmaNutrition 2023, 25, 100352. [Google Scholar] [CrossRef]
- Gomes da Costa, G.; Pereira da Silva, L.; Escobar da Silva, L.; Carvalho Andraus, R.A.; Nobre Costa, G.; Sifuentes dos Santos, J. Characterization of Protein-Enriched Yogurt and Its Effects on Lean Body Weight Gain and Electrical Activity in Skeletal Muscle of Physically Active Individuals. Res. Soc. Dev. 2020, 9, e8349109153. [Google Scholar] [CrossRef]
- Alting, A.C.; Hamer, R.J.; de Kruif, C.G.; Visschers, R.W. Formation of Disulfide Bonds in Acid-Induced Gels of Preheated Whey Protein Isolate. J. Agric. Food Chem. 2000, 48, 5001–5007. [Google Scholar] [CrossRef]
- Vasbinder, A.J.; van de Velde, F.; de Kruif, C.G. Gelation of Casein-Whey Protein Mixtures. J. Dairy Sci. 2004, 87, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.D.; Arntfield, S.D. Molecular Forces Involved in Heat-Induced Pea Protein Gelation: Effects of Various Reagents on the Rheological Properties of Salt-Extracted Pea Protein Gels. Food Hydrocoll. 2012, 28, 325–332. [Google Scholar] [CrossRef]
- Loveday, S.M. Plant Protein Ingredients with Food Functionality Potential. Nutr. Bull. 2020, 45, 321–327. [Google Scholar] [CrossRef]
- Sim, S.Y.J.; SRV, A.; Chiang, J.H.; Henry, C.J. Plant Proteins for Future Foods: A Roadmap. Foods 2021, 10, 1967. [Google Scholar] [CrossRef]
- Rodriguez, Y.; Beyrer, M. Impact of Native Pea Proteins on the Gelation Properties of Pea Protein Isolates. Food Struct. 2023, 37, 100340. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, T.; Li, H.; Chen, T.; Liu, X. Control of Beany Flavor from Soybean Protein Raw Material in Plant-Based Meat Analog Processing. Foods 2023, 12, 923. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Yu, Z.; Zhang, S.; Liu, C.; Guo, Z.; Xu, J.; Zhang, G.; Wang, Z. Enzymatic Hydrolysis Pretreatment Combined with Glycosylation for Soybean Protein Isolate Applying in Dual-Protein Yogurt. Food Chem. 2024, 24, 101837. [Google Scholar] [CrossRef]
- Nam, J.-K.; Lee, J.Y.; Jang, H.W. Quality Characteristics and Volatile Compounds of Plant-Based Patties Supplemented with Biji Powder. Food Chem. 2024, 23, 101576. [Google Scholar] [CrossRef]
- Tao, A.; Zhang, H.; Duan, J.; Xiao, Y.; Liu, Y.; Li, J.; Huang, J.; Zhong, T.; Yu, X. Mechanism and Application of Fermentation to Remove Beany Flavor from Plant-Based Meat Analogs: A Mini Review. Front. Microbiol. 2022, 13, 1070773. [Google Scholar] [CrossRef]
- Zipori, D.; Hollmann, J.; Rigling, M.; Zhang, Y.; Weiss, A.; Schmidt, H. Rapid Acidification and Off-Flavor Reduction of Pea Protein by Fermentation with Lactic Acid Bacteria and Yeasts. Foods 2024, 13, 588. [Google Scholar] [CrossRef]
- Flores, M.; Comes, D.; Gamero, A.; Belloch, C. Fermentation of Texturized Pea Protein in Combination with Proteases for Aroma Development in Meat Analogues. J. Agric. Food Chem. 2024, 72, 4897–4905. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.-J.; Kim, H.; Lee, J.Y.; Ramachandraiah, K.; Hong, G.-P. β-Cyclodextrin-Mediated Beany Flavor Masking and Textural Modification of an Isolated Soy Protein-Based Yuba Film. Foods 2020, 9, 818. [Google Scholar] [CrossRef]
