Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,015)

Search Parameters:
Keywords = virus outbreak

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1610 KiB  
Article
Unraveling the Systemic and Local Immune Response of Rainbow Trout (Oncorhynchus mykiss) to the Viral Hemorrhagic Septicemic Virus
by Mariana Vaz, Gonçalo Espregueira Themudo, Felipe Bolgenhagen Schöninger, Inês Carvalho, Carolina Tafalla, Patricia Díaz-Rosales, Lourenço Ramos-Pinto, Benjamín Costas and Marina Machado
Biology 2025, 14(8), 1003; https://doi.org/10.3390/biology14081003 - 5 Aug 2025
Abstract
Viral outbreaks have caused significant mortality and economic losses in aquaculture, highlighting the urgent need for effective therapies and a deeper understanding of antiviral and immune mechanisms in key species. This study investigates the constitutive and virus-induced antiviral responses in juvenile rainbow trout [...] Read more.
Viral outbreaks have caused significant mortality and economic losses in aquaculture, highlighting the urgent need for effective therapies and a deeper understanding of antiviral and immune mechanisms in key species. This study investigates the constitutive and virus-induced antiviral responses in juvenile rainbow trout (Oncorhynchus mykiss) following infection with viral hemorrhagic septicemia virus (VHSV). Trout (30 g) were infected by immersion with VHSV (TCID50 = 105 mL−1) for two hours. Samples were collected at 24, 72, and 120 h post-infection to assess hematology, innate immunity, viral load, and transcriptomic response. At 24 h post-infection, no immune response or increase in viral load was detected, suggesting the host had not yet recognized the virus and was still in the incubation phase. By 72 h, viral replication peaked, with high viral loads observed in mucosal tissues (skin and gills) and immune organs (kidney, spleen, liver), alongside strong up-regulation of antiviral genes, such as viperin. This gene maintained high expression through the final sampling point, indicating its key role in the antiviral response. At this stage, reduced immune competence was observed, marked by elevated nitric oxide and circulating thrombocytes. At 120 h, modest increases in peripheral monocyte, plasma lysozyme, and peroxidase activity were detected; however, these responses were insufficient to reduce viral load, suggesting the resolution phase had not yet begun. In summary, while a limited immune response was observed by the end of the trial, the consistent antiviral activity of viperin from peak infection to 120 h post-infection underscores its importance in the defence against VHSV in rainbow trout. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

12 pages, 472 KiB  
Communication
LAMPOX: A Portable and Rapid Molecular Diagnostic Assay for the Epidemic Clade IIb Mpox Virus Detection
by Anna Rosa Garbuglia, Mallory Draye, Silvia Pauciullo, Daniele Lapa, Eliana Specchiarello, Florence Nazé and Pascal Mertens
Diagnostics 2025, 15(15), 1959; https://doi.org/10.3390/diagnostics15151959 - 4 Aug 2025
Abstract
The global spread of Mpox virus (MPXV) underscores the urgent need for rapid, field-deployable diagnostic tools, especially in low-resource settings. We evaluated a loop-mediated isothermal amplification (LAMP) assay, termed LAMPOX, developed by Coris BioConcept. The assay was tested in three formats—two liquid versions [...] Read more.
The global spread of Mpox virus (MPXV) underscores the urgent need for rapid, field-deployable diagnostic tools, especially in low-resource settings. We evaluated a loop-mediated isothermal amplification (LAMP) assay, termed LAMPOX, developed by Coris BioConcept. The assay was tested in three formats—two liquid versions and a dried, ready-to-use version—targeting only the ORF F3L (Liquid V1) or both the ORF F3L and N4R (Liquid V2 and dried) genomic regions. Analytical sensitivity and specificity were assessed using 60 clinical samples from confirmed MPXV-positive patients. Sensitivity on clinical samples was 81.7% for Liquid V1 and 88.3% for Liquid V2. The dried LAMPOX assay demonstrated a sensitivity of 88.3% and a specificity of 100% in a panel of 112 negative controls, with most positive samples detected in under 7 min. Additionally, a simplified sample lysis protocol was developed to facilitate point-of-care use. While this method showed slightly reduced sensitivity compared to standard DNA extraction, it proved effective for samples with higher viral loads. The dried format offers key advantages, including ambient-temperature stability and minimal equipment needs, making it suitable for point-of-care testing. These findings support LAMPOX as a promising tool for rapid MPXV detection during outbreaks, especially in resource-limited settings where traditional PCR is impractical. Full article
Show Figures

