COVID-19 Clinical Predictors in Patients Treated via a Telemedicine Platform in 2022
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COVID-19 | Coronavirus disease |
RT-qPCR | Reverse transcriptase-real time PCR |
OR | Odds ratio |
CI | Confidence interval |
References
- World Health Organization. Pandemia da Doença do Coronavírus (COVID-19). Available online: https://www.who.int/europe/emergencies/situations/COVID-19 (accessed on 10 March 2025).
- Xie, N.-N.; Zhang, W.-C.; Chen, J.; Tian, F.-B.; Song, J.-X. Clinical Characteristics, Diagnosis, and Therapeutics of COVID-19: A Review. Curr. Med. Sci. 2023, 43, 1066–1074. [Google Scholar] [CrossRef]
- Iyadorai, T.; Lim, S.H.; Wong, P.L.; Sii, H.L.; P’nG, C.K.; Ee, S.S.; Tan, M.P.; Hanafi, N.S.; Ng, K.T.; Chook, J.B.; et al. Clinical symptoms, comorbidities and health outcomes among outpatients infected with the common cold coronaviruses versus influenza vírus. Virol. J. 2024, 21, 251. [Google Scholar] [CrossRef]
- Kiani, P.; Hendriksen, P.A.; Kim, A.J.; Garssen, J.; Verster, J.C. Comparative Analysis of the Clinical Presentation of Individuals Who Test Positive or Negative for SARS-CoV-2: Results from a Test Street Study. Viruses 2024, 16, 1031. [Google Scholar] [CrossRef] [PubMed]
- Sirijatuphat, R.; Sirianan, K.; Horthongkham, N.; Komoltri, C.; Angkasekwinai, N. Distinguishing SARS-CoV-2 Infection and Non-SARS-CoV-2 Viral Infections in Adult Patients Through Clinical Score Tools. Trop. Med. Infect. Dis. 2023, 8, 61. [Google Scholar] [CrossRef]
- Lamarca, A.P.; Souza, U.J.B.d.; Moreira, F.R.R.; Almeida, L.G.P.d.; Menezes, M.T.d.; Souza, A.B.d.; Ferreira, A.C.d.S.; Gerber, A.L.; Lima, A.B.d.; Guimarães, A.P.d.C.; et al. The omicron lineages BA. 1 and BA. 2 (Betacoronavirus SARS-coV-2) have repeatedly entered Brazil through a single dispersal hub. Viruses 2023, 15, 888. [Google Scholar] [CrossRef] [PubMed]
- Painel Rio COVID-19. EPIRIO-Observatório Epidemiológico. Available online: https://epirio.svs.rio.br/ (accessed on 18 July 2025).
- Rodrigues, E.S.; Slavov, S.N.; de La Roque, D.G.L.; Santos, E.V.; Borges, J.S.; Evaristo, M.; da Costa, P.N.M.; Maçonetto, J.d.M.; Marques, A.A.; Baccarin, A.D.; et al. Epidemiology of the SARS-CoV-2 Omicron Variant Emergence in the Southeast Brazilian Population. Microorganisms 2024, 12, 449. [Google Scholar] [CrossRef] [PubMed]
- Hyams, C.; Challen, R.; Marlow, R.; Nguyen, J.; Begier, E.; Southern, J.; King, J.; Morley, A.; Kinney, J.; Clout, M.; et al. Severity of Omicron (B. 1.1. 529) and Delta (B. 1.617. 2) SARS-CoV-2 infection among hospitalised adults: A prospective cohort study in Bristol, United Kingdom. Lancet Reg. Health-Eur. 2023, 25, 100556. [Google Scholar]
- Wang, M.; Liu, Z.; Wang, Z.; Li, K.; Tian, Y.; Lu, W.; Hong, J.; Peng, X.; Shi, J.; Zhang, Z.; et al. Clinical characteristics of 1139 mild cases of the SARS-CoV-2 Omicron variant infected patients in Shanghai. J. Med. Virol. 2023, 95, e28224. [Google Scholar] [CrossRef]
- Menezes, D.C.; Perico, J.; Martins, B.L.; Belone, A.d.F.F.; Fortaleza, C.M.C.B.; Santana, F.C.d.S.; Latini, A.C.P.; de Souza, V.N.B. Time between symptom and testing in relation to familial transmission of severe acute respiratory syndrome coronavirus 2. Ciênc. Saúde Coletiva 2023, 28, 1751–1756. [Google Scholar] [CrossRef]
- Da Silva, S.J.R.; Silva, C.T.A.D.; Guarines, K.M. Clinical and laboratory diagnosis of SARS-CoV-2, the virus causing COVID-19. ACS Infect. Dis. 2022, 6, 2319–2336. [Google Scholar] [CrossRef]
- Brümmer, L.E.; Katzenschlager, S.; Gaeddert, M.; Erdmann, C.; Schmitz, S.; Bota, M.; Grilli, M.; Larmann, J.; Weigand, M.A.; Pollock, N.R.; et al. Accuracy of novel antigen rapid diagnostics for SARS-CoV-2: A living systematic review and meta-analysis. PLoS Med. 2021, 18, e1003735. [Google Scholar] [CrossRef] [PubMed]
- Hatef, E.; Wilson, R.F.; Hannum, S.M.; Zhang, A.; Kharrazi, H.; Weiner, J.P.; Davis, S.A.; Robinson, K.A. Use of Telehealth During the COVID-19 Era; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2023. [CrossRef] [PubMed]
- Secretaria Estadual de Saúde do Rio de Janeiro. Resolução SES Nº 2004/2020 de 18/03/2020. Available online: https://www.saude.rj.gov.br/controladoria-geral-da-ses/legislacao (accessed on 10 March 2025).
