The Impact of Oncogenic Viruses on Cancer Development: A Narrative Review
Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Information Sources and Search Strategy
2.2. Eligibility Criteria
2.3. Selection of Sources of Evidence
2.4. Data Charting Process
2.5. Synthesis of Results
2.6. Compliance with PRISMA Guidelines
3. Oncovirus: The Correlation Between Viral Infection and Cancer Development
3.1. Carcinogenesis
3.2. Impact on the Cell Cycle
3.3. Viral Infection and Cell Transformation
3.4. Inflammation
3.5. The Role of Immunocompetent Cells in Virus-Induced Inflammation and Oncogenesis
4. Epidemiology of Virus-Induced Human Cancers
4.1. HPV and Its Relationship with Cancer
4.2. HBV, HCV, and Hepatocellular Carcinoma
4.3. EBV and Lymphomas
4.4. HTLV-1 and Adult T-Cell Leukemia/Lymphoma
4.5. HHV-8 and Kaposi’s Sarcoma
4.6. Merkel Cell Polyomavirus Associated with Merkel Cell Carcinoma
5. Possible New Associations Between Viruses and Cancer
5.1. Trichodysplasia Spinulosa Cell Polyomavirus (TSPyV) and Its Association with Skin Cancer
5.2. WU (WUPyV) and KI (KIPyV) Cell Polyomavirus and Their Association with Lung Cancer
5.3. John Cunningham Cell Polyomavirus (JCPyV) and Its Association with Colorectal Cancer
5.4. Hepatitis E Virus (HEV) and Its Association with Hepatocellular Carcinoma
5.5. Bovine Papillomavirus (BPV) and Its Association with Bladder Cancer in Humans
5.6. Hepatitis G Virus (HGV/GBV-C) and Its Association with Non-Hodgkin’s Lymphoma
5.7. Torque Teno Virus (TTV) and Its Association with Hepatocellular Carcinoma
6. Challenges
7. Treatment
8. Perspective
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
EBV | Epstein-Barr virus (EBV) |
HPV | human papillomavirus (HPV) |
HBV | hepatitis B virus |
HCV | hepatitis C virus |
KSHV | Kaposi’s sarcoma-associated herpesvirus |
HHV-8 | human herpesvirus 8 |
HTLV-1 | human T-cell lymphotropic virus |
MCPyV | Merkel cell polyomavirus |
IARC | International Agency for Research on Cancer |
OV | oncoviruses |
ATLL | adult T-cell leukemia/lymphoma |
CYPs | cytochrome P450 enzymes |
MPC | mitochondrial pyruvate transporter |
TME | tumor microenvironment |
CAFs | cancer-associated fibroblasts |
CDKs | cyclins and cyclin-dependent kinases |
DNMTs | E-cadherin through overexpression of DNA methyltransferases |
ROS | reactive oxygen species |
NF-κB | nuclear factor kappa B |
HIV/AIDS | human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) |
HBZ | leucine zipper |
KS | Kaposi’s sarcoma |
HEV | hepatitis E Virus |
BPV | bovine papillomavirus |
TTV | torque teno virus |
HGV/GBV-C | hepatitis G virus |
CAR-T | chimeric antigen receptor T-cell |
HCC | hepatocellular carcinoma |
References
- Rous, P.A. Sarcoma of the fowl transmissible by an agent separable from the tumor cells. J. Exp. Med. 1911, 13, 397–411. [Google Scholar] [CrossRef] [PubMed]
- Epstein, M.A.; Achong, B.G.; Barr, Y.M. Virus Particles in Cultured Lymphoblasts from Burkitt’s Lymphoma. Lancet 1964, 1, 702–703. [Google Scholar] [CrossRef] [PubMed]
- de Martel, C.; Georges, D.; Bray, F.; Ferlay, J.; Clifford, G.M. Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis. Lancet Glob. Health 2020, 8, e180–e190. [Google Scholar] [CrossRef] [PubMed]
- Schiller, J.T.; Lowy, D.R. An Introduction to Virus Infections and Human Cancer. Recent Results Cancer Res. 2021, 217, 1–11. [Google Scholar] [CrossRef]
- Magon, K.L.; Parish, J.L. From infection to cancer: How DNA tumour viruses alter host cell central carbon and lipid metabolism. Open Biol. 2021, 11, 210004. [Google Scholar] [CrossRef]
- Singh, D.; Vignat, J.; Lorenzoni, V.; Eslahi, M.; Ginsburg, O.; Lauby-Secretan, B.; Arbyn, M.; Basu, P.; Bray, F.; Vaccarella, S. Global estimates of incidence and mortality of cervical cancer in 2020: A baseline analysis of the WHO Global Cervical Cancer Elimination Initiative. Lancet Glob. Health 2023, 11, e197–e206. [Google Scholar] [CrossRef]
- Nelson, C.W.; Mirabello, L. Human papillomavirus genomics: Understanding carcinogenicity. Tumour Virus Res. 2023, 15, 200258. [Google Scholar] [CrossRef]
- Lupo, J.; Truffot, A.; Andreani, J.; Habib, M.; Epaulard, O.; Morand, P.; Germi, R. Virological Markers in Epstein-Barr Virus-Associated Diseases. Viruses 2023, 15, 656. [Google Scholar] [CrossRef]
- Blumenthal, M.J.; Cornejo Castro, E.M.; Whitby, D.; Katz, A.A.; Schäfer, G. Evidence for altered host genetic factors in KSHV infection and KSHV-related disease development. Rev. Med. Virol. 2020, 31, e2160. [Google Scholar] [CrossRef]
- D’souza, S.; Lau, K.C.; Coffin, C.S.; Patel, T.R. Mecanismos moleculares do carcinoma hepatocelular induzido pela hepatite viral. Mundo J. Gastroenterol. 2020, 26, 5759–5783. [Google Scholar] [CrossRef]
- Zuo, X.; Zhou, R.; Yang, S.; Ma, G. HTLV-1 persistent infection and ATLL oncogenesis. J. Med. Virol. 2022, 95, e28424. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.M.; Cushman, C.H.; DeCaprio, J.A. Merkel Cell Polyomavirus: Oncogenesis in a Stable Genome. Viruses 2022, 14, 58. [Google Scholar] [CrossRef] [PubMed]
- Kusakabe, M.; Taguchi, A.; Sone, K.; Mori, M.; Osuga, Y. Carcinogenesis and management of human papillomavirus-associated cervical cancer. Int. J. Clin. Oncol. 2023, 28, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Demarco, M.; Hyun, N.; Carter-Pokras, O.; Raine-Bennett, T.R.; Cheung, L.; Chen, X.; Hammer, A.; Campos, N.; Kinney, W.; Gage, J.C.; et al. A study of type-specific HPV natural history and implications for contemporary cervical cancer screening programs. eClinicalMedicine 2020, 22, 100293. [Google Scholar] [CrossRef]
- Narisawa-Saito, M.; Kiyono, T. Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: Roles of E6 and E7 proteins. Cancer Sci. 2007, 98, 1505–1511. [Google Scholar] [CrossRef]
- Sampaio, G.C.L.; Ribeiro, J.R.; de Almeida, C.N.; Boa-Sorte, N.; Galvao-Castro, B.; Grassi, M.F.R.; Dias, C.M.C.C. Human T Cell Lymphotropic Virus Type 1 Global Prevalence Associated with the Human Development Index: Systematic Review with Meta-Analysis. AIDS Res. Hum. Retroviruses 2023, 39, 145–165. [Google Scholar] [CrossRef]
- Ghezeldasht, S.; Blackbourn, D.; Mosavat, A.; Rezaee, S. Pathogenicity and virulence of human T lymphotropic virus type-1 (HTLV-1) in oncogenesis: Adult T-cell leukemia/lymphoma (ATLL). Crit. Rev. Clin. Lab. Sci. 2023, 60, 189–211. [Google Scholar] [CrossRef]
