Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (438)

Search Parameters:
Keywords = virus insertion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1639 KiB  
Article
Tricyclic Isatin Derivatives as Anti-Inflammatory Compounds with High Kinase Binding Affinity
by Alexander V. Uvarov, Igor A. Schepetkin, Mark T. Quinn and Andrei I. Khlebnikov
Molecules 2025, 30(14), 2914; https://doi.org/10.3390/molecules30142914 - 10 Jul 2025
Viewed by 162
Abstract
Oximes have been reported to exhibit useful pharmaceutical properties, including compounds with anticancer, anti-arthritis, antibacterial, and neuroprotective activities. Many oximes are kinase inhibitors and have been shown to inhibit various kinases. Herein, a panel of oxime derivatives of tricyclic isatins was synthesized and [...] Read more.
Oximes have been reported to exhibit useful pharmaceutical properties, including compounds with anticancer, anti-arthritis, antibacterial, and neuroprotective activities. Many oximes are kinase inhibitors and have been shown to inhibit various kinases. Herein, a panel of oxime derivatives of tricyclic isatins was synthesized and evaluated for inhibition of cellular inflammatory responses and binding affinity to several kinases. Compounds 5a and 5d (a.k.a. NS-102), which have an unsubstituted oxime group, inhibited lipopolysaccharide (LPS)-induced nuclear factor-κB/activating protein 1 (NF-κB/AP-1) transcriptional activity in human THP-1Blue monocytic cells and interleukin-6 (IL-6) production in human MonoMac-6 monocytic cells, with IC50 values in the micromolar range. These compounds also inhibited LPS-induced production of several other proinflammatory cytokines, including IL-1α, IL-1β, monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor (TNF) in MonoMac-6 cells. Compounds 5a and 5d exhibited nanomolar/submicromolar binding affinity toward several kinase targets. The most potent inhibitor, 5d (3-(hydroxyimino)-5-nitro-1,3,6,7,8,9-hexahydro-2H-benzo[g]indol-2-one), demonstrated high binding affinity for 12 kinases, including DYRK1A, DYRK1B, PIM1, Haspin, HIPK1-3, IRAK1, NEK10, and DAPK1-3. Molecular modeling suggested modes of binding interaction of selected compounds in the DYRK1A and PIM1 catalytic sites that agreed with the experimental binding data. Our results demonstrate that tricyclic isatin oximes could be potential candidates for developing anti-inflammatory drugs with neuroprotective effects for treating neurodegenerative diseases. Full article
Show Figures

Figure 1

29 pages, 1116 KiB  
Review
The Impact of Oncogenic Viruses on Cancer Development: A Narrative Review
by Maria Karoliny da Silva Torres, Gabriel dos Santos Pereira Neto, Izaura Maria Vieira Cayres Vallinoto, Leonardo Oliveira Reis and Antonio Carlos Rosário Vallinoto
Biology 2025, 14(7), 797; https://doi.org/10.3390/biology14070797 - 1 Jul 2025
Viewed by 547
Abstract
Oncogenic viruses are infectious agents that can cause cancer in humans and animals. They are estimated to be responsible for approximately 12% of human cancers worldwide. These viruses trigger a series of mechanisms that allow them to insert their genetic material into host [...] Read more.
Oncogenic viruses are infectious agents that can cause cancer in humans and animals. They are estimated to be responsible for approximately 12% of human cancers worldwide. These viruses trigger a series of mechanisms that allow them to insert their genetic material into host cells, disrupting normal cellular processes and leading to uncontrolled growth and tumor formation. This article reviews the literature on the main oncogenic viruses and reports on newly identified viruses potentially associated with cancer development, addressing the mechanisms of oncogenesis and the types of cancers associated. In addition, the article brings together the evidence for preventive strategies, such as vaccination, and therapeutic advances in combating oncogenic viral infections. This review discusses the role of early detection and treatment in managing virus-related cancers globally. This article reviews current prevention and treatment strategies, including HPV and HBV vaccines and antiviral therapies, and mentions future approaches like immunotherapies and CRISPR/Cas9. Therefore, this article underscores the importance of studying the dynamics of co-infection and the role of human microbiota in viral persistence and carcinogenesis, which opens new possibilities for combination therapies and microbiome-based interventions to slow the progression of viral-related tumors. Full article
(This article belongs to the Special Issue Unraveling the Tumor-Immune Microenvironment Using Transcriptomics)
Show Figures

