Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,798)

Search Parameters:
Keywords = virtualized networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1329 KiB  
Article
Steady-State Visual-Evoked-Potential–Driven Quadrotor Control Using a Deep Residual CNN for Short-Time Signal Classification
by Jiannan Chen, Chenju Yang, Rao Wei, Changchun Hua, Dianrui Mu and Fuchun Sun
Sensors 2025, 25(15), 4779; https://doi.org/10.3390/s25154779 (registering DOI) - 3 Aug 2025
Abstract
In this paper, we study the classification problem of short-time-window steady-state visual evoked potentials (SSVEPs) and propose a novel deep convolutional network named EEGResNet based on the idea of residual connection to further improve the classification performance. Since the frequency-domain features extracted from [...] Read more.
In this paper, we study the classification problem of short-time-window steady-state visual evoked potentials (SSVEPs) and propose a novel deep convolutional network named EEGResNet based on the idea of residual connection to further improve the classification performance. Since the frequency-domain features extracted from short-time-window signals are difficult to distinguish, the EEGResNet starts from the filter bank (FB)-based feature extraction module in the time domain. The FB designed in this paper is composed of four sixth-order Butterworth filters with different bandpass ranges, and the four bandwidths are 19–50 Hz, 14–38 Hz, 9–26 Hz, and 3–14 Hz, respectively. Then, the extracted four feature tensors with the same shape are directly aggregated together. Furthermore, the aggregated features are further learned by a six-layer convolutional neural network with residual connections. Finally, the network output is generated through an adaptive fully connected layer. To prove the effectiveness and superiority of our designed EEGResNet, necessary experiments and comparisons are conducted over two large public datasets. To further verify the application potential of the trained network, a virtual simulation of brain computer interface (BCI) based quadrotor control is presented through V-REP. Full article
(This article belongs to the Special Issue Intelligent Sensor Systems in Unmanned Aerial Vehicles)
Show Figures

Figure 1

30 pages, 4011 KiB  
Article
Multitarget Design of Steroidal Inhibitors Against Hormone-Dependent Breast Cancer: An Integrated In Silico Approach
by Juan Rodríguez-Macías, Oscar Saurith-Coronell, Carlos Vargas-Echeverria, Daniel Insuasty Delgado, Edgar A. Márquez Brazón, Ricardo Gutiérrez De Aguas, José R. Mora, José L. Paz and Yovanni Marrero-Ponce
Int. J. Mol. Sci. 2025, 26(15), 7477; https://doi.org/10.3390/ijms26157477 (registering DOI) - 2 Aug 2025
Abstract
Hormone-dependent breast cancer, particularly in its treatment-resistant forms, remains a significant therapeutic challenge. In this study, we applied a fully computational strategy to design steroid-based compounds capable of simultaneously targeting three key receptors involved in disease progression: progesterone receptor (PR), estrogen receptor alpha [...] Read more.
Hormone-dependent breast cancer, particularly in its treatment-resistant forms, remains a significant therapeutic challenge. In this study, we applied a fully computational strategy to design steroid-based compounds capable of simultaneously targeting three key receptors involved in disease progression: progesterone receptor (PR), estrogen receptor alpha (ER-α), and HER2. Using a robust 3D-QSAR model (R2 = 0.86; Q2_LOO = 0.86) built from 52 steroidal structures, we identified molecular features associated with high anticancer potential, specifically increased polarizability and reduced electronegativity. From a virtual library of 271 DFT-optimized analogs, 31 compounds were selected based on predicted potency (pIC50 > 7.0) and screened via molecular docking against PR (PDB 2W8Y), HER2 (PDB 7JXH), and ER-α (PDB 6VJD). Seven candidates showed strong binding affinities (ΔG ≤ −9 kcal/mol for at least two targets), with Estero-255 emerging as the most promising. This compound demonstrated excellent conformational stability, a robust hydrogen-bonding network, and consistent multitarget engagement. Molecular dynamics simulations over 100 nanoseconds confirmed the structural integrity of the top ligands, with low RMSD values, compact radii of gyration, and stable binding energy profiles. Key interactions included hydrophobic contacts, π–π stacking, halogen–π interactions, and classical hydrogen bonds with conserved residues across all three targets. These findings highlight Estero-255, alongside Estero-261 and Estero-264, as strong multitarget candidates for further development. By potentially disrupting the PI3K/AKT/mTOR signaling pathway, these compounds offer a promising strategy for overcoming resistance in hormone-driven breast cancer. Experimental validation, including cytotoxicity assays and ADME/Tox profiling, is recommended to confirm their therapeutic potential. Full article
Show Figures