- Kelanne, N.; Yang, B.; Laaksonen, O. Potential of Cyclodextrins in Food Processing for Improving Sensory Properties of Food. Food Innov. Adv. 2024, 3, 1–10. [Google Scholar] [CrossRef]
- Jaeger, S.R.; Dupas de Matos, A.; Oduro, A.F.; Hort, J. Sensory Characteristics of Plant-Based Milk Alternatives: Product Characterisation by Consumers and Drivers of Liking. Food Res. Int. 2024, 180, 114093. [Google Scholar] [CrossRef]
- Huang, Y.; Adams, M.C. In Vitro Assessment of the Upper Gastrointestinal Tolerance of Potential Probiotic Dairy Propionibacteria. Int. J. Food Microbiol. 2004, 91, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Ranadheera, R.D.C.S.; Baines, S.K.; Adams, M.C. Importance of Food in Probiotic Efficacy. Food Res. Int. 2010, 43, 1–7. [Google Scholar] [CrossRef]
- Mainville, I.; Arcand, Y.; Farnworth, E.R. A Dynamic Model That Simulates the Human Upper Gastrointestinal Tract for the Study of Probiotics. Int. J. Food Microbiol. 2005, 99, 287–296. [Google Scholar] [CrossRef]
- Govaert, M.; Rotsaert, C.; Vannieuwenhuyse, C.; Duysburgh, C.; Medlin, S.; Marzorati, M.; Jarrett, H. Survival of Probiotic Bacterial Cells in the Upper Gastrointestinal Tract and the Effect of the Surviving Population on the Colonic Microbial Community Activity and Composition. Nutrients 2024, 16, 2791. [Google Scholar] [CrossRef]
- Han, S.; Lu, Y.; Xie, J.; Fei, Y.; Zheng, G.; Wang, Z.; Liu, J.; Lv, L.; Ling, Z.; Berglund, B.; et al. Probiotic Gastrointestinal Transit and Colonization After Oral Administration: A Long Journey. Front. Cell Infect. Microbiol. 2021, 11, 609722. [Google Scholar] [CrossRef] [PubMed]
- Monteagudo-Mera, A.; Rodríguez-Aparicio, L.; Rúa, J.; Martínez-Blanco, H.; Navasa, N.; García-Armesto, M.R.; Ferrero, M.A. In Vitro Evaluation of Physiological Probiotic Properties of Different Lactic Acid Bacteria Strains of Dairy and Human Origin. J. Funct. Foods 2012, 4, 531–541. [Google Scholar] [CrossRef]
- Mo, Q.; Yang, Q.; Mao, Y.; Deng, F.; Xiong, X.; Li, X.; Li, W. In vitro assessment of addition of soy protein isolate on milk protein digestion and conformational behaviour. Int. J. Dairy Technol. 2024, 77, e13094. [Google Scholar] [CrossRef]
- Pinho, S.C.; Brito-Oliveira, T.C.; Geremias-Andrade, I.M.; Moraes, I.C.F.; Gómez-Mascaraque, L.G.; Brodkorb, A. Microstructure and in vitro digestion of mixed protein gels of soy and whey protein isolates. Food Hydrocoll. 2024, 155, 110189. [Google Scholar] [CrossRef]
- Stavropoulou, E.; Bezirtzoglou, E. Probiotics in Medicine: A Long Debate. Front. Immunol. 2020, 11, 2192. [Google Scholar] [CrossRef] [PubMed]
- O’Flaherty, S.; Briner Crawley, A.; Theriot, C.M.; Barrangou, R. The Lactobacillus Bile Salt Hydrolase Repertoire Reveals Niche-Specific Adaptation. mSphere 2018, 3, e00140-18. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, J.; Zhang, D.; Liu, H.; Wang, S.; Wang, Y.; Ji, H. Complete Genome Sequencing and Comparative Genome Characterization of Lactobacillus johnsonii ZLJ010, a Potential Probiotic with Health-Promoting Properties. Front. Genet. 2019, 10, 812. [Google Scholar] [CrossRef]