Figure 1

21 pages, 3101 KiB  
Article
Evaluation of the Mutational Preferences Throughout the Whole Genome of the Identified Variants of the SARS-CoV-2 Virus Isolates in Bangladesh
by Laila Anjuman Banu, Nahid Azmin, Mahmud Hossain, Nurun Nahar Nila, Sharadindu Kanti Sinha and Zahid Hassan
Int. J. Mol. Sci. 2025, 26(13), 6118; https://doi.org/10.3390/ijms26136118 - 25 Jun 2025
Viewed by 347
Abstract
The study aimed to identify the variants of SARS-CoV-2 (Severe Acute Respiratory Syndrome related coronavirus-2) virus isolates within the window of March 2021 to February 2022 in Bangladesh and investigate their comparative mutational profiles, preferences and phylogenetics. After the collection of the sample [...] Read more.
The study aimed to identify the variants of SARS-CoV-2 (Severe Acute Respiratory Syndrome related coronavirus-2) virus isolates within the window of March 2021 to February 2022 in Bangladesh and investigate their comparative mutational profiles, preferences and phylogenetics. After the collection of the sample specimen and RNA extraction, the genome was sequenced using Illumina COVID Seq, and NGS data analysis was performed in DRAGEN COVID Lineage software (version 3.5.9). Among the 96 virus isolates, 24 (25%) were from Delta (clade 21A (n = 21) and 21J (n = 3)) and 72 (75%) were from Omicron (clade 20A (n = 6) and 20B (n = 66)). In Omicron and Delta, substitutions were much higher than deletions and insertions. High-frequency nucleotide change patterns were similar (for C > T, and A > G) in both of the variants, but different in some (i.e., G > T, G > A). Preferences for specific amino acids over the other amino acids in substitutions and deletions were observed to vary in different proteins of these variants. Phylogenetic analysis showed that the most ancestral variants were from clade 21A and clade 20A, and then the other variants emerged. The study demonstrates noteworthy variations of Omicron and Delta in mutational pattern and preferences for amino acids and protein, and further study on their biological functional impact might unveil the reason behind their mutational strategies and behavioral changes. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

18 pages, 6973 KiB  
Article
TRIM5α/Cyclophilin A-Modified MDBK Cells for Lentiviral-Based Gene Editing
by Lijing Wo, Shuhui Qi, Yongqi Guo, Chao Sun and Xin Yin
Viruses 2025, 17(7), 876; https://doi.org/10.3390/v17070876 - 21 Jun 2025
Viewed by 366
Abstract
The human immunodeficiency virus 1 (HIV-1)-based lentivirus has been widely used for genetic modification. However, the efficiency of lentiviral-based gene modification in Madin–Darby bovine kidney (MDBK) cells is considerably limited. In this study, we have shown that siRNA-mediated depletion of TRIM5α, a [...] Read more.
The human immunodeficiency virus 1 (HIV-1)-based lentivirus has been widely used for genetic modification. However, the efficiency of lentiviral-based gene modification in Madin–Darby bovine kidney (MDBK) cells is considerably limited. In this study, we have shown that siRNA-mediated depletion of TRIM5α, a restriction factor in HIV-1 infection, can dramatically enhance HIV-1 infection in MDBK cells. Furthermore, we generated a doxycycline-inducible Cas9-overexpressing MDBK cell line (MDBK-iCas9) suitable for CRISPR/Cas9-mediated editing. On this basis, we created a TRIM5α knock-out MDBK-iCas9 cell line MDBK-iCas9TRIM5α−/− without additional genome insertions by combining sgRNA transfection and single-cell cloning. We found that MDBK-iCas9TRIM5α−/− displayed greater permissiveness to lentivirus infection compared with MDBK-WT cells. Notably, we found that treatment with the chemical compound cyclosporine A, which directly interacts with cell factor cyclophilin A (CypA), could markedly increase the infectivity of lentivirus in both MDBK-iCas9TRIM5α−/− and MDBK-WT cell lines, suggesting that CypA functions independently with TRIM5α as an inhibitor of the lentivirus in bovine cells. Therefore, combining bovine TRIM5α and CypA targeting could remarkably enhance lentivirus infection. In conclusion, our findings highlight a promising gene engineering strategy for bovine cells that can surmount the significant barriers to investigating the interplay between bovine viruses and their host cells. Full article
(This article belongs to the Special Issue Pestivirus 2025)
Show Figures