Graphical abstract

20 pages, 2223 KiB  
Article
Category Attribute-Oriented Heterogeneous Resource Allocation and Task Offloading for SAGIN Edge Computing
by Yuan Qiu, Xiang Luo, Jianwei Niu, Xinzhong Zhu and Yiming Yao
J. Sens. Actuator Netw. 2025, 14(4), 81; https://doi.org/10.3390/jsan14040081 (registering DOI) - 1 Aug 2025
Viewed by 21
Abstract
Space-Air-Ground Integrated Network (SAGIN), which is considered a network architecture with great development potential, exhibits significant cross-domain collaboration characteristics at present. However, most of the existing works ignore the matching and adaptability of differential tasks and heterogeneous resources, resulting in significantly inefficient task [...] Read more.
Space-Air-Ground Integrated Network (SAGIN), which is considered a network architecture with great development potential, exhibits significant cross-domain collaboration characteristics at present. However, most of the existing works ignore the matching and adaptability of differential tasks and heterogeneous resources, resulting in significantly inefficient task execution and undesirable network performance. As a consequence, we formulate a category attribute-oriented resource allocation and task offloading optimization problem with the aim of minimizing the overall scheduling cost. We first introduce a task–resource matching matrix to facilitate optimal task offloading policies with computation resources. In addition, virtual queues are constructed to take the impacts of randomized task arrival into account. To solve the optimization objective which jointly considers bandwidth allocation, transmission power control and task offloading decision effectively, we proposed a deep reinforcement learning (DRL) algorithm framework considering type matching. Simulation experiments demonstrate the effectiveness of our proposed algorithm as well as superior performance compared to others. Full article
(This article belongs to the Section Communications and Networking)
Show Figures

Figure 1

21 pages, 1198 KiB  
Article
The Impact of Energy Communities Virtual Islanding on the Integration of Renewables in Distribution Power Systems
by Andrea Bonfiglio, Sergio Bruno, Alice La Fata, Maria Martino, Renato Procopio and Angelo Velini
Energies 2025, 18(15), 4084; https://doi.org/10.3390/en18154084 (registering DOI) - 1 Aug 2025
Viewed by 40
Abstract
In power distribution networks, the growing integration of renewable energy sources (RESs) presents a challenge for the electricity system and its operators, who need to make the energy sector more flexible and resilient. In this context, this paper proposes a novel flexibilization service [...] Read more.
In power distribution networks, the growing integration of renewable energy sources (RESs) presents a challenge for the electricity system and its operators, who need to make the energy sector more flexible and resilient. In this context, this paper proposes a novel flexibilization service for the distribution system leveraging the role of renewable energy communities (RECs), an emerging entity with the potential to facilitate the sustainable energy transition through Virtual Islanding operation. The concept of Virtual Islanding is investigated in the paper and a methodology for its validation is developed. Its effectiveness is then assessed using an IEEE-standard 33-node network with significant penetration of RESs, considering the presence of multiple RECs to prove its benefits on electrical distribution networks. The results showcase the advantages of the VI paradigm both from technical and sustainability viewpoint. Full article
(This article belongs to the Section F1: Electrical Power System)
12 pages, 732 KiB  
Perspective
Implementing Person-Centered, Clinical, and Research Navigation in Rare Cancers: The Canadian Cholangiocarcinoma Collaborative (C3)
by Samar Attieh, Leonard Angka, Christine Lafontaine, Cynthia Mitchell, Julie Carignan, Carolina Ilkow, Simon Turcotte, Rachel Goodwin, Rebecca C. Auer and Carmen G. Loiselle
Curr. Oncol. 2025, 32(8), 436; https://doi.org/10.3390/curroncol32080436 (registering DOI) - 1 Aug 2025
Viewed by 45
Abstract
Person-centered navigation (PCN) in healthcare refers to a proactive collaboration among professionals, researchers, patients, and their families to guide individuals toward timely access to screening, treatment, follow-up, and psychosocial support. PCN—which includes professional, peer, and virtual guidance, is particularly crucial for rare cancers, [...] Read more.
Person-centered navigation (PCN) in healthcare refers to a proactive collaboration among professionals, researchers, patients, and their families to guide individuals toward timely access to screening, treatment, follow-up, and psychosocial support. PCN—which includes professional, peer, and virtual guidance, is particularly crucial for rare cancers, where affected individuals face uncertainty, limited support, financial strain, and difficulties accessing relevant information, testing, and other services. The Canadian Cholangiocarcinoma Collaborative (C3) prioritizes PCN implementation to address these challenges in the context of Biliary Tract Cancers (BTCs). C3 uses a virtual PCN model and staffs a “C3 Research Navigator” who provides clinical and research navigation such as personalized guidance and support, facilitating access to molecular testing, clinical trials, and case reviews through national multidisciplinary rounds. C3 also supports a national network of BTC experts, a patient research registry, and advocacy activities. C3’s implementation strategies include co-design, timely delivery of support, and optimal outcomes across its many initiatives. Future priorities include expanding the C3 network, enhancing user engagement, and further integrating its innovative approach into routine care. Full article
(This article belongs to the Special Issue Feature Reviews in Section "Oncology Nursing")
Show Figures