- Bagon, B.B.; Valeriano, V.D.V.; Oh, J.K.; Pajarillo, E.A.B.; Lee, J.Y.; Kang, D.K. Exoproteome Perspective on the Bile Stress Response of Lactobacillus johnsonii. Proteomes 2021, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Lebeer, S.; Vanderleyden, J.; De Keersmaecker, S.C. Genes and Molecules of Lactobacilli Supporting Probiotic Action. Microbiol. Mol. Biol. Rev. 2008, 72, 728–764. [Google Scholar] [CrossRef] [PubMed]
- Boucard, A.S.; Florent, I.; Polack, B.; Langella, P.; Bermudez-Humaran, L.G. Genome Sequence and Assessment of Safety and Potential Probiotic Traits of Lactobacillus johnsonii CNCM I-4884. Microorganisms 2022, 10, 273. [Google Scholar] [CrossRef]
- Cai, H.; Rodríguez, B.T.; Zhang, W.; Broadbent, J.R.; Steele, J.L. Genotypic and Phenotypic Characterization of Lactobacillus casei Strains Isolated from Different Ecological Niches Suggests Frequent Recombination and Niche Specificity. Microbiology 2007, 153, 2655–2665. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, W.; Liu, X.; Shen, W.; Gu, R.; Tang, C. The Antioxidant Activity and Protection of Probiotic Bacteria in the In Vitro Gastrointestinal Digestion of a Blueberry Juice and Whey Protein Fermentation System. Fermentation 2023, 9, 335. [Google Scholar] [CrossRef]
- Pritchard, G.G.; Tim, C. The Physiology and Biochemistry of the Proteolytic System in Lactic Acid Bacteria. FEMS Microbiol. Rev. 1993, 12, 179–206. [Google Scholar] [CrossRef]
- Juillard, V.; Bars, D.L.; Kunji, E.; Konings, W.N.; Richard, J. Oligopeptides Are the Main Source of Nitrogen for Lactococcus lactis during Growth in Milk. Appl. Environ. Microbiol. 1995, 61, 3024. [Google Scholar] [CrossRef]
- da Silva, T.M.; de Deus, C.; Fonseca, B.D.S.; Lopes, E.J.; Cichoski, A.J.; Esmerino, E.A.; da Silva, C.D.B.; Muller, E.I.; Flores, E.M.M.; de Menezes, C.R. The Effect of Enzymatic Crosslinking on the Viability of Probiotic Bacteria (Lactobacillus acidophilus) Encapsulated by Complex Coacervation. Food Res. Int. 2019, 125, 108577. [Google Scholar] [CrossRef]
- Liu, H.; Gong, J.; Chabot, D.; Miller, S.S.; Cui, S.W.; Ma, J.; Zhong, F.; Wang, Q. Incorporation of Polysaccharides into Sodium Caseinate–Low Melting Point Fat Microparticles Improves Probiotic Bacterial Survival during Simulated Gastrointestinal Digestion and Storage. Food Hydrocoll. 2016, 54 Pt B, 328–337. [Google Scholar] [CrossRef]
- Mokhtari, S.; Jafari, S.M.; Khomeiri, M.; Maghsoudlou, Y.; Ghorbani, M. The Cell Wall Compound of Saccharomyces cerevisiae as a Novel Wall Material for Encapsulation of Probiotics. Food Res. Int. 2017, 96, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.; Wen, Y.; Xu, Z.; Ma, M.; Li, P.; Brennan, C.; Sui, Z.; Corke, H. Octenylsuccinylation differentially modifies the physicochemical properties and digestibility of small granule starches. Int. J. Biol. Macromol. 2020, 144, 705–714. [Google Scholar] [CrossRef]