Figure 1

14 pages, 1967 KiB  
Article
Genomic Evolution of White Spot Syndrome Virus in Shrimp: Insights from Transposon Dynamics
by Zhouquan Li, Guanghua Huang, Jingyi Zhang, Mingyou Li, Zhizhi Liu, Sihua Peng, Rui Wang and Dong Liu
Biology 2025, 14(6), 653; https://doi.org/10.3390/biology14060653 - 4 Jun 2025
Viewed by 529
Abstract
White spot syndrome virus (WSSV) has emerged as a significant threat to global shrimp aquaculture, causing economic losses because of its rapid spread and high mortality rates. This study aims to elucidate the genetic and evolutionary dynamics of WSSV through a comprehensive genome [...] Read more.
White spot syndrome virus (WSSV) has emerged as a significant threat to global shrimp aquaculture, causing economic losses because of its rapid spread and high mortality rates. This study aims to elucidate the genetic and evolutionary dynamics of WSSV through a comprehensive genome analysis. Utilizing 27 complete genome sequences sourced from public databases, this study investigates the genetic variability, potential recombination events, and evolutionary patterns of WSSV. Our results identified multiple genomic deletions, 14 novel single-nucleotide polymorphism sites, and variable number tandem repeats across different strains, underscoring the virus’s genetic diversity. A recombination event between freshwater and marine strains highlights a complex transmission pathway, potentially facilitated by aquaculture practices. A phylogenetic tree constructed using ancestral genes suggests that WSSV originated in Southeast Asia and subsequently globally spread, influenced by both natural and anthropogenic factors. Genomic shrinkage of the virus occurred in time series, while the host’s viral infection induced transposon transposition and insertion into the earlier virus genome to provide a basis for genomic shrinkage. Our research emphasizes the importance of advanced molecular characterization and evolutionary models of the virus in understanding the spread of viral pathogens in aquaculture environments. Full article
(This article belongs to the Special Issue Internal Defense System and Evolution of Aquatic Animals)
Show Figures

Figure 1

12 pages, 5734 KiB  
Article
The Requirement of Turkey Herpesvirus (HVT) Glycoprotein C During Natural Infection in Chickens and Turkeys
by Huai Xu, Widaliz Vega-Rodriguez, Kathrine Van Etten and Keith Jarosinski
Pathogens 2025, 14(6), 538; https://doi.org/10.3390/pathogens14060538 - 28 May 2025
Viewed by 2034
Abstract
The glycoprotein C (gC) of gallid alphaherpesvirus 2—better known as Marek’s disease (MD) virus (MDV)—and gallid alphaherpesvirus 3 is required for horizontal transmission in chickens. Since gC is conserved within the Alphaherpesvirinae subfamily, we hypothesized that gC was also essential for the horizontal [...] Read more.
The glycoprotein C (gC) of gallid alphaherpesvirus 2—better known as Marek’s disease (MD) virus (MDV)—and gallid alphaherpesvirus 3 is required for horizontal transmission in chickens. Since gC is conserved within the Alphaherpesvirinae subfamily, we hypothesized that gC was also essential for the horizontal transmission of meleagrid alphaherpesvirus 1 (MeAHV1) or turkey herpesvirus (HVT). To test this hypothesis, we generated a fluorescent protein-tagged clone of recombinant (r)HVT (vHVT47G), removed the open reading frame of HVT gC from the genome (vHΔgC), and rescued the deletion by inserting an HA-epitope tagged HVT gC (vHΔgC-R) to test their ability to transmit in chickens and turkeys. We also tested whether MDV gC could compensate for HVT gC during transmission, where HVT gC was replaced with MDV gC (vH-MDVgC). Although all viruses replicated in chickens, none spread from chicken to chicken. However, when tested in turkeys, all viruses except vHΔgC transmitted from turkey to turkey. Importantly, the rescuent virus (vHΔgC-R) and HVT expressing MDV gC (vH-MDVgC) rescued transmission, showing that HVT gC is required and MDV gC can compensate for HVT gC for turkey-to-turkey transmission. These data confirm the host-specific transmission of HVT in turkeys and suggest that the essential function of alphaherpesvirus gC proteins is conserved. This information can be exploited while generating future vaccines against MD that will affect the poultry industry worldwide. Full article
(This article belongs to the Special Issue Current Challenges in Veterinary Virology)
Show Figures