Figure 1

11 pages, 3160 KiB  
Case Report
Congenital Malformations of the Central Nervous System Caused by Bluetongue Virus Serotype 3 (BTV-3) in Two Calves
by Phuong Do Duc, Solveig Reeh, Pauline Pöpperl, Tom Schreiner, Natascha Gundling, Andreas Beineke, Peter Wohlsein and Martina Hoedemaker
Vet. Sci. 2025, 12(8), 728; https://doi.org/10.3390/vetsci12080728 (registering DOI) - 1 Aug 2025
Viewed by 142
Abstract
Since the first emergence of the Bluetongue virus (BTV) in 2006 in Northern Europe, there has been a reported association between BTV Serotype 8 (BTV-8) and brain malformations in calves. The first BTV-3 outbreak in Germany was registered in October 2023. Since then, [...] Read more.
Since the first emergence of the Bluetongue virus (BTV) in 2006 in Northern Europe, there has been a reported association between BTV Serotype 8 (BTV-8) and brain malformations in calves. The first BTV-3 outbreak in Germany was registered in October 2023. Since then, numbers have increased steadily. In a suckler cow herd in the Lower Saxony region, two Angus calves with clinical signs of diffuse encephalopathy, including ataxia, abnormal gait, and central blindness, were born in autumn 2024. Both calves were submitted for Magnetic Resonance Imaging (MRI) and pathological examination, revealing hydranencephaly and internal hydrocephalus, respectively. BTV-3 was detected in blood and tissue samples of both calves using BTV-specific real-time PCR. The presented findings demonstrate that there seems to be an association between transplacental BTV-3 infections and congenital malformations in calves, as previously reported for BTV-8 and -10. Full article
Show Figures

Figure 1

19 pages, 8583 KiB  
Article
Development and Immunogenic Evaluation of a Recombinant Vesicular Stomatitis Virus Expressing Nipah Virus F and G Glycoproteins
by Huijuan Guo, Renqiang Liu, Dan Pan, Yijing Dang, Shuhuai Meng, Dan Shan, Xijun Wang, Jinying Ge, Zhigao Bu and Zhiyuan Wen
Viruses 2025, 17(8), 1070; https://doi.org/10.3390/v17081070 - 31 Jul 2025
Viewed by 231
Abstract
Nipah virus (NiV) is a highly pathogenic bat-borne zoonotic pathogen that poses a significant threat to human and animal health, with fatality rates exceeding 70% in some outbreaks. Despite its significant public health impact, there are currently no licensed vaccines or specific therapeutics [...] Read more.
Nipah virus (NiV) is a highly pathogenic bat-borne zoonotic pathogen that poses a significant threat to human and animal health, with fatality rates exceeding 70% in some outbreaks. Despite its significant public health impact, there are currently no licensed vaccines or specific therapeutics available. Various virological tools—such as reverse genetics systems, replicon particles, VSV-based pseudoviruses, and recombinant Cedar virus chimeras—have been widely used to study the molecular mechanisms of NiV and to support vaccine development. Building upon these platforms, we developed a replication-competent recombinant vesicular stomatitis virus (rVSVΔG-eGFP-NiVBD F/G) expressing NiV attachment (G) and fusion (F) glycoproteins. This recombinant virus serves as a valuable tool for investigating NiV entry mechanisms, cellular tropism, and immunogenicity. The virus was generated by replacing the VSV G protein with NiV F/G through reverse genetics, and protein incorporation was confirmed via immunofluorescence and electron microscopy. In vitro, the virus exhibited robust replication, characteristic cell tropism, and high viral titers in multiple cell lines. Neutralization assays showed that monoclonal antibodies HENV-26 and HENV-32 effectively neutralized the recombinant virus. Furthermore, immunization of golden hamsters with inactivated rVSVΔG-eGFP-NiVBD F/G induced potent neutralizing antibody responses, demonstrating its robust immunogenicity. These findings highlight rVSVΔG-eGFP-NiVBD F/G as an effective platform for NiV research and vaccine development. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