Figure 1

24 pages, 4297 KiB  
Article
Finite-Time RBFNN-Based Observer for Cooperative Multi-Missile Tracking Control Under Dynamic Event-Triggered Mechanism
by Jiong Li, Yadong Tang, Lei Shao, Xiangwei Bu and Jikun Ye
Aerospace 2025, 12(8), 693; https://doi.org/10.3390/aerospace12080693 (registering DOI) - 31 Jul 2025
Viewed by 114
Abstract
This paper proposes a hierarchical cooperative tracking control method for multi-missile formations under dynamic event-triggered mechanisms, addressing parameter uncertainties and saturated overload constraints. The proposed hierarchical structure consists of a reference-trajectory generator and a trajectory-tracking controller. The reference-trajectory generator considers communication and collaboration [...] Read more.
This paper proposes a hierarchical cooperative tracking control method for multi-missile formations under dynamic event-triggered mechanisms, addressing parameter uncertainties and saturated overload constraints. The proposed hierarchical structure consists of a reference-trajectory generator and a trajectory-tracking controller. The reference-trajectory generator considers communication and collaboration among multiple interceptors, imposes saturation constraints on virtual control inputs, and generates reference trajectories for each receptor, effectively suppressing aggressive motions caused by overload saturation. On this basis, a radial basis function neural network (RBFNN) combined with a sliding-mode disturbance observer is adopted to estimate unknown external disturbances and unmodeled dynamics, and the finite-time convergence of the disturbance observer is proved. A tracking controller is then designed to ensure precise tracking of the reference trajectory by missile. This approach not only reduces communication and computational burdens but also effectively avoids Zeno behavior, enhancing the practical feasibility and robustness of the proposed method in engineering applications. The simulation results verify the effectiveness and superiority of the proposed method. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

36 pages, 2981 KiB  
Article
Research on the Characteristics and Influencing Factors of Virtual Water Trade Networks in Chinese Provinces
by Guangyao Deng, Siqian Hou and Keyu Di
Sustainability 2025, 17(15), 6972; https://doi.org/10.3390/su17156972 (registering DOI) - 31 Jul 2025
Viewed by 111
Abstract
Promoting the sustainable development of virtual water trade is of great significance to safeguarding China’s water resource security and balanced regional economic growth. This study analyzes the virtual water trade network among 31 Chinese provinces based on multi-regional input–output tables from 2012, 2015, [...] Read more.
Promoting the sustainable development of virtual water trade is of great significance to safeguarding China’s water resource security and balanced regional economic growth. This study analyzes the virtual water trade network among 31 Chinese provinces based on multi-regional input–output tables from 2012, 2015, and 2017, using total trade decomposition, social network analysis, and exponential random graph models. The key findings are as follows: (1) The total virtual water trade volume remains stable, with Xinjiang, Jiangsu, and Guangdong as the core regions, while remote areas such as Shaanxi and Gansu have lower trade volumes. The primary industry dominates, and it is driven by simple value chains. (2) Provinces such as Xinjiang, Heilongjiang, and Jiangsu form the network’s core. Network density and symmetry increased from 2012 to 2015 but declined slightly in 2017, with efficiency peaking and then dropping, and the clustering coefficient decreased annually. Four economic sectors exhibit distinct interactions: frequent two-way flows in Sector 1, significant inflows in Sector 2, prominent net spillovers in Sector 3, and key brokers in Sector 4. (3) The network evolved from a core-periphery structure with weak ties to a stable, heterogeneous, and resilient system. (4) Influencing factors, such asper capita water resources, economic development, and population, significantly impact trade. Similarities in economic levels, population, and water endowments promote trade, while spatial distance has a limited effect, with geographic proximity showing a significant negative impact on long-distance trade. Full article
Show Figures