- Roy, J.; Levy, D.R.; Senathirajah, Y. Defining Telehealth for Research, Implementation, and Equity. J. Med. Internet Res. 2022, 24, e35037. [Google Scholar] [CrossRef]
- Lavin, L.; Gibbs, H.; Vakkalanka, J.P.; Ternes, S.; Healy, H.S.; Merchant, K.A.S.; Ward, M.M.; Mohr, N.M. The Effect of Telehealth on Cost of Health Care During the COVID-19 Pandemic: A Systematic Review. Telemed. e-Health 2024, 31, 310–319. [Google Scholar] [CrossRef]
- Boaventura, V.S.; Grave, M.; Cerqueira-Silva, T. Syndromic Surveillance Using Structured Telehealth Data: Case Study of the First Wave of COVID-19 in Brazil. Vigilância Em Saúde Pública JMIR 2023, 9, e40036. [Google Scholar] [CrossRef] [PubMed]
- Grover, F.L.; Hammermeister, K.E.; Shroyer, A.L.W. Quality initiatives and the power of the database: What they are and how they run. Ann. Thorac. Surg. 1995, 60, 1514–1521. [Google Scholar] [CrossRef]
- Correia, L.O.D.S.; Padilha, B.M.; Vasconcelos, S.M.L. Métodos para avaliar a completitude dos dados dos sistemas de informação em saúde do Brasil: Uma revisão sistemática. Ciência Saúde Coletiva 2014, 19, 4467–4478. [Google Scholar] [CrossRef]
- Abobaker, A.; Raba, A.A.; Alzwi, A. Extrapulmonary and atypical clinical presentations of COVID-19. J. Med. Virol. 2020, 92, 2458–2464. [Google Scholar] [CrossRef]
- Baj, J.; Karakuła-Juchnowicz, H.; Teresiński, G.; Buszewicz, G.; Ciesielka, M.; Sitarz, R.; Forma, A.; Karakuła, K.; Flieger, W.; Portincasa, P.; et al. COVID-19: Specific and Non-Specific Clinical Manifestations and Symptoms: The Current State of Knowledge. J. Clin. Med. 2020, 9, 1753. [Google Scholar] [CrossRef]
- Boukadida, K.; Cachot, J.; Morin, B.; Clerandeau, C.; Banni, M. A comparative study on the clinical features of COVID-19 with non-SARS-CoV-2 respiratory viral infections. J. Med. Virol. 2021, 93, 1548–1555. [Google Scholar] [CrossRef]
- Zizza, A.; Recchia, V.; Aloisi, A.; Guido, M. Clinical features of COVID-19 and SARS epidemics. A literature review. J. Prev. Med. Hyg. 2021, 62, E13–E24. [Google Scholar] [CrossRef]
- Gunasekeran, D.V.; Tseng, R.M.W.W.; Tham, Y.C.; Wong, T.Y. Applications of digital health for public health re-sponses to COVID-19: A systematic scoping review of artificial intelligence, telehealth and related technologies. NPJ Digit. Med. 2021, 4, 40. [Google Scholar] [CrossRef]
- Cerqueira-Silva, T.; Carreiro, R.; Nunes, V.; Passos, L.; Canedo, B.F.; Andrade, S.; Ramos, P.I.P.; Khouri, R.; Santos, C.B.S.; Nascimento, J.D.S.; et al. Bridging learning in medicine and citizenship during the COVID-19 pan-demic: A telehealth-based case study. JMIR Public Health Surveill. 2021, 7, e24795. [Google Scholar] [CrossRef]
- Baggio, J.A.O.; Machado, M.F.; Carmo, R.F.D.; Armstrong, A.d.C.; dos Santos, A.D.; de Souza, C.D.F. COVID-19 in Brazil: Spatial risk, social vulnerability, human development, clinical manifestations and predictors of mortality—A retrospective study with data from 59 695 individuals. Epidemiol. Infect. 2021, 149, e100. [Google Scholar] [CrossRef]