Figure 1

17 pages, 842 KiB  
Review
Recombinant Sendai Virus Vectors as Novel Vaccine Candidates Against Animal Viruses
by Álex Gómez and Ramsés Reina
Viruses 2025, 17(5), 737; https://doi.org/10.3390/v17050737 - 21 May 2025
Viewed by 670
Abstract
Vaccination plays a pivotal role in the control and prevention of animal infectious diseases. However, no efficient and safe universal vaccines are currently registered for major pathogens such as influenza A virus, foot-and-mouth disease virus (FMDV), simian immunodeficiency virus (SIV), and small ruminant [...] Read more.
Vaccination plays a pivotal role in the control and prevention of animal infectious diseases. However, no efficient and safe universal vaccines are currently registered for major pathogens such as influenza A virus, foot-and-mouth disease virus (FMDV), simian immunodeficiency virus (SIV), and small ruminant lentiviruses (SRLV). Here, we review the development of Sendai virus (SeV) vectors as a promising vaccine platform for animal diseases. Recombinant SeV vectors (rSeVv) possess several key features that make them highly suitable for developing vaccination strategies: (1) SeV has exclusively cytoplasmic replication cycle, therefore incapable of transforming host cells by integrating into the cellular genome, (2) rSeVv can accommodate large foreign gene/s inserts (~5 kb) with strong but adjustable transgene expression, (3) can be propagated to high titers in both embryonated chicken eggs and mammalian cell lines, (4) exhibits potent infectivity across a broad range of mammalian cells from different animals species, (5) undergo transient replication in the upper and lower respiratory tracts of non-natural hosts, (6) has not been associated with disease in pigs, non-humans primates, and small ruminants, ensuring a favorable safety profile, and (7) induce a robust innate and cellular immune responses. Preclinical and clinical studies using rSeVv-based vaccines against influenza A virus, FMDV, SIV, and SRLV have yielded promising results. Therefore, this review highlights the potential of rSeVv-based vaccine platforms as a valuable strategy for combating animal viruses. Full article
(This article belongs to the Special Issue Advances in Endemic and Emerging Viral Diseases in Livestock)
Show Figures

Figure 1

16 pages, 861 KiB  
Article
Genomic Size Is Critical to Guarantee the Genomic Stability of Non-Replicative HSV1 Vectors
by Justine Basset, Alexandra Seraffin, Julien Ratelade, Yohann Dickx, Tomasz Benedyk, Grzegorz Sarek, Teddy Jégu and Alberto L. Epstein
Int. J. Mol. Sci. 2025, 26(10), 4941; https://doi.org/10.3390/ijms26104941 - 21 May 2025
Viewed by 421
Abstract
Non-replicative herpes simplex virus type 1 (nrHSV-1) vectors are promising delivery vehicles for gene therapy due to their large DNA payload capacity and ability to infect a broad range of cell types. However, the genomic deletions made to generate such nrHSV-1 vectors can [...] Read more.
Non-replicative herpes simplex virus type 1 (nrHSV-1) vectors are promising delivery vehicles for gene therapy due to their large DNA payload capacity and ability to infect a broad range of cell types. However, the genomic deletions made to generate such nrHSV-1 vectors can result in undersized genomes that trigger genomic instability—including rearrangements and size extensions—compromising their therapeutic potential. This study investigates the stabilization of undersized nrHSV-1 vectors through the insertion of stuffer DNA segments. We assess genomic stability, productivity, toxicity, and transgene expression in vitro and in vivo. Our findings demonstrate that nrHSV-1 can accommodate variations in genome size up to 5–6% and highlight the importance of maintaining a genome size close to that of the wild-type HSV-1 for enhanced genomic stability and sustained transgene expression without adverse effects. This strategy offers a promising approach for optimizing nrHSV-1 vectors for clinical applications. Full article
(This article belongs to the Special Issue Virus Engineering and Applications: 3rd Edition)
Show Figures