- Zhao, T.; Wang, Z.; Fang, J.; Cheng, W.; Zhang, Y.; Huang, J.; Xu, L.; Gou, H.; Zeng, L.; Jin, Z.; et al. HTLV-1 activates YAP via NF-κB/p65 to promote oncogenesis. Proc. Natl. Acad. Sci. USA 2022, 119, e2115316119. [Google Scholar] [CrossRef]
- Ma, G.; Yasunaga, J.; Matsuoka, M. Multifaceted functions and roles of HBZ in HTLV-1 pathogenesis. Retrovirology 2016, 13, 16. [Google Scholar] [CrossRef]
- Mohanty, S.; Harhaj, E.W. Mechanisms of Oncogenesis by HTLV-1 Tax. Pathogens 2020, 9, 543. [Google Scholar] [CrossRef]
- Arora, R.; Gupta, K.; Vijaykumar, A.; Krishna, S. Detectando o Poliomavírus Celular de Merkel em Tumores de Merkel. Front. Mol. Biosci. 2020, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Shuda, M.; Feng, H.; Kwun, H.J.; Rosen, S.T.; Gjoerup, O.; Moore, P.S.; Chang, Y. Antigen mutations are a human tumor-specific signature for Merkel cell polyomavirus. Proc. Natl. Acad. Sci. USA 2008, 105, 16272–16277. [Google Scholar] [CrossRef] [PubMed]
- Harms, P.W.; Harms, K.L.; Moore, P.S.; DeCaprio, J.A.; Nghiem, P.; Wong, M.K.K.; Brownell, I.; International Workshop on Merkel Cell Carcinoma Research (IWMCC) Working Group. The biology and treatment of Merkel cell carcinoma: Current understanding and research priorities. Nat. Rev. Clin. Oncol. 2018, 15, 763–776. [Google Scholar] [CrossRef]
- Pitot, H.C. The molecular biology of carcinogenesis. Cancer 1993, 72, 962–970. [Google Scholar] [CrossRef]
- Yang, J.; Shay, C.; Saba, N.F.; Teng, Y. Cancer metabolism and carcinogenesis. Exp. Hematol. Oncol. 2024, 13, 10. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.W.; Zheng, M.; Fan, H.Y.; Liang, X.H.; Tang, Y.L. Ultraviolet (UV) radiation: A double-edged sword in cancer development and therapy. Mol Biomed. 2024, 5, 49. [Google Scholar] [CrossRef]
- Zhou, C.; Tuong, Z.K.; Frazer, I.H. Papillomavirus Immune Evasion Strategies Target the Infected Cell and the Local Immune System. Front. Oncol. 2019, 9, 682. [Google Scholar] [CrossRef]
- Yu, X.; Zhao, H.; Wang, R.; Chen, Y.; Ouyang, X.; Li, W.; Peng, A. Cancer epigenetics: From laboratory studies and clinical trials to precision medicine. Cell Death Discov. 2024, 10, 28. [Google Scholar] [CrossRef]
- Abu-Bakar, A.; Tan, B.H.; Halim, H.; Ramli, S.; Pan, Y.; Ong, C.E. Cytochromes P450: Role in Carcinogenesis and Relevance to Cancers. Curr. Drug Metab. 2022, 23, 355–373. [Google Scholar] [CrossRef]
- Sarmiento-Salinas, F.L.; Perez-Gonzalez, A.; Acosta-Casique, A.; Ix-Ballote, A.; Diaz, A.; Treviño, S.; Rosas-Murrieta, N.H.; Millán-Perez-Peña, L.; Maycotte, P. Reactive oxygen species: Role in carcinogenesis, cancer cell signaling and tumor progression. Life Sci. 2021, 284, 119942. [Google Scholar] [CrossRef]
- Majumder, D.; Nath, P.; Debnath, R.; Maiti, D. Understanding the complicated relationship between antioxidants and carcinogenesis. J. Biochem. Mol. Toxicol. 2021, 35, e22643. [Google Scholar] [CrossRef] [PubMed]
- Vaupel, P.; Multhoff, G. Revisiting the Warburg effect: Historical dogma versus current understanding. J. Physiol. 2021, 599, 1745–1757. [Google Scholar] [CrossRef] [PubMed]
- Iheagwam, F.N.; Iheagwam, O.T.; Odiba, J.K.; Ogunlana, O.O.; Chinedu, S.N. Cancer and Glucose Metabolism: A Review on Warburg Mechanisms. Trop. J. Nat. Prod. Res. 2022, 6, 661–667. Available online: https://tjnpr.org/index.php/home/article/view/42 (accessed on 11 February 2025).
- Mahout, M.; Schwartz, L.; Attal, R.; Bakkar, A.; Peres, S. Metabolic modelling links Warburg effect to collagen formation, angiogenesis and inflammation in the tumoral stroma. PLoS ONE 2024, 19, e0313962. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.S.; Yip, Y.S.; Lim, E.K.Y.; Wahli, W.; Tan, N.S. PPARs and Tumor Microenvironment: The Emerging Roles of the Metabolic Master Regulators in Tumor Stromal-Epithelial Crosstalk and Carcinogenesis. Cancers 2021, 13, 2153. [Google Scholar] [CrossRef]
- Łukasik, P.; Załuski, M.; Gutowska, I. Cyclin-Dependent Kinases (CDK) and Their Role in Diseases Development-Review. Int. J. Mol. Sci. 2021, 22, 2935. [Google Scholar] [CrossRef]
- Chivukula, S.; Malkhed, V. The Role of CDK20 Protein in Carcinogenesis. Curr. Drug Targets 2023, 24, 790–796. [Google Scholar] [CrossRef]
- Yuan, K.; Wang, X.; Dong, H.; Min, W.; Hao, H.; Yang, P. Selective inhibition of CDK4/6: A safe and effective strategy for developing anticancer drugs. Acta Pharm. Sin. B 2021, 11, 30–54. [Google Scholar] [CrossRef]
- Correa, P.; Miller, M.J. Carcinogenesis, apoptosis and cell proliferation. Br. Med. Bull. 1998, 54, 151–162. [Google Scholar] [CrossRef]
- Fuentes-González, A.M.; Contreras-Paredes, A.; Manzo-Merino, J.; Lizano, M. The modulation of apoptosis by oncogenic viruses. Virol. J. 2013, 10, 182. [Google Scholar] [CrossRef]
- Hatano, Y.; Ideta, T.; Hirata, A.; Hatano, K.; Tomita, H.; Okada, H.; Shimizu, M.; Tanaka, T.; Hara, A. Virus-Driven Carcinogenesis. Cancers 2021, 13, 2625. [Google Scholar] [CrossRef] [PubMed]
- Akram, N.; Imran, M.; Noreen, M.; Ahmed, F.; Atif, M.; Fatima, Z.; Bilal Waqar, A. Oncogenic Role of Tumor Viruses in Humans. Viral Immunol. 2017, 30, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Leal-Esteban, L.C.; Fajas, L. Cell cycle regulators in cancer cell metabolism. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165715. [Google Scholar] [CrossRef] [PubMed]
- Bagga, S.; Bouchard, M.J. Cell cycle regulation during viral infection. Methods Mol. Biol. 2014, 1170, 165–227. [Google Scholar] [CrossRef]
- Cone, C.D., Jr. Unified theory on the basic mechanism of normal mitotic control and oncogenesis. J. Theor. Biol. 1971, 30, 151–181. [Google Scholar] [CrossRef]
- White, E. Regulation of the cell cycle and apoptosis by the oncogenes of adenovirus. Oncogene 2001, 20, 7836–7846. [Google Scholar] [CrossRef]
- Krump, N.A.; You, J. Molecular mechanisms of viral oncogenesis in humans. Nat. Rev. Microbiol. 2018, 16, 684–698. [Google Scholar] [CrossRef]
- Teruel, É.; Gruffat, H.; Tommasino, M.; Journo, C. Oncogenèse virale et instabilité génomique: La connexion centrosomale Viral oncogenesis and genomic instability: The centrosomal connection. Virologie 2019, 23, 304–320. (In French) [Google Scholar] [CrossRef]
- Vojtechova, Z.; Tachezy, R. The Role of miRNAs in Virus-Mediated Oncogenesis. Int. J. Mol. Sci. 2018, 19, 1217. [Google Scholar] [CrossRef]