- Velasque, L.; Nascimento, H.S.D.; da Rocha, M.M.; Nazário, G.d.C.; Peixoto, E.M.M.; da Silva, M.M.M.; da Silva, C.F.; De Carvalho, S.C.; Bedin, S.B.; Carvalho, P.R.D.d.B.d.; et al. Perfil epidemiológico da COVID-19 no Estado do Rio de Janeiro: Um panorama 2020-2022: COVID-19 epidemiological profile in Rio de Janeiro State: An overview 2020–2022. REPIS (Rev. Educ. Pesqui. Informação Saúde) 2023, 1, e0115. [Google Scholar] [CrossRef]
- Pijls, B.G.; Jolani, S.; Atherley, A.; Derckx, R.T.; Dijkstra, J.I.R.; Franssen, G.H.L.; Hendriks, S.; Richters, A.; Venemans-Jellema, A.; Zalpuri, S.; et al. Demographic risk factors for COVID-19 infection, severity, ICU admission and death: A meta-analysis of 59 studies. BMJ Open 2021, 11, e044640. [Google Scholar] [CrossRef]
- Jia, L.; Wei, Z.; Zhang, H.; Wang, J.; Jia, R.; Zhou, M.; Li, X.; Zhang, H.; Chen, X.; Yu, Z.; et al. An interpretable machine learning model based on a quick pre-screening system enables accurate deterioration risk prediction for COVID-19. Sci. Rep. 2021, 11, 23127. [Google Scholar] [CrossRef] [PubMed]
- Borsetto, D.; Hopkins, C.; Philips, V.; Obholzer, R.; Tirelli, G.; Polesel, J.; Calvanese, L.; Boscolo-Rizzo, P. Self-reported alteration of sense of smell or taste in patients with COVID-19: A systematic review and meta-analysis on 3563 patients. Rhinology 2020, 58, 430–436. [Google Scholar] [CrossRef]
- Cardoso, C.C.; Rossi, Á.D.; Galliez, R.M. Olfactory Dysfunction in Patients with Mild COVID-19 During Gamma, Delta, and Omicron Waves in Rio de Janeiro, Brazil. JAMA 2022, 328, 582–583. [Google Scholar] [CrossRef]
- Martins-Filho, P.R.; de Oliveira Júnior, J.M.; Dos Santos, C.A. Case-fatality rates and risk of death from COVID-19 and influenza A/H3N2 in Brazil: A nationwide ecological study. Enfermedades Infecc. Microbiol. Clín. 2022, 41, 199. [Google Scholar] [CrossRef]
Cases (N = 2419) n (%) | Controls (N = 129) n (%) | p-Value | |
---|---|---|---|
Anosmia/Hyposmia * | 71 (2.9) | 2 (1.6) | 0.584 |
Cough | 1448 (61.5) | 80 (62.0) | 0.909 |
Fever | 661 (27.3) | 39 (30.2) | 0.471 |
Rhinorrhea | 654 (27.0) | 49 (38.0) | 0.007 |
Nasal congestion | 515 (21.3) | 34 (25.6) | 0.248 |
Sneezing/burning sensation in the nose | 107 (4.4) | 11 (8.54) | 0.031 |
Odynophagia | 1027 (42.5) | 58 (45.0) | 0.575 |
Myalgia | 696 (28.8) | 37 (28.7) | 0.982 |
Ocular symptoms * | 22 (0.9) | 7 (5.4) | <0.001 |
Headache | 907 (37.5) | 6 (35.7) | 0.675 |
Malaise/Indisposition | 295 (12.2) | 14 (10.9) | 0.649 |
Dyspnea | 112 (4.6) | 6 (4.7) | 0.991 |
Diarrhea | 158 (6.5) | 13 (10.1) | 0.117 |
Chills * | 61 (2.5) | 4 (3.1) | 0.569 |
Nausea/Sickness | 102 (4.2) | 7 (5.4) | 0.508 |
Abdominal pain* | 43 (1.8) | 7 (5.4) | 0.012 |
Arthralgia | 105 (4.3) | 2 (1.6) | 0.124 |
Dizziness * | 56 (2.3) | 4 (3.1) | 0.544 |
Rhinitis * | 8 (0.3) | 1 (0.8) | 0.374 |
Asthenia/Adynamia | 140 (5.8) | 7 (5.4) | 0.864 |