Figure 1

15 pages, 6831 KiB  
Article
Attenuation of a Virulent Porcine Deltacoronavirus Strain DHeB1 via Serial Passage in LLC-PK1 Cells
by Yuhan Zhang, Kang Liu, Longfei Chen, Meng Yuan, Hongyu Lu, Shaobo Xiao and Liurong Fang
Viruses 2025, 17(5), 695; https://doi.org/10.3390/v17050695 - 12 May 2025
Viewed by 486
Abstract
Porcine deltacoronavirus (PDCoV) is a newly discovered enteropathogenic coronavirus primarily responsible for diarrhea and mortality in piglets, with the potential to infect humans, thereby posing a significant threat to both human health and the global pig industry. Currently, there is no commercially available [...] Read more.
Porcine deltacoronavirus (PDCoV) is a newly discovered enteropathogenic coronavirus primarily responsible for diarrhea and mortality in piglets, with the potential to infect humans, thereby posing a significant threat to both human health and the global pig industry. Currently, there is no commercially available live-attenuated vaccine for PDCoV. In this study, an isolated virulent PDCoV strain, DHeB1, was continuously passaged in LLC-PK1 cells for up to 110 passages. The virus growth kinetics in cell culture and complete genome sequences of various passages (F11, F40, F70, F90, and F110) were determined. The results indicated significant increases in virus titers at passages F40 and F90. Sequence analysis revealed that only a few single-nucleotide mutations (some of which resulted in amino acid changes) and one nucleotide insertion were observed throughout successive passages. Notably, the eight and seven amino acid mutations that emerged in F40 and F70, respectively, remained stable in subsequent passages and were predominantly located in the S glycoprotein. The pathogenicity of F11, F40, F70, and F90 was assessed in 5-day-old piglets, revealing markedly reduced clinical symptoms, histopathological lesions, and intestinal PDCoV antigen distributions in piglets inoculated with F70 or F90. Importantly, F90 exhibited little to no virulence in piglets. The immunogenicity of F70, F90, and F110 was further evaluated in weaned piglets, with results indicating that the neutralizing antibody titers induced by F70 and F90 were comparable and significantly higher than those induced by F110. Collectively, these findings suggest that the PDCoV strain DHeB1 has been attenuated and can be used to develop a live-attenuated vaccine against PDCoV. Full article
(This article belongs to the Special Issue Porcine Viruses 2025)
Show Figures

Figure 1

19 pages, 4600 KiB  
Article
The Junction Between nsp1β and nsp2 in the Porcine Reproductive and Respiratory Syndrome Virus Genome Is a New Site for the Insertion and Expression of Foreign Genes
by Changguang Xiao, Yafang Lin, Hailong Zhang, Zongjie Li, Ke Liu, Beibei Li, Donghua Shao, Yafeng Qiu, Zhiyong Ma and Jianchao Wei
Viruses 2025, 17(5), 656; https://doi.org/10.3390/v17050656 - 30 Apr 2025
Viewed by 426
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is considered a promising viral vector for the expression and delivery of foreign genes for the development of a new generation of multi-valent vaccines against PRRSV and other porcine viruses, as well as for analyses of [...] Read more.
Porcine reproductive and respiratory syndrome virus (PRRSV) is considered a promising viral vector for the expression and delivery of foreign genes for the development of a new generation of multi-valent vaccines against PRRSV and other porcine viruses, as well as for analyses of the immune response against PRRSV and anti-PRRSV component screening. In the present study, the junction site between nsp1β and nsp2 in the PRRSV genome was tested for the insertion and expression of foreign genes. Three foreign genes, including eGFP, iLOV3, and TEVp, were inserted into the intergenic junction between nsp1β and nsp2 and expressed by the respective recombinant PRRSVs (rPRRSV-SH01-eGFP, rPRRSV-SH01-iLOV3, and rPRRSV-SH01-TEVp) in vitro in mammalian cells. Analysis of the growth kinetics of the rescued recombinant PRRSVs showed no significant differences between the recombinant PRRSVs and their parental viruses. The inserted genes were consistently present in the viral genome during serial passage in vitro (for at least 20 passages). In addition, rPRRSV-SH01-eGFP can be used as a reporter virus for rapid detection of neutralizing antibodies against PRRSV through a fluorescent focus unit reduction-based assay. These data demonstrate that the junction between nsp1β and nsp2 is a new site that is suitable for the insertion and expression of foreign genes, providing a new option to express and deliver foreign genes using PRRSV-based vectors for different purposes, such as the development of multi-valent vaccines against PRRSV and other porcine viruses. Full article
(This article belongs to the Special Issue Porcine Viruses 2025)
Show Figures