- Hasham, K.; Ahmed, N.; Zeshan, B. Circulating microRNAs in oncogenic viral infections: Potential diagnostic biomarkers. SN Appl. Sci. 2020, 2, 442. [Google Scholar] [CrossRef]
- Kuss-Duerkop, S.K.; Westrich, J.A.; Pyeon, D. DNA Tumor Virus Regulation of Host DNA Methylation and Its Implications for Immune Evasion and Oncogenesis. Viruses 2018, 10, 82. [Google Scholar] [CrossRef] [PubMed]
- Ottria, L.; Candotto, V.; Cura, F.; Baggi, L.; Arcuri, C.; Nardone, M.; Carinci, F. HPV acting on E-cadherin, p53 and p16: Literature review. J. Biol. Regul. Homeost. Agents 2018, 32, 73–79. [Google Scholar] [PubMed]
- Charostad, J.; Astani, A.; Goudarzi, H.; Faghihloo, E. DNA methyltransferases in virus-associated cancers. Rev. Med. Virol. 2019, 29, e2022. [Google Scholar] [CrossRef] [PubMed]
- El-Bendary, M.; Nour, D.; Arafa, M.; Neamatallah, M. Methylation of tumour suppressor genes RUNX3, RASSF1A and E-Cadherin in HCV-related liver cirrhosis and hepatocellular carcinoma. Br. J. Biomed. Sci. 2020, 77, 35–40. [Google Scholar] [CrossRef]
- Vázquez-Ulloa, E.; Lizano, M.; Sjöqvist, M.; Olmedo-Nieva, L.; Contreras-Paredes, A. Deregulation of the Notch pathway as a common road in viral carcinogenesis. Ver. Med. Virol. 2018, 28, e1988. [Google Scholar] [CrossRef]
- Kontomanolis, E.N.; Koutras, A.; Syllaios, A.; Schizas, D.; Kalagasidou, S.; Pagkalos, A.; Fasoulakis, Z. Basic principles of molecular biology of cancer cell-Molecular cancer indicators. J. Buon 2021, 26, 1723–1734. [Google Scholar]
- Wyke, J.A. Oncogenic viruses. J. Pathol. 1981, 135, 39–85. [Google Scholar] [CrossRef]
- Warowicka, A.; Nawrot, R.; Broniarczyk, J.; Węglewska, M.; Goździcka-Józefiak, A. Wirusy onkogenne a nowotwory. Adv. Biochem. 2020, 66, 336–355. [Google Scholar] [CrossRef]
- Patil, M.R.; Bihari, A. A comprehensive study of p53 protein. J. Cell Biochem. 2022, 123, 1891–1937. [Google Scholar] [CrossRef]
- Galati, L.; Chiantore, M.V.; Marinaro, M.; Di Bonito, P. Human Oncogenic Viruses: Characteristics and Prevention Strategies-Lessons Learned from Human Papillomaviruses. Viruses 2024, 16, 416. [Google Scholar] [CrossRef]
- Mir, B.A.; Ahmad, A.; Farooq, N.; Priya, M.V.; Siddiqui, A.H.; Asif, M.; Manzoor, R.; Ishqi, H.M.; Alomar, S.Y.; Rahaman, P.F. Increased expression of HPV-E7 oncoprotein correlates with a reduced level of pRb proteins via high viral load in cervical cancer. Sci. Rep. 2023, 13, 15075. [Google Scholar] [CrossRef] [PubMed]
- Braun, J.A.; Herrmann, A.L.; Blase, J.I.; Frensemeier, K.; Bulkescher, J.; Scheffner, M.; Hoppe-Seyler, F. Effects of the antifungal agent ciclopirox in HPV-positive cancer cells: Repression of viral E6/E7 oncogene expression and induction of senescence and apoptosis. Int. J. Cancer 2020, 146, 461–474. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Zheng, J. Oncogenic virus-mediated cell fusion: New insights into initiation and progression of oncogenic viruses--related cancers. Cancer Lett. 2011, 303, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Liu, Y.; Wang, C.; Gan, R. Signaling pathways of EBV-induced oncogenesis. Cancer Cell Int. 2021, 21, 93. [Google Scholar] [CrossRef]
- Martin-Lluesma, S.; Schaeffer, C.; Robert, E.I.; Van Breugel, P.C.; Leupin, O.; Hantz, O.; Strubin, M. Hepatitis B virus X protein affects S phase progression leading to chromosome segregation defects by binding to damaged DNA binding protein 1. Hepatology 2008, 48, 1467–1476. [Google Scholar] [CrossRef]
- Xia, Y.; Cheng, X.; Li, Y.; Valdez, K.; Chen, W.; Liang, T.J. Hepatitis B Virus Deregulates the Cell Cycle to Promote Viral Replication and a Premalignant Phenotype. J. Virol. 2018, 92, e00722-18. [Google Scholar] [CrossRef]
- MacLennan, S.A.; Marra, M.A. Oncogenic Viruses and the Epigenome: How Viruses Hijack Epigenetic Mechanisms to Drive Cancer. Int. J. Mol. Sci. 2023, 24, 9543. [Google Scholar] [CrossRef]
- Tan, B.J.; Sugata, K.; Reda, O.; Matsuo, M.; Uchiyama, K.; Miyazato, P.; Satou, Y. HTLV-1 infection promotes excessive T cell activation and transformation into adult T cell leukemia/lymphoma. J. Clin. Investig. 2021, 134, 23. [Google Scholar] [CrossRef]
- Soliman, S.; Orlacchio, A.; Verginelli, F. Viral Manipulation of the Host Epigenome as a Driver of Virus-Induced Oncogenesis. Microorganisms 2021, 19, 1179. [Google Scholar] [CrossRef]
- Antropova, E.A.; Khlebodarova, T.M.; Demenkov, P.S.; Volianskaia, A.R.; Venzel, A.S.; Ivanisenko, N.V.; Ivanisenko, V.A. Reconstruction of the regulatory hypermethylation network controlling hepatocellular carcinoma development during hepatitis C viral infection. J. Integr. Bioinform. 2023, 20, 20230013. [Google Scholar] [CrossRef]
- Kandeel, M. Oncogenic Viruses-Encoded microRNAs and Their Role in the Progression of Cancer: Emerging Targets for Antiviral and Anticancer Therapies. Pharmaceuticals 2023, 16, 485. [Google Scholar] [CrossRef] [PubMed]
- Ali Syeda, Z.; Langden, S.S.S.; Munkhzul, C.; Lee, M.; Song, S.J. Regulatory Mechanism of MicroRNA Expression in Cancer. Int. J. Mol. Sci. 2020, 21, 1723. [Google Scholar] [CrossRef] [PubMed]
- Iizasa, H.; Kim, H.; Kartika, A.V.; Kanehiro, Y.; Yoshiyama, H. Role of Viral and Host microRNAs in Immune Regulation of Epstein-Barr Virus-Associated Diseases. Front. Immunol. 2020, 11, 498. [Google Scholar] [CrossRef]
- Multhoff, G.; Molls, M.; Radons, J. Chronic inflammation in cancer development. Front. Immunol. 2012, 2, 98. [Google Scholar] [CrossRef]
- Pyakurel, P.; Pak, F.; Mwakigonja, A.R.; Kaaya, E.; Biberfeld, P. KSHV/HHV-8 and HIV infection in Kaposi’s sarcoma development. Infect. Agents Cancer 2007, 2, 4. [Google Scholar] [CrossRef]
- Danforth, D.N. The Role of Chronic Inflammation in the Development of Breast Cancer. Cancers 2021, 13, 3918. [Google Scholar] [CrossRef]
- Chen, A.; Huang, H.; Fang, S.; Hang, Q. ROS: A “booster” for chronic inflammation and tumor metastasis. Biochim. Biophys. Acta Rev. Cancer 2024, 1879, 189175. [Google Scholar] [CrossRef]
- Barnes, P.J.; Karin, M. Nuclear factor-kappaB: A pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med. 1997, 336, 1066–1071. [Google Scholar] [CrossRef]
- Sabaawy, H.E.; Ryan, B.M.; Khiabanian, H.; Pine, S.R. JAK/STAT of all trades: Linking inflammation with cancer development, tumor progression and therapy resistance. Carcinogenesis 2021, 42, 1411–1419. [Google Scholar] [CrossRef]