24 pages, 2310 KiB  
Review
Exploring the Use of Viral Vectors Pseudotyped with Viral Glycoproteins as Tools to Study Antibody-Mediated Neutralizing Activity
by Miguel Ramos-Cela, Vittoria Forconi, Roberta Antonelli, Alessandro Manenti and Emanuele Montomoli
Microorganisms 2025, 13(8), 1785; https://doi.org/10.3390/microorganisms13081785 - 31 Jul 2025
Viewed by 242
Abstract
Recent outbreaks of highly pathogenic human RNA viruses from probable zoonotic origin have highlighted the relevance of epidemic preparedness as a society. However, research in vaccinology and virology, as well as epidemiologic surveillance, is often constrained by the biological risk that live virus [...] Read more.
Recent outbreaks of highly pathogenic human RNA viruses from probable zoonotic origin have highlighted the relevance of epidemic preparedness as a society. However, research in vaccinology and virology, as well as epidemiologic surveillance, is often constrained by the biological risk that live virus experimentation entails. These also involve expensive costs, time-consuming procedures, and advanced personnel expertise, hampering market access for many drugs. Most of these drawbacks can be circumvented with the use of pseudotyped viruses, which are surrogate, non-pathogenic recombinant viral particles bearing the surface envelope protein of a virus of interest. Pseudotyped viruses significantly expand the research potential in virology, enabling the study of non-culturable or highly infectious pathogens in a safer environment. Most are derived from lentiviral vectors, which confer a series of advantages due to their superior efficiency. During the past decade, many studies employing pseudotyped viruses have evaluated the efficacy of vaccines or monoclonal antibodies for relevant pathogens such as HIV-1, Ebolavirus, Influenza virus, or SARS-CoV-2. In this review, we aim to provide an overview of the applications of pseudotyped viruses when evaluating the neutralization capacity of exposed individuals, or candidate vaccines and antivirals in both preclinical models and clinical trials, to further help develop effective countermeasures against emerging neutralization-escape phenotypes. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

20 pages, 732 KiB  
Review
AI Methods Tailored to Influenza, RSV, HIV, and SARS-CoV-2: A Focused Review
by Achilleas Livieratos, George C. Kagadis, Charalambos Gogos and Karolina Akinosoglou
Pathogens 2025, 14(8), 748; https://doi.org/10.3390/pathogens14080748 - 30 Jul 2025
Viewed by 376
Abstract
Artificial intelligence (AI) techniques—ranging from hybrid mechanistic–machine learning (ML) ensembles to gradient-boosted decision trees, support-vector machines, and deep neural networks—are transforming the management of seasonal influenza, respiratory syncytial virus (RSV), human immunodeficiency virus (HIV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Symptom-based [...] Read more.
Artificial intelligence (AI) techniques—ranging from hybrid mechanistic–machine learning (ML) ensembles to gradient-boosted decision trees, support-vector machines, and deep neural networks—are transforming the management of seasonal influenza, respiratory syncytial virus (RSV), human immunodeficiency virus (HIV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Symptom-based triage models using eXtreme Gradient Boosting (XGBoost) and Random Forests, as well as imaging classifiers built on convolutional neural networks (CNNs), have improved diagnostic accuracy across respiratory infections. Transformer-based architectures and social media surveillance pipelines have enabled real-time monitoring of COVID-19. In HIV research, support-vector machines (SVMs), logistic regression, and deep neural network (DNN) frameworks advance viral-protein classification and drug-resistance mapping, accelerating antiviral and vaccine discovery. Despite these successes, persistent challenges remain—data heterogeneity, limited model interpretability, hallucinations in large language models (LLMs), and infrastructure gaps in low-resource settings. We recommend standardized open-access data pipelines and integration of explainable-AI methodologies to ensure safe, equitable deployment of AI-driven interventions in future viral-outbreak responses. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