Figure 1

51 pages, 1390 KiB  
Review
Navigating the Purification Process: Maintaining the Integrity of Replication-Competent Enveloped Viruses
by Adrian Schimek, Judy King Man Ng and Jürgen Hubbuch
Vaccines 2025, 13(5), 444; https://doi.org/10.3390/vaccines13050444 - 23 Apr 2025
Viewed by 1549
Abstract
Replication-competent virus particles hold significant therapeutic potential in application as oncolytic viruses or cancer vaccines. Ensuring the viral integrity of these particles is crucial for their infectivity, safety, and efficacy. Enveloped virus particles, in particular, offer large gene insert capacities and customizable target [...] Read more.
Replication-competent virus particles hold significant therapeutic potential in application as oncolytic viruses or cancer vaccines. Ensuring the viral integrity of these particles is crucial for their infectivity, safety, and efficacy. Enveloped virus particles, in particular, offer large gene insert capacities and customizable target specificity. However, their sensitivity to environmental factors presents challenges in bioprocessing, potentially compromising high quality standards and cost-effective production. This review provides an in-depth analysis of the purification process steps for replication-competent enveloped virus particles, emphasizing the importance of maintaining viral integrity. It evaluates bioprocessing methods from cell culture harvest to final sterile filtration, including centrifugation, chromatographic, and filtration purification techniques. Furthermore, the manuscript delves into formulation and storage strategies necessary to preserve the functional and structural integrity of virus particles, ensuring their long-term stability and therapeutic efficacy. To assess the impact of process steps on particles and determine their quality and integrity, advanced analytical methods are required. This review evaluates commonly used methods for assessing viral integrity, such as infectious titer assays, total virus particle quantification, and structural analysis. By providing a comprehensive overview of the current state of bioprocessing for replication-competent enveloped virus particles, this review aims to guide researchers and industry professionals in developing robust and efficient purification processes. The insights gained from this analysis will contribute to the advancement of virus-based therapeutics, ultimately supporting the development of safe, effective, and economically viable treatments for various diseases. Full article
(This article belongs to the Special Issue Cancer Vaccines 3.0)
Show Figures

Figure 1

21 pages, 2347 KiB  
Article
Comparison of the L3-23K and L5-Fiber Regions for Arming the Oncolytic Adenovirus Ad5-Delta-24-RGD with Reporter and Therapeutic Transgenes
by Aleksei A. Stepanenko, Anastasiia O. Sosnovtseva, Marat P. Valikhov, Anastasiia A. Vasiukova, Olga V. Abramova, Anastasiia V. Lipatova, Gaukhar M. Yusubalieva and Vladimir P. Chekhonin
Int. J. Mol. Sci. 2025, 26(8), 3700; https://doi.org/10.3390/ijms26083700 - 14 Apr 2025
Viewed by 631
Abstract
The insertion of a transgene downstream of the L3-23K or L5-Fiber region was reported as a vital strategy for arming E3 non-deleted oncolytic adenoviruses. However, depending on the percentage of codons with G/C at the third base position (GC3%) and the type of [...] Read more.
The insertion of a transgene downstream of the L3-23K or L5-Fiber region was reported as a vital strategy for arming E3 non-deleted oncolytic adenoviruses. However, depending on the percentage of codons with G/C at the third base position (GC3%) and the type of splicing acceptor, an insert downstream of the L5-Fiber region may substantially affect virus fitness. Since the insertion of transgenes downstream of the L3-23K and L5-Fiber regions has never been compared in terms of their expression levels and impact on virus fitness, we assessed the total virus yield, cytolytic efficacy, and plaque size of Ad5-delta-24-RGD (Ad5Δ24RGD) armed with EGFP, FLuc, the suppressor of RNA silencing p19, soluble wild-type human/mouse and high-affinity human programmed cell death receptor-1 (PD-1/PDCD1) ectodomains, and soluble human hyaluronidase PH20/SPAM1. The insertion of transgenes downstream of the L3-23K region ensures their production at considerably higher levels. However, the insertion of transgenes downstream of either region differentially and unpredictably affects the oncolytic potency of Ad5Δ24RGD, which cannot be explained by GC3% or expression level alone. Surprisingly, the expression of the human and mouse PD-1 ectodomains with 83.1% and 70.1% GC3%, respectively, does not affect cytolytic efficacy but increases the plaque size in a cell line-dependent manner. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