- Sharma, B.R.; Kanneganti, T.D. NLRP3 inflammasome in cancer and metabolic diseases. Nat. Immunol. 2021, 22, 550–559. [Google Scholar] [CrossRef]
- Carbone, A.; Gloghini, A.; Caruso, A.; De Paoli, P.; Dolcetti, R. The impact of EBV and HIV infection on the microenvironmental niche underlying Hodgkin lymphoma pathogenesis. Int. J. Cancer 2017, 140, 1233–1245. [Google Scholar] [CrossRef] [PubMed]
- Harhaj, E.W.; Giam, C.Z. NF-κB signaling mechanisms in HTLV-1-induced adult T-cell leukemia/lymphoma. FEBS J. 2018, 285, 3324–3336. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.; Pim, D.; Banks, L. The role of the E6-p53 interaction in the molecular pathogenesis of HPV. Oncogene 1999, 18, 7690–7700. [Google Scholar] [CrossRef] [PubMed]
- Aguayo, F.; Perez-Dominguez, F.; Osorio, J.C.; Oliva, C.; Calaf, G.M. PI3K/AKT/mTOR Signaling Pathway in HPV-Driven Head and Neck Carcinogenesis: Therapeutic Implications. Biology 2023, 12, 672. [Google Scholar] [CrossRef]
- Sausen, D.G.; Poirier, M.C.; Spiers, L.M.; Smith, E.N. Mechanisms of T cell evasion by Epstein-Barr virus and implications for tumor survival. Front. Immunol. 2023, 14, 1289313. [Google Scholar] [CrossRef]
- Shapouri-Moghaddam, A.; Mohammadian, S.; Vazini, H.; Taghadosi, M.; Esmaeili, S.; Mardani, F.; Seifi, B.; Mohammadi, A.; Afshari, J.; Sahebkar, A. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 2018, 233, 6425–6440. [Google Scholar] [CrossRef]
- Vergadi, E.; Ieronymaki, E.; Lyroni, K.; Vaporidi, K.; Tsatsanis, C. Akt Signaling Pathway in Macrophage Activation and M1/M2 Polarization. J. Immunol. 2017, 198, 1006–1014. [Google Scholar] [CrossRef]
- Kerneur, C.; Cano, C.E.; Olive, D. Major pathways involved in macrophage polarization in cancer. Front. Immunol. 2022, 13, 1026954. [Google Scholar] [CrossRef]
- Yu, S.; Ge, H.; Li, S.; Qiu, H. Modulation of Macrophage Polarization by Viruses: Turning Off/On Host Antiviral Responses. Front. Microbiol. 2022, 13, 839585. [Google Scholar] [CrossRef]
- Kwon, Y.; Meyer, K.; Peng, G.; Chatterjee, S.; Hoft, D.F.; Ray, R. Hepatitis C Virus E2 Envelope Glycoprotein Induces an Immunoregulatory Phenotype in Macrophages. Hepatology 2019, 69, 1873–1884. [Google Scholar] [CrossRef]
- Jiang, J.; Tang, H. Mechanism of inhibiting type I interferon induction by hepatitis B virus X protein. Protein Cell 2010, 1, 1106–1117. [Google Scholar] [CrossRef] [PubMed]
- Pérez, S.; Rius-Pérez, S. Macrophage polarization and reprogramming in acute inflammation: A redox perspective. Antioxidants 2022, 11, 1394. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Fushida, S.; Yamamoto, Y.; Tsukada, T.; Kinoshita, J.; Oyama, K.; Miyashita, T.; Tajima, H.; Ninomiya, I.; Munesue, S.; et al. Tumor-associated macrophages of the M2 phenotype contribute to progression in gastric cancer with peritoneal dissemination. Gastric Cancer 2015, 19, 1052–1065. [Google Scholar] [CrossRef] [PubMed]
- Sousa, S.; Brion, R.; Lintunen, M.; Kronqvist, P.; Sandholm, J.; Mönkkönen, J.; Kellokumpu-Lehtinen, P.; Lauttia, S.; Tynninen, O.; Joensuu, H.; et al. Human breast cancer cells educate macrophages toward the M2 activation status. Breast Cancer Res. 2015, 17, 101. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, X.; Li, S.; Twelkmeyer, T.; Wang, W.; Zhang, S.; Wang, S.; Chen, J.; Jin, X.; Wu, Y.; et al. NKG2A is a NK cell exhaustion checkpoint for HCV persistence. Nat. Commun. 2019, 10, 1507. [Google Scholar] [CrossRef]
- Njiomegnie, G.; Read, S.; Fewings, N.; George, J.; McKay, F.; Ahlenstiel, G. Immunomodulation of the Natural Killer Cell Phenotype and Response during HCV Infection. J. Clin. Med. 2020, 9, 1030. [Google Scholar] [CrossRef]
- Bi, J.; Tian, Z. NK Cell Exhaustion. Front. Immunol. 2017, 8, 760. [Google Scholar] [CrossRef]
- Parisi, L.; Bassani, B.; Tremolati, M.; Gini, E.; Farronato, G.; Bruno, A. Natural Killer Cells in the Orchestration of Chronic Inflammatory Diseases. J. Immunol. Res. 2017, 2017, 4218254. [Google Scholar] [CrossRef]
- Tosello-Trampont, A.; Surette, F.A.; Ewald, S.E.; Hahn, Y.S. Immunoregulatory Role of NK Cells in Tissue Inflammation and Regeneration. Front. Immunol. 2017, 8, 301. [Google Scholar] [CrossRef]
- Jia, H.; Yang, H.; Xiong, H.; Luo, K. NK cell exhaustion in the tumor microenvironment. Front. Immunol. 2023, 14, 1303605. [Google Scholar] [CrossRef]
- Veiga-Parga, T.; Sehrawat, S.; Rouse, B.T. Role of regulatory T cells during virus infection. Immunol. Rev. 2013, 255, 182–196. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, Y.; Yasunaga, J.; Mitagami, Y.; Tsukamoto, H.; Nakashima, K.; Ohshima, K.; Matsuoka, M. HTLV-1 induces T cell malignancy and inflammation by viral antisense factor-mediated modulation of the cytokine signaling. Proc. Natl. Acad. Sci. USA 2020, 117, 13740–13749. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Shin, E. The activation of bystander CD8+ T cells and their roles in viral infection. Exp. Mol. Med. 2019, 51, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Golden-Mason, L.; Palmer, B.; Klarquist, J.; Mengshol, J.; Castelblanco, N.; Rosen, H. Upregulation of PD-1 Expression on Circulating and Intrahepatic Hepatitis C Virus-Specific CD8+ T Cells Associated with Reversible Immune Dysfunction. J. Virol. 2007, 81, 9249–9258. [Google Scholar] [CrossRef]
- Sakhdari, A.; Mujib, S.; Vali, B.; Yue, F.Y.; MacParland, S.; Clayton, K.; Jones, R.B.; Liu, J.; Lee, E.Y.; Benko, E.; et al. Tim-3 Negatively Regulates Cytotoxicity in Exhausted CD8+ T Cells in HIV Infection. PLoS ONE 2012, 7, e40146. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Bruni, L.; Albero, G.; Rowley, J.; Alemany, L.; Arbyn, M.; Giuliano, A.R.; Taylor, M. Global and regional estimates of genital human papillomavirus prevalence among men: A systematic review and meta-analysis. Lancet Glob. Health 2023, 11, e1345–e1362. [Google Scholar] [CrossRef]
- Wu, M.; Huang, H.; Tang, Y.; Ren, X.; Jiang, X.; Tian, M.; Li, W. Unveiling the multifaceted realm of human papillomavirus: A comprehensive exploration of biology, interactions, and advances in cancer management. Front. Immunol. 2024, 15, 1430544. [Google Scholar] [CrossRef]
- WHO. Human Papillomavirus and Cancer. 2023. Available online: www.who.int/news-room/fact-sheets/detail/human-papilloma-virus-and-cancer (accessed on 30 December 2024).