10 pages, 258 KiB  
Article
COVID-19 Clinical Predictors in Patients Treated via a Telemedicine Platform in 2022
by Liliane de Fátima Antonio Oliveira, Lúcia Regina do Nascimento Brahim Paes, Luiz Claudio Ferreira, Gabriel Garcez de Araújo Souza, Guilherme Souza Weigert, Layla Lorena Bezerra de Almeida, Rafael Kenji Fonseca Hamada, Lyz Tavares de Sousa, Andreza Pain Marcelino and Cláudia Maria Valete
Trop. Med. Infect. Dis. 2025, 10(8), 213; https://doi.org/10.3390/tropicalmed10080213 - 29 Jul 2025
Viewed by 186
Abstract
Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus, whose 2020 outbreak was characterized as a pandemic by the World Health Organization. Restriction measures changed healthcare delivery, with telehealth providing a viable alternative throughout the pandemic. This study analyzed a [...] Read more.
Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus, whose 2020 outbreak was characterized as a pandemic by the World Health Organization. Restriction measures changed healthcare delivery, with telehealth providing a viable alternative throughout the pandemic. This study analyzed a telemedicine platform database with the goal of developing a diagnostic prediction model for COVID-19 patients. This is a longitudinal study of patients seen on the Conexa Saúde telemedicine platform in 2022. A multiple binary logistic regression model of controls (negative confirmation for COVID-19 or confirmation of other influenza-like illness) versus COVID-19 was developed to obtain an odds ratio (OR) and a 95% confidence interval (CI). In the final binary logistic regression model, six factors were considered significant: presence of rhinorrhea, ocular symptoms, abdominal pain, rhinosinusopathy, and wheezing/asthma and bronchospasm were more frequent in controls, thus indicating a greater chance of flu-like illnesses than COVID-19. The presence of tiredness and fatigue was three times more prevalent in COVID-19 cases (OR = 3.631; CI = 1.138–11.581; p-value = 0.029). Our findings suggest potential predictors associated with influenza-like illness and COVID-19 that may distinguish between these infections. Full article
13 pages, 643 KiB  
Review
Heat Shock Protein 70 in Cold-Stressed Farm Animals: Implications for Viral Disease Seasonality
by Fanzhi Kong, Xinyue Zhang, Qi Xiao, Huilin Jia and Tengfei Jiang
Microorganisms 2025, 13(8), 1755; https://doi.org/10.3390/microorganisms13081755 - 27 Jul 2025
Viewed by 365
Abstract
The seasonal patterns of viral diseases in farm animals present significant challenges to global livestock productivity, with cold stress emerging as a potential modulator of host–pathogen interactions. This review synthesizes current knowledge on the expression dynamics of heat shock protein 70 (HSP70) in [...] Read more.
The seasonal patterns of viral diseases in farm animals present significant challenges to global livestock productivity, with cold stress emerging as a potential modulator of host–pathogen interactions. This review synthesizes current knowledge on the expression dynamics of heat shock protein 70 (HSP70) in farm animals under cold-stress conditions and its potential roles as (1) a viral replication facilitator and (2) an immune response regulator. This review highlights cold-induced HSP70 overexpression in essential organs, as well as its effects on significant virus life cycles, such as porcine epidemic diarrhea virus (PEDV), porcine reproductive and respiratory syndrome virus (PRRSV), and bovine viral diarrhea virus (BVDV), through processes like viral protein chaperoning, replication complex stabilization, and host defense modulation. By integrating insights from thermophysiology, virology, and immunology, we suggest that HSP70 serves as a crucial link between environmental stress and viral disease seasonality. We also discuss translational opportunities targeting HSP70 pathways to break the cycle of seasonal outbreaks, while addressing key knowledge gaps requiring further investigation. This article provides a framework for understanding climate-driven disease patterns and developing seasonally adjusted intervention strategies. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

8 pages, 1302 KiB  
Communication
Vaccinia and Monkeypox Virus-Neutralizing Antibodies in People Living with HIV: A Serological Study in a Orthopoxvirus-Endemic, Low-Income Region in Brazil
by Thyago José Silva, Ana Gabriella Stoffella-Dutra, Victor Lacerda Gripp, Pollyana R. C. Gorgens, Iago José da Silva Domingos, Pedro Henrique Bastos e Silva, Bruna Caroline Chaves-Garcia, Erna Geessien Kroon, Etel Rocha-Vieira, Giliane de Souza Trindade and Danilo Bretas de Oliveira
Pathogens 2025, 14(8), 733; https://doi.org/10.3390/pathogens14080733 - 25 Jul 2025
Viewed by 300
Abstract
Co-infections of Orthopoxviruses (OPVs), such as vaccinia virus (VACV) and monkeypox virus (MPXV), and the human immunodeficiency virus (HIV) can be associated with severe outcomes. Serro’s dairy region, located in Minas Gerais, southeastern Brazil, is an endemic area for VACV, where zoonotic outbreaks [...] Read more.
Co-infections of Orthopoxviruses (OPVs), such as vaccinia virus (VACV) and monkeypox virus (MPXV), and the human immunodeficiency virus (HIV) can be associated with severe outcomes. Serro’s dairy region, located in Minas Gerais, southeastern Brazil, is an endemic area for VACV, where zoonotic outbreaks affect rural communities. This epidemiological context is especially relevant for at-risk populations, such as people living with HIV (PLHIV). This study aimed to assess the presence of neutralizing antibodies (NAbs) against OPV in PLHIV in this endemic setting. Serum samples were collected from 177 PLHIV in treatment at the specialized service between December 2021 and August 2022. VACV and MPXV NAbs were measured using the plaque reduction neutralization test (PRNT) and VACV-infected cells. The overall occurrence of OPV NAbs was 27.7%. NAbs were higher in individuals born before 1980 (53.3%) than those born after 1980 (1.1%). Among anti-VACV-seropositive individuals, 40.8% also had MPXV NAbs, suggesting cross-immunity. These findings indicate the circulation of VACV in PLHIV and highlight the increased susceptibility to OPV infections among individuals born after the cessation of smallpox vaccination. The results reinforce the importance of continued surveillance of OPV, especially in endemic regions and vulnerable populations. Full article
(This article belongs to the Section Emerging Pathogens)
Show Figures