- Afzaal, M.; Saeed, F.; Hussain, M.; Ismail, Z.; Siddeeg, A.; Al-Farga, A.; Aljobair, M.O. Influence of Encapsulation on the Survival of Probiotics in Food Matrix under Simulated Stress Conditions. Saudi J. Biol. Sci. 2022, 29, 103394. [Google Scholar] [CrossRef]
- Alp, D.; Kuleaşan, H. Adhesion Mechanisms of Lactic Acid Bacteria: Conventional and Novel Approaches for Testing. World J. Microbiol. Biotechnol. 2019, 35, 156. [Google Scholar] [CrossRef]
- Thomas, C.M.; Versalovic, J. Probiotics-Host Communication. Gut Microbes 2014, 3, 148–163. [Google Scholar] [CrossRef]
- Masco, L.; Crockaert, C.; Van Hoorde, K.; Swings, J.; Huys, G. In Vitro Assessment of the Gastrointestinal Transit Tolerance of Taxonomic Reference Strains from Human Origin and Probiotic Product Isolates of Bifidobacterium. J. Dairy Sci. 2007, 90, 3572–3578. [Google Scholar] [CrossRef]
- Teymoori, F.; Roshanak, S.; Bolourian, S.; Mozafarpour, R.; Shahidi, F. Microencapsulation of Lactobacillus reuteri by Emulsion Technique and Evaluation of Microparticle Properties and Bacterial Viability Under Storage, Processing, and Digestive System Conditions. Food Sci. Nutr. 2024, 12, 10393–10404. [Google Scholar] [CrossRef] [PubMed]
- Vanare, S.P.; Singh, R.K.; Chen, J.; Kong, F. Double Emulsion Microencapsulation System for Lactobacillus rhamnosus GG Using Pea Protein and Cellulose Nanocrystals. Foods 2025, 14, 831. [Google Scholar] [CrossRef] [PubMed]
- Saiz-Gonzalo, G.; Arroyo-Moreno, S.; McSweeney, S.; Bleiel, S.B. Pea Protein Microencapsulation Improves Probiotic Survival During Gastrointestinal Digestion. Int. J. Food Sci. Technol. 2025, 60, vvaf154. [Google Scholar] [CrossRef]
- Cordeiro, B.F.; Oliveira, E.R.; da Silva, S.H.; Savassi, B.M.; Acurcio, L.B.; Lemos, L.; Alves, J.L.; Assis, H.C.; Vieira, A.T.; Faria, A.M.C.; et al. Whey Protein Isolate-Supplemented Beverage, Fermented by Lactobacillus casei BL23 and Propionibacterium freudenreichii 138, in the Prevention of Mucositis in Mice. Front. Microbiol. 2018, 9, 2035. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.; Ma, L.; Miao, S.; Hu, X.; Liao, X.; Chen, F.; Ji, J. The in-vitro digestion behaviors of milk proteins acting as wall materials in spray-dried microparticles: Effects on the release of loaded blueberry anthocyanins. Food Hydrocoll. 2021, 115, 106620. [Google Scholar] [CrossRef]
- Li, H.; Aluko, R.E. Identification and inhibitory properties of multifunctional peptides from pea protein hydrolysate. J. Agric. Food Chem. 2010, 58, 11471–11476. [Google Scholar] [CrossRef] [PubMed]
- Vargas, L.A.; Olson, D.W.; Kayanush, J. Whey Protein Isolate Improves Acid and Bile Tolerances of Streptococcus thermophilus ST-M5 and Lactobacillus delbrueckii ssp. bulgaricus LB-12. J. Dairy Sci. 2015, 98, 2215–2221. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Zhang, Z.; Qiu, C.; Wen, J. A Review of Whey Protein-Based Bioactive Delivery Systems: Design, Fabrication, and Application. Foods 2024, 13, 2453. [Google Scholar] [CrossRef] [PubMed]