- Hang, T.P.; Wedd, J.P. The optimal timing and management of hepatitis B and C in patients with hepatocellular carcinoma. Chin. Clin. Oncol. 2021, 10, 4. [Google Scholar] [CrossRef]
- Singh, S.P.; Madke, T.; Chand, P. Global Epidemiology of Hepatocellular Carcinoma. J. Clin. Exp. Hepatol. 2025, 15, 102446. [Google Scholar] [CrossRef]
- Shen, C.; Jiang, X.; Li, M.; Luo, Y. Hepatitis Virus and Hepatocellular Carcinoma: Recent Advances. Cancers 2023, 15, 533. [Google Scholar] [CrossRef] [PubMed]
- Al-Busafi, S.A.; Alwassief, A. Global Perspectives on the Hepatitis B Vaccination: Challenges, Achievements, and the Road to Elimination by 2030. Vaccines 2024, 12, 288. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.; Meehan, M.T.; Burrows, S.R.; Doolan, D.L.; Miles, J.J. Estimating the global burden of Epstein-Barr virus-related cancers. J. Cancer Res. Clin. Oncol. 2022, 148, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Yin, X.; Mao, Y.; Chen, M.; Tang, Q.; Yan, S. The global burden of nasopharyngeal carcinoma from 2009 to 2019: An observational study based on the Global Burden of Disease Study 2019. Eur. Arch. Oto-Rhino-Laryngol. 2022, 279, 1519–1533. [Google Scholar] [CrossRef]
- Diakite, M.; Shaw-Saliba, K.; Lau, C.Y. Malignancy and viral infections in Sub-Saharan Africa: A review. Front. Virol. 2023, 3, 1103737. [Google Scholar] [CrossRef]
- Gessain, A.; Cassar, O. Epidemiological Aspects and World Distribution of HTLV-1 Infection. Front. Microbiol. 2012, 3, 388. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Verdonck, K.; González, E.; Van Dooren, S.; Vandamme, A.M.; Vanham, G.; Gotuzzo, E. Human T-lymphotropic virus 1: Recent knowledge about an ancient infection. Lancet Infect. Dis. 2007, 7, 266–281. [Google Scholar] [CrossRef]
- Bangham, C.R.M. HTLV-1 persistence and the oncogenesis of adult T-cell leukemia/lymphoma. Blood 2023, 141, 2299–2306. [Google Scholar] [CrossRef]
- Iwanaga, M. Epidemiology of HTLV-1 Infection and ATL in Japan: An Update. Front. Microbiol. 2020, 11, 1124. [Google Scholar] [CrossRef]
- Miura, M.; Naito, T.; Saito, M. Current Perspectives in Human T-Cell Leukemia Virus Type 1 Infection and Its Associated Diseases. Front. Med. 2022, 9, 867478. [Google Scholar] [CrossRef]
- Moorad, R.; Juarez, A.; Landis, J.T.; Pluta, L.J.; Perkins, M.; Cheves, A.; Dittmer, D.P. Whole-genome sequencing of Kaposi sarcoma-associated herpesvirus (KSHV/HHV8) reveals evidence for two African lineages. Virology 2022, 568, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Kean, J.M.; Rao, S.; Wang, M.; Garcea, R.L. Seroepidemiology of human polyomaviruses. PLoS Pathog. 2009, 5, e1000363. [Google Scholar] [CrossRef] [PubMed]
- Stang, A.; Becker, J.C.; Nghiem, P.; Ferlay, J. The association between geographic location and incidence of Merkel cell carcinoma in comparison to melanoma: An international assessment. Eur. J. Cancer 2018, 94, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, T.L.; Dennis, S.; Kachare, S.D.; Vohra, N.A.; Wong, J.H.; Zervos, E.E. Dramatic increase in the incidence and mortality from Merkel cell carcinoma in the United States. Am. Surg. 2015, 81, 802–806. [Google Scholar] [CrossRef]
- Paulson, K.G.; Carter, J.J.; Johnson, L.G.; Cahill, K.W.; Iyer, J.G.; Schrama, D.; Galloway, D.A. Antibodies to merkel cell polyomavirus T antigen oncoproteins reflect tumor burden in merkel cell carcinoma patients. Cancer Res. 2010, 70, 8388–8397. [Google Scholar] [CrossRef]
- van der Meijden, E.; Horváth, B.; Nijland, M.; de Vries, K.; Rácz, E.K.; Diercks, G.F.; de Weerd, A.E.; Clahsen-van Groningen, M.C.; van der Blij-de Brouwer, C.S.; van der Zon, A.J.; et al. Primary Polyomavirus Infection, Not Reactivation, as the Cause of Trichodysplasia Spinulosa in Immunocompromised Patients. J. Infect. Dis. 2017, 215, 1080–1084. [Google Scholar] [CrossRef]
- Zanella, M.C.; Pastor, D.; Feltkamp, M.C.W.; Hadaya, K.; Cordey, S.; Toutous Trellu, L. Sustained Trichodysplasia Spinulosa Polyomavirus Viremia Illustrating a Primary Disseminated Infection in a Kidney Transplant Recipient. Microorganisms 2021, 9, 2298. [Google Scholar] [CrossRef]
- Baez, C.F.; Brandão Varella, R.; Villani, S.; Delbue, S. Human Polyomaviruses: The Battle of Large and Small Tumor Antigens. Virology 2017, 8, 1178122–17744785. [Google Scholar] [CrossRef]
- Esmailzadeh, N.; Ranaee, M.; Alizadeh, A.; Khademian, A.; Saber Amoli, S.; Sadeghi, F. Presence of JC Polyomavirus in Nonneoplastic Inflamed Colon Mucosa and Primary and Metastatic Colorectal Cancer. Gastrointest. Tumors 2020, 7, 30–40. [Google Scholar] [CrossRef]
- Shavaleh, R.; Kamandi, M.; Feiz Disfani, H.; Mansori, K.; Naseri, S.N.; Rahmani, K.; Ahmadi Kanrash, F. Associação entre o vírus JC e o câncer colorretal: Revisão sistemática e meta-análise. Infect. Dis. 2020, 52, 152–160. [Google Scholar] [CrossRef]
- Hämetoja, H.; Hagström, J.; Haglund, C.; Bäck, L.; Mäkitie, A.; Syrjänen, S. Polyomavirus JCPyV infrequently detectable in adenoid cystic carcinoma of the oral cavity and the airways. Virchows Arch. 2019, 475, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Del Valle, L.; Piña-Oviedo, S. Human Polyomavirus JCPyV and Its Role in Progressive Multifocal Leukoencephalopathy and Oncogenesis. Front. Oncol. 2019, 9, 711. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.P.; Wang, Z.Z.; Zheng, Y.S.; Xia, P.; Yang, X.H.; Liu, Y.P.; Takano, Y.; Zheng, H.C. JC virus existence in Chinese gastrointestinal carcinomas. Oncol. Lett. 2012, 3, 1073–1078. [Google Scholar] [CrossRef] [PubMed]
- Kamar, N.; Dalton, H.R.; Abravanel, F.; Izopet, J. Hepatitis E virus infection. Clin. Microbiol. Rev. 2014, 27, 116–138. [Google Scholar] [CrossRef]
- Yin, X.; Kan, F. Hepatitis E virus infection and risk of hepatocellular carcinoma: A systematic review and meta-analysis. Cancer Epidemiol. 2023, 87, 102457. [Google Scholar] [CrossRef]