Figure 1

17 pages, 1065 KiB  
Review
Kyasanur Forest Disease Virus: Epidemiological Insights, Pathogenesis, Therapeutic Strategies, and Advances in Vaccines and Diagnostics
by Babita Bohra, Kumar Saurabh Srivastava, Ayush Raj, Nabanita Pal and Rahul Shukla
Viruses 2025, 17(8), 1022; https://doi.org/10.3390/v17081022 - 22 Jul 2025
Viewed by 499
Abstract
Kyasanur Forest disease virus (KFDV), a tick-borne Orthoflavivirus endemic to the Indian subcontinent, is a public health threat due to its recurrent outbreaks and expanding geographic range. This review provides a comprehensive overview of KFDV, encompassing its epidemiological trends, transmission dynamics, and ecological [...] Read more.
Kyasanur Forest disease virus (KFDV), a tick-borne Orthoflavivirus endemic to the Indian subcontinent, is a public health threat due to its recurrent outbreaks and expanding geographic range. This review provides a comprehensive overview of KFDV, encompassing its epidemiological trends, transmission dynamics, and ecological determinants that influence its spread. We delve into the current understanding of KFDV pathogenesis, highlighting key viral and host factors that drive infection and disease progression. Despite the absence of targeted antiviral therapies, recent advances have spurred the development of candidate therapeutics, including broad-spectrum antivirals and immunomodulators. We also discuss progress in vaccine development, with an emphasis on the limitations of the existing formalin-inactivated vaccine and the promise of next-generation platforms. Furthermore, we explore recent innovations in diagnostics, including molecular and serological tools, that aim to improve early detection and surveillance. A multidisciplinary approach integrating virology, immunology, ecology, and public health is essential for the effective management and eventual control of KFDV outbreaks. Full article
Show Figures

Figure 1

12 pages, 1625 KiB  
Article
Rift Valley Fever Outbreak Investigation Associated with a Dairy Farm Abortion Storm, Mbarara District, Western Uganda, 2023
by Luke Nyakarahuka, Shannon Whitmer, Sophia Mulei, Joanita Mutesi, Jimmy Baluku, Jackson Kyondo, Amy Whitesell, Carson Telford, Alex Tumusiime, Calvin Richie Torach, Dianah Namanya, Mariam Nambuya, Dominic Muhereza, Zainah Kabami, Annet Nankya, David Muwanguzi, Francis Mugabi, Nelson Wandera, Rose Muhindo, Joel M. Montgomery, Julius J. Lutwama, Stephen Karabyo Balinandi, John D. Klena and Trevor R. Shoemakeradd Show full author list remove Hide full author list
Viruses 2025, 17(7), 1015; https://doi.org/10.3390/v17071015 - 19 Jul 2025
Viewed by 482
Abstract
In Africa, Rift Valley Fever poses a substantial risk to animal health, and human cases occur after contact with infected animals or their tissues. RVF has re-emerged in Uganda after nearly five decades, with multiple outbreaks recorded since 2016. We investigated a unique [...] Read more.
In Africa, Rift Valley Fever poses a substantial risk to animal health, and human cases occur after contact with infected animals or their tissues. RVF has re-emerged in Uganda after nearly five decades, with multiple outbreaks recorded since 2016. We investigated a unique RVF outbreak associated with an animal abortion storm of 30 events and human cases on a dairy farm in Mbarara District, Western Uganda, in February 2023. Genomic analysis was performed, comparing animal and human RVF viruses (RVFV) circulating in the region. A cluster of thirteen human RVF cases and nine PCR-positive animals could directly be linked with the abortion storm. Overall, during the year 2023, we confirmed 61 human RVFV cases across Uganda, 88.5% of which were reported to have had direct contact with livestock, and a high case fatality rate of 31%. We recommend implementing extensive health education programs in affected communities and using sustainable mosquito control strategies to limit transmission in livestock, coupled with initiating animal vaccination trials in Uganda. Full article
(This article belongs to the Special Issue Emerging Highlights in the Study of Rift Valley Fever Virus)
Show Figures