- Bayrak, M.; Whitten, A.E.; Mata, J.P.; Conn, C.E.; Floury, J.; Logan, A. Real-Time Monitoring of Casein Gel Microstructure During Simulated Gastric Digestion Monitored by Small-Angle Neutron Scattering. Food Hydrocoll. 2023, 144, 108919. [Google Scholar] [CrossRef]
- Liao, M.; Li, W.; Peng, L.; Li, J.; Ren, J.; Li, K.; Chen, F.; Hu, X.; Liao, X.; Ma, L.; et al. High Hydrostatic Pressure Induced Gastrointestinal Digestion Behaviors of Quercetin-Loaded Casein Delivery Systems Under Different Calcium Concentration. Food Chem. 2024, 21, 101177. [Google Scholar] [CrossRef]
- Runthala, A.; Mbye, M.; Ayyash, M.; Xu, Y.; Kamal-Eldin, A. Caseins: Versatility of Their Micellar Organization in Relation to the Functional and Nutritional Properties of Milk. Molecules 2023, 28, 2023. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, J.; Zhu, Y.; Sun, B.; Liu, L.; Lv, M.; Zheng, B.; Yang, L.; Zhu, X. Physicochemical and Gelling Properties of Heat-Induced Gels Formed by Soy Lipophilic Protein with β-Conglycinin and Glycinin. Food Chem. 2025, 29, 102819. [Google Scholar] [CrossRef]
- Zhang, W.; Jin, M.; Wang, H.; Cheng, S.; Cao, J.; Kang, D.; Zhang, J.; Zhou, W.; Zhang, L.; Zhu, R.; et al. Effect of Thermal Treatment on Gelling and Emulsifying Properties of Soy β-Conglycinin and Glycinin. Foods 2024, 13, 1804. [Google Scholar] [CrossRef]
- Ren, W.; Xia, W.; Gunes, D.Z.; Ahrné, L. Heat-Induced Gels from Pea Protein Soluble Colloidal Aggregates: Effect of Calcium Addition or pH Adjustment on Gelation Behavior and Rheological Properties. Food Hydrocoll. 2024, 147A, 109417. [Google Scholar] [CrossRef]
- Aimutis, W.R.; Shirwaiker, R. A Perspective on the Environmental Impact of Plant-Based Protein Concentrates and Isolates. Proc. Natl. Acad. Sci. USA 2024, 121, e2319003121. [Google Scholar] [CrossRef]
- Desiderio, E.; Shanmugam, K.; Östergren, K. Plant Based Meat Alternative, from Cradle to Company-Gate: A Case Study Uncovering the Environmental Impact of the Swedish Pea Protein Value Chain. J. Clean. Prod. 2023, 418, 138173. [Google Scholar] [CrossRef]
- Herrmann, M.; Mehner, E.; Egger, L.; Portmann, R.; Hammer, L.; Nemecek, T. A Comparative Nutritional Life Cycle Assessment of Processed and Unprocessed Soy-Based Meat and Milk Alternatives Including Protein Quality Adjustment. Front. Sustain. Food Syst. 2024, 8, 1413802. [Google Scholar] [CrossRef]
- Moughan, P.J.; Lim, W.X.J. Digestible Indispensable Amino Acid Score (DIAAS): 10 Years On. Front. Nutr. 2024, 11, 1389719. [Google Scholar] [CrossRef]
- Wolfe, R.R.; Church, D.D.; Ferrando, A.A.; Moughan, P.J. Consideration of the Role of Protein Quality in Determining Dietary Protein Recommendations. Front. Nutr. 2024, 11, 1389664. [Google Scholar] [CrossRef] [PubMed]




| Probiotic Strain | Experimental Groups | ||||||
|---|---|---|---|---|---|---|---|
| Control | 1.5% WPI | 3% WPI | 1.5% SPI | 3% SPI | 1.5% PPI | 3% PPI | |
| L. casei 431 | CC | CW1.5 | CW3 | CS1.5 | CS3 | CB1.5 | CB3 |
| L. johnsonii LJ Delvo®Pro | CJ | JW1.5 | JW3 | JS1.5 | JS3 | JB1.5 | JB3 |