- Bocaneti, F.; Altamura, G.; Corteggio, A.; Velescu, E.; Roperto, F.; Borzacchiello, G. Bovine Papillomavirus: New Insights into an Old Disease. Transbound. Emerg. Dis. 2016, 63, 14–23. [Google Scholar] [CrossRef]
- Krajden, M.; Yu, A.; Braybrook, H.; Lai, A.S.; Mak, A.; Chow, R.; Spinelli, J.J. GBV-C/hepatitis G virus infection and non-Hodgkin lymphoma: A case control study. Int. J. Cancer 2010, 126, 2885–2892. [Google Scholar] [CrossRef]
- Chang, C.M.; Stapleton, J.T.; Klinzman, D.; McLinden, J.H.; Purdue, M.P.; Katki, H.A.; Engels, E.A. GBV-C infection and NHL risk among US adults. Cancer Res. 2014, 74, 5553–5560. [Google Scholar] [CrossRef]
- Toshikuni, N.; Kayano, K.; Nishioka, S.; Mitsunaga, M.; Omoto, A.; Nagao, T.; Kojo, M. TT virus-positive hepatocellular carcinoma arising from non-cirrhotic liver in an elderly man. Intern. Med. 2003, 42, 1172–1177. [Google Scholar] [CrossRef]
- AbuOdeh, R.; Al-Mawlawi, N.; Al-Qahtani, A.A.; Bohol, M.F.F.; Al-Ahdal, M.N.; Hasan, H.A.; Nasrallah, G.K. Detection and genotyping of torque teno virus (TTV) in healthy blood donors and patients infected with HBV or HCV in Qatar. J. Med. Virol. 2015, 87, 1184–1191. [Google Scholar] [CrossRef]
- Barros, M.H.M.; Alves, P.D.S. Contribution of the Epstein-Barr virus to the oncogenesis of mature T-cell lymphoproliferative neoplasms. Front. Oncol. 2023, 13, 1240359. [Google Scholar] [CrossRef] [PubMed]
- Bruni, L.; Diaz, M.; Castellsagué, M.; Ferrer, E.; Bosch, F.X.; de Sanjosé, S. Cervical human papillomavirus prevalence in 5 continents: Meta-analysis of 1 million women with normal cytological findings. J. Infect. Dis. 2010, 202, 1789–1799. [Google Scholar] [CrossRef] [PubMed]
- Tu, T.; McQuaid, T.J.; Jacobson, I.M. HBV-Induced Carcinogenesis: Mechanisms, Correlation with Viral Suppression, and Implications for Treatment. Liver Int. 2025, 45, e16202. [Google Scholar] [CrossRef] [PubMed]
- Drolet, M.; Bénard, É.; Pérez, N.; Brisson, M.; HPV Vaccination Impact Study Group. Population-level impact and herd effects following the introduction of human papillomavirus vaccination programmes: Updated systematic review and meta-analysis. Lancet. 2019, 394, 497–509. [Google Scholar] [CrossRef]
- Choi, W.M.; Kim, G.A.; Choi, J.; Han, S.; Lim, Y.S. Increasing on-treatment hepatocellular carcinoma risk with decreasing baseline viral load in HBeAg-positive chronic hepatitis B. J. Clin. Investig. 2022, 132, e154833. [Google Scholar] [CrossRef]
- Su, F.; Ioannou, G.N. Hepatocellular Carcinoma Risk After Direct-Acting Antiviral Therapy. Clin. Liver Dis. 2019, 13, 6–12. [Google Scholar] [CrossRef]
- Andrei, G.; Trompet, E.; Snoeck, R. Novel Therapeutics for Epstein−Barr Virus. Molecules 2019, 24, 997. [Google Scholar] [CrossRef]
- Yan, S.; Ming, X.; Zhu, X.; Xiao, Y. Role of rapidly evolving immunotherapy in chronic active Epstein-Barr virus disease. Front. Immunol. 2024, 15, 1451977. [Google Scholar] [CrossRef]
- Oliveira, P.D.; Gomes, Í.; Souza, V.H.; Pires, E.C.; Arruda, G.B.; Bittencourt, A. Adult T-cell leukemia/lymphoma treatment in Bahia, Brazil. Rev. Bras. Hematol. Hemoter. 2017, 39, 13–19. [Google Scholar] [CrossRef]
- Soltani, A.; Hashemy, S.I.; Avval, F.Z.; Soleimani, A.; Rafatpanah, H.; Rezaee, S.A.; Mashkani, B. Molecular targeting for treatment of human T-lymphotropic virus type 1 infection. Biomed. Pharmacother. 2019, 109, 770–778. [Google Scholar] [CrossRef]
- Ngalamika, O.; Munsaka, S.; Lidenge, S.J.; West, J.T.; Wood, C. Antiretroviral Therapy for HIV-Associated Cutaneous Kaposi’s Sarcoma: Clinical, HIV-Related, and Sociodemographic Predictors of Outcome. AIDS Res. Hum. Retroviruses 2021, 37, 368–372. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, S.P.; Bhatia, S.; Brohl, A.S.; Hamid, O.; Mehnert, J.M.; Terheyden, P.; Nghiem, P.T. Avelumab in patients with previously treated metastatic Merkel cell carcinoma: Long-term data and biomarker analyses from the single-arm phase 2 JAVELIN Merkel 200 trial. J. Immunother. Cancer 2020, 8, e000674. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.; You, S.; Chen, C.; Liu, C.; Lai, M.; Wu, T.; Wu, S.; Lee, C.; Yang, S.; Chu, H.; et al. Long-term Effects of Hepatitis B Immunization of Infants in Preventing Liver Cancer. Gastroenterology 2016, 151, 472–480.e1. [Google Scholar] [CrossRef] [PubMed]
- Flores, J.E.; Thompson, A.J.; Ryan, M.; Howell, J. The Global Impact of Hepatitis B Vaccination on Hepatocellular Carcinoma. Vaccines 2022, 10, 793. [Google Scholar] [CrossRef]
- Guignard, A.; Praet, N.; Jusot, V.; Bakker, M.; Baril, L. Introducing new vaccines in low- and middle-income countries: Challenges and approaches. Expert Rev. Vaccines 2019, 18, 119–131. [Google Scholar] [CrossRef]
- Ver, A.T.; Notarte, K.I.; Velasco, J.V.; Buac, K.M.; Nazareno, J.; Lozañes, J.A.; Antonio, D.; Bacorro, W. A systematic review of the barriers to implementing human papillomavirus vaccination programs in low- and middle-income countries in the Asia-Pacific. Asia-Pac. J. Clin. Oncol. 2021, 17, 530–545. [Google Scholar] [CrossRef]
- Ahmed, N.; Rabaan, A.A.; Alwashmi, A.S.S.; Albayat, H.; Mashraqi, M.M.; Alshehri, A.A.; Yean, C.Y. Immunoinformatics implementation and design of a multi-epitope Epstein-Barr virus vaccine triggering innate and adaptive immune responses. Microorganismos 2023, 11, 2448. [Google Scholar] [CrossRef]
- Seighali, N.; Shafiee, A.; Rafiee, M.A.; Aminzade, D.; Mozhgani, S.H. Human T-cell lymphotropic virus type 1 (HTLV-1) proposed vaccines: A systematic review of preclinical and clinical studies. BMC Infect. Dis. 2023, 23, 320. [Google Scholar] [CrossRef]
- Mo, Y.; Ma, J.; Zhang, H.; Shen, J.; Chen, J.; Hong, J.; Xu, Y.; Qian, C. Prophylactic and Therapeutic HPV Vaccines: Current Scenario and Perspectives. Front. Cell. Infect. Microbiol. 2022, 12, 909223. [Google Scholar] [CrossRef]