Figure 1

23 pages, 39249 KiB  
Article
Single-Cell Atlas of Spleen Remodeling Reveals Macrophage Subset-Driven ASFV Pathogenesis
by Liyuan Wang, Shouzhang Sun, Lei Liu, Yun Chen, Haixue Zheng and Zhonglin Tang
Biology 2025, 14(7), 882; https://doi.org/10.3390/biology14070882 - 18 Jul 2025
Viewed by 406
Abstract
African swine fever virus (ASFV) causes global swine outbreaks, but its cellular pathogenesis is poorly understood. Using single-cell RNA data from ASFV-infected pig spleens across four timepoints, we identified macrophages as the primary viral reservoir, with infection driving lymphoid depletion and myeloid expansion. [...] Read more.
African swine fever virus (ASFV) causes global swine outbreaks, but its cellular pathogenesis is poorly understood. Using single-cell RNA data from ASFV-infected pig spleens across four timepoints, we identified macrophages as the primary viral reservoir, with infection driving lymphoid depletion and myeloid expansion. We characterized four functionally distinct macrophage subsets, including a metabolically reprogrammed SusceptibleMac population serving as the major viral niche and an AntiviralMac subset rapidly depleted during infection. Viral gene expression analysis revealed E165R as a central hub in viral replication networks, while host transcriptomics uncovered disruption of Netrin signaling pathways that may facilitate immune evasion. Pseudotime analysis revealed dynamic macrophage state transitions during infection. These findings provide a high-resolution cellular atlas of ASFV pathogenesis, revealing macrophage subset-specific responses that shape disease outcomes and identifying potential targets for therapeutic intervention. Full article
(This article belongs to the Special Issue Viral Infections in Animals: Pathogenesis and Immunity)
Show Figures

Figure 1

13 pages, 1135 KiB  
Article
Field-Based Characterization of Peste des Petits Ruminants in Sheep in Romania: Clinical, Pathological, and Diagnostic Perspectives
by Romică Iacobescu-Marițescu, Adriana Morar, Viorel Herman, Emil Tîrziu, János Dégi and Kálmán Imre
Vet. Sci. 2025, 12(7), 679; https://doi.org/10.3390/vetsci12070679 - 18 Jul 2025
Viewed by 312
Abstract
Peste des petits ruminants is a highly contagious transboundary viral disease that poses a serious threat to small ruminant populations worldwide. In 2024, seven outbreaks of PPR were recorded in sheep flocks from Timiș County, marking the second confirmed incursions of peste des [...] Read more.
Peste des petits ruminants is a highly contagious transboundary viral disease that poses a serious threat to small ruminant populations worldwide. In 2024, seven outbreaks of PPR were recorded in sheep flocks from Timiș County, marking the second confirmed incursions of peste des petits ruminants virus (PPRV) in Romania. This study aimed to document the clinical presentation, pathological findings, and diagnostic confirmation with these field outbreaks. Comprehensive field investigations were carried out between July and September 2024, including clinical examinations, post mortem analysis, serological screening, and molecular detection using reverse transcription polymerase chain reaction (RT-PCR). A total of 13,203 sheep were evaluated, with an overall mortality rate of 12.77%. Characteristic clinical signs included mucopurulent nasal discharge, oral erosions, respiratory distress, and diarrhea. Gross lesions observed during necropsy included hemorrhagic bronchopneumonia, bile-stained liver, catarrhal enteritis, and mucosal hemorrhages. Serological testing revealed flock-level seroprevalence rates ranging from 46.7% to 80.0%, with higher rates observed in older animals. RT-PCR confirmed PPRV infection in all affected flocks. Our findings provide strong evidence of virulent PPRV circulation in an area where the virus had not been reported before. The results highlight an urgent need to strengthen surveillance systems, enhance diagnostic capacity, and foster cross-border collaboration. These field-based insights can contribute to both national and international efforts aimed at controlling and ultimately eradicating the disease. Full article
(This article belongs to the Special Issue Viral Infections in Wild and Domestic Animals)
Show Figures