Prostration * | 46 (1.9) | 1 (0.8) | 0.731 |
Lower back pain* | 69 (2.9) | 4 (3.1) | 0.785 |
Dermatological symptoms * | 12 (0.5) | 2 (1.6) | 0.156 |
Fatigue/Tiredness | 192 (7.9) | 3 (2.3) | 0.019 |
Vomiting * | 27 (1.1) | 2 (1.6) | 0.656 |
Anorexia/Inappetence * | 18 (0.7) | 4 (3.1) | 0.023 |
Tonsilitis * | 4 (0.2) | 1 (0.8) | 0.229 |
Rhinosinusopathy * | 16 (0.7) | 4 (3.1) | 0.016 |
Back pain * | 46 (1.9) | 3 (2.3) | 0.736 |
Chest pain/Palpitation * | 69 (2.9) | 2 (1.6) | 0.582 |
Wheezing/Asthma/Bronchospasm * | 13 (0.5) | 4 (3.1) | 0.009 |
Insomnia * | 1 (0.1) | 1 (0.8) | 0.099 |
Aphasia/Dysphonia * | 51 (2.1) | 4 (3.1) | 0.358 |
Ageusia/Dysgeusia * | 49 (2.0) | 2 (1.6) | 1.000 |
Expectoration/Secretion * | 38 (1.6) | 1 (0.8) | 0.720 |
Throat discomfort (irritation, itching, throat clearing, plaques, globules) * | 86 (3.6) | 1 (0.8) | 0.129 |
Edema * | 1 (0.1) | 1 (0.8) | 0.099 |
Hearing symptoms (tinnitus, ear fullness, hypoacusis) * | 11 (0.5) | 2 (1.6) | 0.138 |
Associated Factors | OR | 95% CI | p-Value |
---|---|---|---|
Rhinorrhea | 0.572 | 0.393–0.832 | 0.003 |
Ocular symptoms | 0.171 | 0.070–0.415 | <0.001 |
Abdominal pain | 0.301 | 0.129–0.702 | 0.005 |
Fatigue | 3.308 | 1.039–10.530 | 0.043 |
Rhinosinusopathy | 0.186 | 0.060–0.572 | 0.003 |
Wheezing/Asthma/Bronchospasm | 0.150 | 0.047–0.482 | 0.001 |
Age | 1.016 | 1.003–1.029 | 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, L.d.F.A.; Paes, L.R.d.N.B.; Ferreira, L.C.; Souza, G.G.d.A.; Weigert, G.S.; de Almeida, L.L.B.; Hamada, R.K.F.; de Sousa, L.T.; Marcelino, A.P.; Valete, C.M. COVID-19 Clinical Predictors in Patients Treated via a Telemedicine Platform in 2022. Trop. Med. Infect. Dis. 2025, 10, 213. https://doi.org/10.3390/tropicalmed10080213
Oliveira LdFA, Paes LRdNB, Ferreira LC, Souza GGdA, Weigert GS, de Almeida LLB, Hamada RKF, de Sousa LT, Marcelino AP, Valete CM. COVID-19 Clinical Predictors in Patients Treated via a Telemedicine Platform in 2022. Tropical Medicine and Infectious Disease. 2025; 10(8):213. https://doi.org/10.3390/tropicalmed10080213
Chicago/Turabian StyleOliveira, Liliane de Fátima Antonio, Lúcia Regina do Nascimento Brahim Paes, Luiz Claudio Ferreira, Gabriel Garcez de Araújo Souza, Guilherme Souza Weigert, Layla Lorena Bezerra de Almeida, Rafael Kenji Fonseca Hamada, Lyz Tavares de Sousa, Andreza Pain Marcelino, and Cláudia Maria Valete. 2025. "COVID-19 Clinical Predictors in Patients Treated via a Telemedicine Platform in 2022" Tropical Medicine and Infectious Disease 10, no. 8: 213. https://doi.org/10.3390/tropicalmed10080213
APA StyleOliveira, L. d. F. A., Paes, L. R. d. N. B., Ferreira, L. C., Souza, G. G. d. A., Weigert, G. S., de Almeida, L. L. B., Hamada, R. K. F., de Sousa, L. T., Marcelino, A. P., & Valete, C. M. (2025). COVID-19 Clinical Predictors in Patients Treated via a Telemedicine Platform in 2022. Tropical Medicine and Infectious Disease, 10(8), 213. https://doi.org/10.3390/tropicalmed10080213