22 pages, 12983 KiB  
Article
Oncolytic Vaccinia Virus Armed with GM-CSF and IL-7 Enhances Antitumor Immunity in Pancreatic Cancer
by Wenyi Yan, Yujing Xuan, Ruimin Wang, Ziyan Huan, Yu Guo, Huilin Dun, Lihua Xu, Ruxia Han, Xianlei Sun, Lingling Si, Nicholas Robert Lemoine, Yaohe Wang and Pengju Wang
Biomedicines 2025, 13(4), 882; https://doi.org/10.3390/biomedicines13040882 - 5 Apr 2025
Viewed by 826
Abstract
Objectives: Pancreatic cancer remains a therapeutic challenge due to its immunosuppressive microenvironment and treatment resistance. This study aimed to develop a novel recombinant oncolytic vaccinia virus (VVL-GL7) co-expressing granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-7 (IL-7), designed to enhance anti-tumor immunity and synergize with [...] Read more.
Objectives: Pancreatic cancer remains a therapeutic challenge due to its immunosuppressive microenvironment and treatment resistance. This study aimed to develop a novel recombinant oncolytic vaccinia virus (VVL-GL7) co-expressing granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-7 (IL-7), designed to enhance anti-tumor immunity and synergize with immune checkpoint inhibitors. Methods: VVL-GL7 was constructed through CRISPR/Cas9-mediated knockout of TK and A49 genes, combined with the simultaneous insertion of dual cytokine-encoding cassettes. Anti-tumor efficacy was evaluated in vitro and in vivo using C57BL/6 mouse and Syrian hamster pancreatic cancer models. Comprehensive immune profiling evaluated CD8+ T-cell and macrophage infiltration dynamics while simultaneously assessing memory T-cell differentiation patterns using flow cytometry. Preclinical combination studies of VVL-GL7 and the PD-1 immune checkpoint inhibitor were systematically evaluated in a syngeneic pancreatic cancer model. Results: VVL-GL7 exhibited potent oncolytic activity, inducing significant tumor regression in both preclinical models. VVL-GL7 therapy significantly augmented CD8+ T-cell and macrophage infiltration within the tumor microenvironment, while concomitantly driving memory T-cell differentiation. The synergistic effects of VVL-GL7 and the PD-1 blockade further improved therapeutic outcomes, resulting in significantly higher tumor remission rates compared to monotherapy and achieving complete tumor regression in pancreatic cancer models. Conclusions: VVL-GL7 reprograms the immunosuppressive tumor microenvironment and synergizes with anti-PD-1 antibodies to overcome resistance in pancreatic cancer. Full article
(This article belongs to the Special Issue Oncolytic Viruses and Combinatorial Immunotherapy for Cancer)
Show Figures