- Letafati, A.; Bahari, M.; Ardekani, O.S.; Jazi, N.N.; Nikzad, A.; Norouzi, F.; Mahdavi, B.; Aboofazeli, A.; Mozhgani, S.-H. HTLV-1 vaccination landscape: Current developments and challenges. Vaccine X 2024, 19, 100525. [Google Scholar] [CrossRef]
- Brudno, J.N.; Kochenderfer, J.N. Chimeric antigen receptor T-cell therapies for lymphoma. Nat. Rev. Clin. Oncol. 2018, 15, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Kampouri, E.; Reynolds, G.; Teh, B.W.; Hill, J.A. Chimeric antigen receptor-T-cell therapies going viral: Latent and incidental viral infections. Curr. Opin. Infect. Dis. 2024, 37, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Lage, M.; Torres-Ruiz, R.; Puig-Serra, P.; Moreno-Gaona, P.; Martin, M.C.; Moya, F.J.; Quintana-Bustamante, O.; Garcia-Silva, S.; Carcaboso, A.M.; Petazzi, P.; et al. In vivo CRISPR/Cas9 targeting of fusion oncogenes for selective elimination of cancer cells. Nat Commun. 2020, 11, 5060. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.; Ju, E.; Yi, K.; Xu, W.; Lao, Y.H.; Cheng, D.; Zhang, Q.; Tao, Y.; Li, M.; Ding, J. Advanced Nanotheranostics of CRISPR/Cas for Viral Hepatitis and Hepatocellular Carcinoma. Adv. Sci. 2021, 8, e2102051. [Google Scholar] [CrossRef]
- Bartosh, U.I.; Dome, A.S.; Zhukova, N.V.; Karitskaya, P.E.; Stepanov, G.A. CRISPR/Cas9 as a New Antiviral Strategy for Treating Hepatitis Viral Infections. Int. J. Mol. Sci. 2023, 25, 334. [Google Scholar] [CrossRef]
- Cai, B.; Chang, S.; Tian, Y.; Zhen, S. CRISPR/Cas9 for hepatitis B virus infection treatment. Immun. Inflamm. Dis. 2023, 11, e866. [Google Scholar] [CrossRef]
- Yang, Y.-C.; Chen, Y.-H.; Kao, J.-H.; Ching, C.; Liu, I.-J.; Wang, C.-C.; Tsai, C.-H.; Wu, F.-Y.; Liu, C.-J.; Chen, P.-J.; et al. Permanent Inactivation of HBV Genomes by CRISPR/Cas9-Mediated Non-cleavage Base Editing. Mol. Ther. Nucleic Acids 2020, 20, 480–490. [Google Scholar] [CrossRef]
- Stone, D.; Long, K.R.; Loprieno, M.A.; Feelixge, H.S.D.S.; Kenkel, E.J.; Liley, R.M.; Rapp, S.; Roychoudhury, P.; Nguyen, T.; Stensland, L.; et al. CRISPR-Cas9 gene editing of hepatitis B virus in chronically infected humanized mice. Mol. Ther. Methods Clin. Dev. 2020, 20, 258–275. [Google Scholar] [CrossRef]
- Zhuo, C.; Kong, H.; Yi, K.; Chi, C.; Zhang, J.; Chen, R.; Wang, H.; Wu, C.; Lao, Y.; Tao, Y.; et al. Magnetic-Activated Nanosystem with Liver-Specific CRISPR Nonviral Vector to Achieve Spatiotemporal Liver Genome Editing as Hepatitis B Therapeutics. Adv. Funct. Mater. 2023, 33, 2210860. [Google Scholar] [CrossRef]
- Nana, B.C.; Esemu, L.F.; Besong, M.E.; Atchombat, D.H.N.; Ogai, K.; Sobgui, T.M.P.; Nana, C.M.M.; Seumko’o, R.M.N.; Awanakan, H.; Ekali, G.L.; et al. Soluble biomarkers of HIV-1-related systemic immune activation are associated with high plasma levels of growth factors implicated in the pathogenesis of Kaposi sarcoma in adults. Front. Immunol. 2023, 14, 1216480. [Google Scholar] [CrossRef]
- Guihot, A.; Dupin, N.; Marcelin, A.; Gorin, I.; Bedin, A.; Bossi, P.; Galicier, L.; Oksenhendler, E.; Autran, B.; Carcelain, G. Low T Cell Responses to Human Herpesvirus 8 in Patients with AIDS-Related and Classic Kaposi Sarcoma. J. Infect. Dis. 2006, 194, 1078–1088. [Google Scholar] [CrossRef] [PubMed]
- Ensoli, B.; Stürzl, M.; Monini, P. Reactivation and role of HHV-8 in Kaposi’s sarcoma initiation. Adv. Cancer Res. 2001, 81, 161–200. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.-G.; Pati, S.; Sadowska, M.; Charurat, M.; Reitz, M. Tumorigenesis by Human Herpesvirus 8 vGPCR Is Accelerated by Human Immuodeficiency Virus Type 1 Tat. J. Virol. 2004, 78, 9336–9342. [Google Scholar] [CrossRef] [PubMed]
- Vyshenska, D.; Lam, K.C.; Shulzhenko, N.; Morgun, A. Interplay between viruses and bacterial microbiota in cancer development. Semin. Immunol. 2017, 32, 14–24. [Google Scholar] [CrossRef]
- Robinson, C.M.; Jesudhasan, P.R.; Pfeiffer, J.K. Bacterial Lipopolysaccharide Binding Enhances Virion Stability and Promotes Environmental Fitness of an Enteric Virus. Cell Host Microbe 2014, 15, 36–46. [Google Scholar] [CrossRef]
- Deng, W.; Almeida, G.; Gibson, K.E. Virus Association with Bacteria and Bacterial Cell Components Enhance Virus Infectivity. Food Environ. Virol. 2025, 17, 15. [Google Scholar] [CrossRef]
- Liao, Y.; Zhang, J.-B.; Lu, L.-X.; Jia, Y.-J.; Zheng, M.-Q.; Debelius, J.W.; He, Y.-Q.; Wang, T.-M.; Deng, C.-M.; Tong, X.-T.; et al. Oral Microbiota Alteration and Roles in Epstein-Barr Virus Reactivation in Nasopharyngeal Carcinoma. Microbiol. Spectr. 2023, 11, e03448-22. [Google Scholar] [CrossRef]
- Imai, K.; Inoue, H.; Tamura, M.; Cueno, M.E.; Inoue, H.; Takeichi, O.; Kusama, K.; Saito, I.; Ochiai, K. The periodontal pathogen Porphyromonas gingivalis induces the Epstein–Barr virus lytic switch transactivator ZEBRA by histone modification. Biochimie 2012, 94, 839–846. [Google Scholar] [CrossRef]
- Markazi, A.; Meng, W.; Bracci, P.M.; McGrath, M.S.; Gao, S.-J. The Role of Bacteria in KSHV Infection and KSHV-Induced Cancers. Cancers 2021, 13, 4269. [Google Scholar] [CrossRef]
- Cao, S.; Zhu, C.; Feng, J.; Zhu, L.; Yin, J.; Xu, Y.; Yang, H.; Huang, Y.; Zhang, Q. Helicobacter hepaticus infection induces chronic hepatitis and fibrosis in male BALB/c mice via the activation of NF-κB, Stat3, and MAPK signaling pathways. Helicobacter 2019, 25, e12677. [Google Scholar] [CrossRef]
- Challagundla, N.; Chrisophe-Bourdon, J.; Agrawal-Rajput, R. Chlamydia trachomatis infection co-operatively enhances HPV E6-E7 oncogenes mediated tumorigenesis and immunosuppression. Microb. Pathog. 2022, 175, 105929. [Google Scholar] [CrossRef] [PubMed]
- Gruffaz, M.; Zhang, T.; Marshall, V.; Gonçalves, P.; Ramaswami, R.; Labo, N.; Gao, S.J. Signatures of oral microbiome in HIV-infected individuals with oral Kaposi’s sarcoma and cell-associated KSHV DNA. PLoS Pathog. 2020, 16, e1008114. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Islam, R.; Shohag, S.; Ahasan, T.; Sarkar, N.; Khan, H.; Hasan, A.M.; Cavalu, S.; Rauf, A. Microbiome in cancer: Role in carcinogenesis and impact in therapeutic strategies. Biomed. Pharmacother. 2022, 149, 112898. [Google Scholar] [CrossRef] [PubMed]