Figure 1

22 pages, 652 KiB  
Review
Laboratory Diagnosis of Hendra and Nipah: Two Emerging Zoonotic Diseases with One Health Significance
by Shaun van den Hurk, Aurelle Yondo and Binu T. Velayudhan
Viruses 2025, 17(7), 1003; https://doi.org/10.3390/v17071003 - 17 Jul 2025
Viewed by 458
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are two highly pathogenic RNA viruses with zoonotic potential, which can cause severe diseases with high mortality rates (50–100%) in humans and animals. Given this context, these viruses are classified as Biosafety Level 4 (BSL-4) pathogens, [...] Read more.
Hendra virus (HeV) and Nipah virus (NiV) are two highly pathogenic RNA viruses with zoonotic potential, which can cause severe diseases with high mortality rates (50–100%) in humans and animals. Given this context, these viruses are classified as Biosafety Level 4 (BSL-4) pathogens, thus limiting research studies. Despite the high case fatalities, there are currently no human vaccines available for either virus, owing in part to the limitations in research and hesitancy in funding. In the absence of widespread vaccination, diagnostic tests are crucial for the rapid identification of cases and disease surveillance. This review synthesizes current knowledge on the epidemiology, transmission dynamics, and pathogenesis of NiV and HeV to contextualize a detailed assessment of the available diagnostic tools. We examined molecular and serological assays, including RT-PCR, ELISA, and LAMP, highlighting sample sources, detection windows, and performance. Diagnostic considerations across human and animal hosts are discussed, with emphasis on outbreak applicability and field-readiness, given the need for diagnostic assays that are suitable for use in low-income areas. Further development of diagnostic assays, including isothermal amplification tests and other next-generation approaches, is recommended to fill the gap in rapid, point-of-care diagnostics. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure A1

13 pages, 489 KiB  
Article
Seroprevalence of Equine Influenza Virus Antibodies in Horses from Four Localities in Colombia
by Juliana Gonzalez-Obando, Jeiczon Jaimes-Dueñez, Angélica Zuluaga-Cabrera, Jorge E. Forero, Andrés Diaz, Carlos Rojas-Arbeláez and Julian Ruiz-Saenz
Viruses 2025, 17(7), 999; https://doi.org/10.3390/v17070999 - 16 Jul 2025
Viewed by 421
Abstract
Equine influenza is a highly contagious disease caused by the equine influenza virus (EIV). The occurrence of EIV outbreaks in America is associated with low levels of vaccination coverage. In Colombia, no seroprevalence evaluation has been carried out to estimate the distribution of [...] Read more.
Equine influenza is a highly contagious disease caused by the equine influenza virus (EIV). The occurrence of EIV outbreaks in America is associated with low levels of vaccination coverage. In Colombia, no seroprevalence evaluation has been carried out to estimate the distribution of the virus within the country. Our aim was to perform a sero-epidemiological survey of equine influenza infections and to identify associated risk factors in horses from four departments of Colombia. Serological testing was carried out by using an ELISA for the detection of IgG antibodies against the influenza A virus. The evaluation of epidemiological variables, clinical manifestations, and vaccination history was carried out through the application of a data collection instrument. Among the 385 horses analyzed, 27% of the samples tested positive, with a higher prevalence in Study 1 from horses with respiratory symptoms (40.4%) than in Study 2 from horses without clinical signs (16.1%). Only horses housed in stables had higher odds of testing positive. The study also revealed that unvaccinated horses were 68% less likely to test positive than vaccinated horses were. This research highlights a significant gap in vaccination coverage and the presence of antibodies even in asymptomatic horses. Management factors such as activity type and housing should be considered when strategies for EIV prevention are developed. Full article
(This article belongs to the Special Issue Viral Diseases of Livestock and Diagnostics, 2nd Edition)
Show Figures

Figure 1

Back to TopTop