Figure 1

13 pages, 2394 KiB  
Article
Molecular Epidemiology of SARS-CoV-2 in Bangladesh
by Abu Sayeed Mohammad Mahmud, Patiyan Andersson, Dieter Bulach, Sebastian Duchene, Anders Goncalves da Silva, Chantel Lin, Torsten Seemann, Benjamin P. Howden, Timothy P. Stinear, Tarannum Taznin, Md. Ahashan Habib, Shahina Akter, Tanjina Akhtar Banu, Md. Murshed Hasan Sarkar, Barna Goswami, Iffat Jahan and Md. Salim Khan
Viruses 2025, 17(4), 517; https://doi.org/10.3390/v17040517 - 1 Apr 2025
Viewed by 733
Abstract
Mutation is one of the most important drivers of viral evolution and genome variability, allowing viruses to potentially evade host immune responses and develop drug resistance. In the context of COVID-19, local genomic surveillance of circulating virus populations is therefore critical. The goals [...] Read more.
Mutation is one of the most important drivers of viral evolution and genome variability, allowing viruses to potentially evade host immune responses and develop drug resistance. In the context of COVID-19, local genomic surveillance of circulating virus populations is therefore critical. The goals of this study were to describe the distribution of different SARS-CoV-2 lineages, assess their genomic differences, and infer virus importation events in Bangladesh. We individually aligned 1965 SARS-CoV-2 genome sequences obtained between April 2020 and June 2021 to the Wuhan-1 sequence and used the resulting multiple sequence alignment as input to infer a maximum likelihood phylogenetic tree. Sequences were assigned to lineages as described by the hierarchical Pangolin nomenclature scheme. We built a phylogeographic model using the virus population genome sequence variation to infer the number of virus importation events. We observed thirty-four lineages and sub-lineages in Bangladesh, with B.1.1.25 and its sub-lineages D.* (979 sequences) dominating, as well as the Beta variant of concern (VOC) B.1.351 and its sub-lineages B.1.351.* (403 sequences). The earliest B.1.1.25/D.* lineages likely resulted from multiple introductions, some of which led to larger outbreak clusters. There were 570 missense mutations, 426 synonymous mutations, 18 frameshift mutations, 7 deletions, 2 insertions, 10 changes at start/stop codons, and 64 mutations in intergenic or untranslated regions. According to phylogeographic modeling, there were 31 importation events into Bangladesh (95% CI: 27–36). Like elsewhere, Bangladesh has experienced distinct waves of dominant lineages during the COVID-19 pandemic; this study focuses on the emergence and displacement of the first wave-dominated lineage, which contains mutations seen in several VOCs and may have had a transmission advantage over the extant lineages. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

12 pages, 8447 KiB  
Review
p17 Variant Expression and Evolution in HIV-Mediated Lymphomagenesis
by Nicoleta Arnaut, Mark Slevin, Claudia Bănescu, Mihaela Straistă, Arnaldo Caruso and Francesca Caccuri
Viruses 2025, 17(4), 463; https://doi.org/10.3390/v17040463 - 24 Mar 2025
Viewed by 551
Abstract
Non-Hodgkin lymphoma (NHL) remains the most common malignancy and cause of death among human immunodeficiency virus (HIV-1)-positive individuals, its prevalence remaining even after the introduction of combined antiretroviral therapy (cART). The mechanisms underlying B-cell tumorigenesis are still poorly understood; however, recently, a key [...] Read more.
Non-Hodgkin lymphoma (NHL) remains the most common malignancy and cause of death among human immunodeficiency virus (HIV-1)-positive individuals, its prevalence remaining even after the introduction of combined antiretroviral therapy (cART). The mechanisms underlying B-cell tumorigenesis are still poorly understood; however, recently, a key role for p17 variants (vp17s) in lymphoma development has been clearly elucidated. Here, we describe findings on lymphomagenic vp17s and discuss their potential role as diagnostic and prognostic markers that could be used to predict the HIV-positive patients at higher risk of developing lymphoma. Specifically, vp17s endowed with amino acid (aa) insertions in their C-terminal region, at positions 114–115 (Glu-Lys), 117–118 (Ala–Ala) and 125–126 (Gly–Asp), were found to be significantly more prevalent in HIV-positive individuals with lymphoma as compared to those without. Alterations in the primary aa sequences destabilize the protein, exposing a previously hidden functional epitope which interacts with protease-activated receptor-1 (PAR-1) and stimulates the protein kinase B pathway, conferring oncogenic potential to vp17s and possibly contributing to lymphomagenesis. Therefore, ultradeep sequencing technologies, such as next-generation sequencing, could serve as a valuable screening tool for identifying and monitoring the HIV-positive patients at higher risk of developing lymphoma, paving the way for targeted preventive intervention strategies. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

Back to TopTop