- McCulloch, J.A.; Davar, D.; Rodrigues, R.R.; Badger, J.H.; Fang, J.R.; Cole, A.M.; Balaji, A.K.; Vetizou, M.; Prescott, S.M.; Fernandes, M.R.; et al. Intestinal microbiota signatures of clinical response and immune-related adverse events in melanoma patients treated with anti-PD-1. Nat. Med. 2022, 28, 545–556. [Google Scholar] [CrossRef]
- Andrews, M.; Duong, C.; Gopalakrishnan, V.; Iebba, V.; Chen, W.; Derosa, L.; Khan, M.; Cogdill, A.; White, M.; Wargo, J.A. Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. Nat. Med. 2021, 27, 1432–1441. [Google Scholar] [CrossRef]
- Xia, C.; Su, J.; Liu, C.; Mai, Z.; Yin, S.; Yang, C.; Fu, L. Human microbiomes in cancer development and therapy. MedComm 2023, 4, e221. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
Virus Name | Genome | Viral Family | Cancer | Transmission | Reference |
---|---|---|---|---|---|
Papillomavirus Humano (HPV) | dsDNA | Papillomaviridae | Penile, throat, cervical, vaginal, and vulvar cancer | Sexual contact, skin-to-skin contact, skin-to-mucosa contact, mother-to-baby contact, and contaminated fomites | [7] |
Epstein–Barr virus (EBV) | dsDNA | Herpesviridae | Burkitt’s lymphoma, B-cell lymphoma, nasopharyngeal carcinoma, and gastric cancer | Body fluids (genital, blood) | [8] |
Kaposi’s sarcoma herpesvirus (KSHV) | dsDNA | Herpesviridae | Kaposi’s sarcoma | Saliva and genital secretions | [9] |
Hepatitis C virus (HCV) | sRNA | Flaviviridae | Hepatocellular carcinoma and non-Hodgkin’s lymphoma | Blood and body fluids | [10] |
Hepatitis B virus (HBV) | dsDNA | Hepadnaviridae | Hepatocellular carcinoma | Blood and body fluids | [10] |
Human T-lymphotropic virus 1 (HTLV-1) | sRNA | Retroviridae | Adult T-cell leukemia | Body fluids (semen, breast milk) | [11] |
Merkel cell polyomavirus (MCV) | dsDNA | Polyomaviridae | Merkel cell carcinoma | No validated route | [12] |
Virus | Oncoprotein | Site of Action | Mechanism of Oncogenesis |
---|---|---|---|
HPV | E6, E7 | p53, pRb | Degradation of tumor suppressors Integration into the genome |
EBV (HHV-4) | LMP1, EBNA | Cell signaling receptors | Immortalization of B lymphocytes Integration into the genome |
HBV | HBx | Signal transduction pathways | Stimulates cell proliferation Integration into the genome |
HCV | Core, NS5A | Mitochondria, signaling pathways | Induces chronic inflammation Angiogenesis Inhibition of apoptosis |
KSHV (HHV-8) | LANA, vFLIP | Tumor suppressors | Inhibition of apoptosis |
HTLV-1 | Tax, HBZ | JAK/STAT, NF-κB | Activates lymphocyte proliferation Integration into the genome Chronic inflammation |
MCV | LT, sT | Cell cycle | Induces uncontrolled proliferation |
Oncogenic Virus | Associated Cancer | Treatments | Evidence | Reference |
---|---|---|---|---|
HPV (human papillomavirus) | Cervical, oropharyngeal, anal, vulvar, and penile cancer | Prophylactic vaccination: Gardasil Cervical treatment of precancerous lesions: LEEP, cryotherapy, laser treatment | Vaccination: 83% reduction in the prevalence of HPV-16 and HPV-18 infections in vaccinated girls | [145] |
HBV (hepatitis B virus) | Hepatocellular carcinoma (HCC) | Antiviral therapies: Tenofovir, Entecavir, Pegylated Interferon (Peg-IFN) | Antiviral: significant reduction in HBV viral load and incidence of HCC | [146] |
HCV (hepatitis C virus) | Hepatocellular carcinoma (HCC) | Antiviral therapies: DAAs (Sofosbuvir, Ledipasvir, Daclatasvir) | DAAs: cure rates greater than 95%, reduced risk of cirrhosis and HCC | [147] |
EBV (Epstein–Barr virus) | Burkitt’s lymphoma, Hodgkin’s lymphoma, nasopharyngeal carcinoma | Antiviral Therapies: Acyclovir Valganciclovir immunotherapy: Pembrolizumab, Nivolumab | Antivirals: limited reduction in viral load, limited impact on cancer prevention Immunotherapy: durable responses in EBV-associated lymphomas | [148,149] |
HTLV-1 (human T-lymphotropic virus 1) | Adult T-Cell leukemia/lymphoma (ATLL) | Antiviral Therapies: Zidovudine Interferon-alpha targeted therapies: Bortezomib, Vorinostat | Antivirals: improved survival in patients with ATLL Targeted therapies: induction of apoptosis in HTLV-1-infected cells | [150,151] |
HHV-8 (human herpesvirus type 8) | Kaposi’s sarcoma | Antiviral therapies: combined ART | ART: reduction in the incidence and progression of Kaposi’s sarcoma in patients with HIV/AIDS | [152] |
MCPyV (Merkel cell polyomavirus) | Merkel cell carcinoma (MCC) | Immunotherapy: Avelumab, Pembrolizumab | Immunotherapy: long-lasting responses in patients with MCC, improved survival | [153] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres, M.K.d.S.; Pereira Neto, G.d.S.; Cayres Vallinoto, I.M.V.; Reis, L.O.; Vallinoto, A.C.R. The Impact of Oncogenic Viruses on Cancer Development: A Narrative Review. Biology 2025, 14, 797. https://doi.org/10.3390/biology14070797
Torres MKdS, Pereira Neto GdS, Cayres Vallinoto IMV, Reis LO, Vallinoto ACR. The Impact of Oncogenic Viruses on Cancer Development: A Narrative Review. Biology. 2025; 14(7):797. https://doi.org/10.3390/biology14070797
Chicago/Turabian StyleTorres, Maria Karoliny da Silva, Gabriel dos Santos Pereira Neto, Izaura Maria Vieira Cayres Vallinoto, Leonardo Oliveira Reis, and Antonio Carlos Rosário Vallinoto. 2025. "The Impact of Oncogenic Viruses on Cancer Development: A Narrative Review" Biology 14, no. 7: 797. https://doi.org/10.3390/biology14070797
APA StyleTorres, M. K. d. S., Pereira Neto, G. d. S., Cayres Vallinoto, I. M. V., Reis, L. O., & Vallinoto, A. C. R. (2025). The Impact of Oncogenic Viruses on Cancer Development: A Narrative Review. Biology, 14(7), 797. https://doi.org/10.3390/biology14070797