| Properties | CJ | JW1.5 | JW3 | JS1.5 | JS3 | JB1.5 | JB3 |
|---|---|---|---|---|---|---|---|
| pH 1 | 6.67 d ±0.01 | 6.52 b ±0.02 | 6.45 a ±0.03 | 6.68 d ±0.02 | 6.70 d ±0.03 | 6.64 d ±0.02 | 6.60 c ±0.01 |
| pH 7 | 4.29 e ±0.03 | 4.20 c ±0.01 | 4.24 d ±0.01 | 4.22 d ±0.01 | 4.17 b ±0.01 | 4.14 a ±0.01 | 4.13 a ±0.01 |
| L | 91.18 b ±1.02 | 94.51 c ±1.13 | 94.77 c ±0.67 | 94.67 c ±1.91 | 87.97 a ±1.90 | 95.59 c ±2.59 | 93.26 c ±1.03 |
| a* | −1.91 a ±0.20 | −1.34 b ±0.12 | −1.25 b ±0.05 | −1.24 b ±0.25 | 2.01 d ±0.21 | −0.52 c ±0.46 | −0.09 c ±0.09 |
| b* | 11.48 b ±0.32 | 10.62 ab ±1.26 | 11.01 b ±0.14 | 10.40 a ±0.32 | 12.59 b ±1.64 | 10.47 a ±0.26 | 10.22 a ±0.52 |
| C* | 11.63 b ±0.34 | 10.01 a ±0.27 | 11.08 a ±0.14 | 10.48 a ±0.29 | 12.75 b ±1.62 | 10.49 a ±0.29 | 9.33 a ±0.39 |
| h° | 99.76 e ±0.66 | 95.69 c ±4.04 | 96.59 d ±0.41 | 96.82 cd ±1.52 | 80.84 a ±1.34 | 93.11 c ±2.64 | 90.51 b ±0.52 |
| TA % | 1.18 a ±0.06 | 1.26 b ±0.02 | 1.25 b ±0.05 | 1.35 c ±0.01 | 1.51 d ±0.01 | 1.56 de ±0.05 | 1.60 e ±0.02 |
| Syneresis, % | 41.28 e ±1.35 | 5.45 a ±1.92 | 17.52 d ±1.26 | 5.97 a ±1.60 | 8.01 b ±1.48 | 9.59 b ±1.98 | 13.19 c ±1.79 |
| Properties | CC | CW1.5 | CW3 | CS1.5 | CS3 | CB1.5 | CB3 |
|---|---|---|---|---|---|---|---|
| pH 1 | 6.67 d ±0.01 | 6.54 b ±0.02 | 6.48 a ±0.03 | 6.66 d ±0.02 | 6.70 d ±0.03 | 6.62 c ±0.02 | 6.61 c ±0.01 |
| pH 7 | 4.34 a ±0.01 | 4.37 b ±0.01 | 4.39 b ±0.01 | 4.41 c ±0.02 | 4.44 d ±0.01 | 4.35 a ±0.01 | 4.41 c ±0.01 |
| L* | 95.91 b ±1.03 | 95.82 b ±0.70 | 95.15 b ±1.42 | 95.77 b ±2.04 | 91.16 a ±1.61 | 95.88 b ±0.34 | 94.81 ab ±1.12 |
| a* | −1.80 a ±0.17 | −1.66 ab ±0.21 | −1.42 b ±0.11 | −1.07 c ±0.17 | 1.93 e ±0.86 | −0.67 d ±0.54 | −0.40 d ±0.11 |
| b* | 10.34 ab ±0.60 | 11.02 b ±0.41 | 10.90 b ±0.46 | 10.97 b ±0.59 | 10.93 ab ±1.28 | 10.03 a ±0.45 | 10.68 ab ±1.11 |
| C* | 10.49 a ±0.62 | 11.06 b ±0.41 | 11.00 b ±0.47 | 11.03 b ±0.59 | 11.78 b ±2.36 | 10.08 a ±0.44 | 9.69 a ±1.11 |
| h° | 99.87 d ±0.53 | 98.57 cd ±0.94 | 97.42 c ±0.65 | 96.14 bc ±0.88 | 91.59 a ±1.83 | 95.71 b ±0.40 | 92.39 a ±0.73 |
| TA % | 1.10 ab ±0.05 | 1.12 b ±0.01 | 1.08 ab ±0.07 | 1.04 a ±0.03 | 1.06 a ±0.04 | 1.11 ab ±0.01 | 1.03 a ±0.01 |
| Syneresis, % | 23.16 e ±0.73 | 16.73 c ±1.46 | 21.32 d ±1.48 | 14.16 b ±0.93 | 20.00 d ±0.66 | 11.98 a ±1.27 | 18.55 c ±1.48 |
| Properties | Type of Isolate | Bacterial Strain | Dose of Isolate | Type of Isolate × Bacterial Strain | Type of Isolate × Dose of Isolate | Bacterial Strain × Dose of Isolate | Type of Isolate × Dose of Isolate × Bacterial Strain | |
|---|---|---|---|---|---|---|---|---|
| pH 1 | xx | ns | xx | ns | xx | ns | ns | |
| pH 7 | x | xx | ns | ns | ns | xx | xx | |
| L | xx | x | xx | ns | xx | xx | ns | |
| a* | xx | ns | xx | ns | xx | xx | ns | |
| b* | xx | ns | xx | ns | xx | xx | ns | |
| C* | xx | ns | x | ns | xx | ns | ns | |
| h° | xx | ns | xx | ns | xx | ns | ns | |
| TA % | xx | xx | xx | xx | xx | x | xx | |
| Syneresis % | ns | x | xx | xx | ns | xx | x | |
| Consistency | xx | ns | xx | ns | ns | x | ns | |
| Milky-Creamy Taste | ns | ns | xx | ns | ns | ns | ns | |
| Sour Taste | ns | ns | ns | ns | ns | ns | ns | |
| Sweet Taste | ns | ns | ns | ns | ns | ns | ns | |
| Off-Taste | xx | ns | xx | ns | ns | ns | ns | |
| Sour Odor | ns | ns | ns | ns | ns | ns | ns | |
| Off-Odor | ns | ns | x | ns | ns | ns | ns | |
| Stages of Digestion | Before Digestion | xx | x | ns | xx | x | x | x |
| Oral Cavity | xx | xx | ns | xx | xx | ns | xx | |
| Stomach | xx | xx | ns | xx | xx | ns | xx | |
| Small Intestine | xx | xx | xx | xx | xx | xx | xx | |
| Stages of Digestion | CJ | JW1.5 | JW3 | JS1.5 | JS3 | JB1.5 | JB3 |
|---|---|---|---|---|---|---|---|
| Before Digestion | 9.28 aA ±0.19 | 9.87 cA ±0.21 | 9.69 bcA ±0.23 | 9.45 bA ±0.10 | 9.78 bcA ±0.55 | 10.09 dA ±0.16 | 10.08 dA ±0.17 |
| Oral Cavity | 9.17 aA ±0.21 | 9.64 cA ±0.15 | 9.68 cA ±0.19 | 9.33 bA ±0.11 | 9.65 cA ±0.19 | 10.05 dA ±0.20 | 10.04 dA ±0.22 |
| Stomach | 3.84 aC ±0.13 | 6.79 cC ±0.10 | 6.86 cB ±0.16 | 4.37 bC ±0.28 | 6.80 cC ±0.01 | 7.00 dB ±0.18 | 4.66 bC ±0.30 |
| Small Intestine | 4.00 aB ±0.01 | 7.30 dB ±0.32 | 6.89 cB ±0.08 | 6.24 bB ±0.12 | 7.19 dB ±0.27 | 7.05 dB ±0.15 | 6.59 bB ±0.29 |
| Stages of Digestion | CC | CW1.5 | CW3 | CS1.5 | CS3 | CB1.5 | CB3 |
|---|---|---|---|---|---|---|---|
| Before Digestion | 9.30 aA | 9.31 aA | 9.32 aA | 10.14 cA | 10.23 cA | 9.98 cA | 9.55 bA |
| ±0.20 | ±0.13 | ±0.28 | ±0.29 | ±0.19 | ±0.23 | ±0.15 | |
| Oral Cavity | 9.19 aA | 9.21 aA | 9.20 aA | 10.11 cA | 10.10 cA | 9.91 cA | 9.45 bA |
| ±0.44 | ±0.09 | ±0.36 | ±0.23 | ±0.22 | ±0.28 | ±0.15 | |
| Stomach | 2.40 aC | 3.20 cC | 3.43 cC | 3.66 cC | 2.97 bC | 2.86 bC | 2.88 bC |
| ±0.12 | ±0.19 | ±0.16 | ±0.21 | ±0.10 | ±0.12 | ±0.11 | |
| Small Intestine | 4.05 aB | 4.68 cB | 4.69 cB | 4.71 cB | 4.67 cB | 4.35 bB | 4.46 bB |
| ±0.16 | ±0.13 | ±0.09 | ±0.18 | ±0.14 | ±0.18 | ±0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawlos, M.; Szajnar, K.; Znamirowska-Piotrowska, A. Probiotic Sheep Milk: Physicochemical Properties of Fermented Milk and Viability of Bacteria Under Simulated Gastrointestinal Conditions. Nutrients 2025, 17, 3340. https://doi.org/10.3390/nu17213340
Pawlos M, Szajnar K, Znamirowska-Piotrowska A. Probiotic Sheep Milk: Physicochemical Properties of Fermented Milk and Viability of Bacteria Under Simulated Gastrointestinal Conditions. Nutrients. 2025; 17(21):3340. https://doi.org/10.3390/nu17213340
Chicago/Turabian StylePawlos, Małgorzata, Katarzyna Szajnar, and Agata Znamirowska-Piotrowska. 2025. "Probiotic Sheep Milk: Physicochemical Properties of Fermented Milk and Viability of Bacteria Under Simulated Gastrointestinal Conditions" Nutrients 17, no. 21: 3340. https://doi.org/10.3390/nu17213340
APA StylePawlos, M., Szajnar, K., & Znamirowska-Piotrowska, A. (2025). Probiotic Sheep Milk: Physicochemical Properties of Fermented Milk and Viability of Bacteria Under Simulated Gastrointestinal Conditions. Nutrients, 17(21), 3340. https://doi.org/10.3390/nu17213340