Figure 1

28 pages, 8732 KiB  
Article
Acceleration Command Tracking via Hierarchical Neural Predictive Control for the Effectiveness of Unknown Control
by Zhengpeng Yang, Chao Ming, Huaiyan Wang and Tongxing Peng
Aerospace 2025, 12(8), 689; https://doi.org/10.3390/aerospace12080689 (registering DOI) - 31 Jul 2025
Viewed by 62
Abstract
This paper presents a flight control framework based on neural network Model Predictive Control (NN-MPC) to tackle the challenges of acceleration command tracking for supersonic vehicles (SVs) in complex flight environments, addressing the shortcomings of traditional methods in managing nonlinearity, random disturbances, and [...] Read more.
This paper presents a flight control framework based on neural network Model Predictive Control (NN-MPC) to tackle the challenges of acceleration command tracking for supersonic vehicles (SVs) in complex flight environments, addressing the shortcomings of traditional methods in managing nonlinearity, random disturbances, and real-time performance requirements. Initially, a dynamic model is developed through a comprehensive analysis of the vehicle’s dynamic characteristics, incorporating strong cross-coupling effects and disturbance influences. Subsequently, a predictive mechanism is employed to forecast future states and generate virtual control commands, effectively resolving the issue of sluggish responses under rapidly changing commands. Furthermore, the approximation capability of neural networks is leveraged to optimize the control strategy in real time, ensuring that rudder deflection commands adapt to disturbance variations, thus overcoming the robustness limitations inherent in fixed-parameter control approaches. Within the proposed framework, the ultimate uniform bounded stability of the control system is rigorously established using the Lyapunov method. Simulation results demonstrate that the method exhibits exceptional performance under conditions of system state uncertainty and unknown external disturbances, confirming its effectiveness and reliability. Full article
(This article belongs to the Section Aeronautics)
12 pages, 3315 KiB  
Article
NeRF-RE: An Improved Neural Radiance Field Model Based on Object Removal and Efficient Reconstruction
by Ziyang Li, Yongjian Huai, Qingkuo Meng and Shiquan Dong
Information 2025, 16(8), 654; https://doi.org/10.3390/info16080654 (registering DOI) - 31 Jul 2025
Viewed by 91
Abstract
High-quality green gardens can markedly enhance the quality of life and mental well-being of their users. However, health and lifestyle constraints make it difficult for people to enjoy urban gardens, and traditional methods struggle to offer the high-fidelity experiences they need. This study [...] Read more.
High-quality green gardens can markedly enhance the quality of life and mental well-being of their users. However, health and lifestyle constraints make it difficult for people to enjoy urban gardens, and traditional methods struggle to offer the high-fidelity experiences they need. This study introduces a 3D scene reconstruction and rendering strategy based on implicit neural representation through the efficient and removable neural radiation fields model (NeRF-RE). Leveraging neural radiance fields (NeRF), the model incorporates a multi-resolution hash grid and proposal network to improve training efficiency and modeling accuracy, while integrating a segment-anything model to safeguard public privacy. Take the crabapple tree, extensively utilized in urban garden design across temperate regions of the Northern Hemisphere. A dataset comprising 660 images of crabapple trees exhibiting three distinct geometric forms is collected to assess the NeRF-RE model’s performance. The results demonstrated that the ‘harvest gold’ crabapple scene had the highest reconstruction accuracy, with PSNR, LPIPS and SSIM of 24.80 dB, 0.34 and 0.74, respectively. Compared to the Mip-NeRF 360 model, the NeRF-RE model not only showed an up to 21-fold increase in training efficiency for three types of crabapple trees, but also exhibited a less pronounced impact of dataset size on reconstruction accuracy. This study reconstructs real scenes with high fidelity using virtual reality technology. It not only facilitates people’s personal enjoyment of the beauty of natural gardens at home, but also makes certain contributions to the publicity and promotion of urban landscapes. Full article
(This article belongs to the Special Issue Extended Reality and Its Applications)
Show Figures

Figure 1

10 pages, 2282 KiB  
Article
AI-Assisted Edema Map Optimization Improves Infarction Detection in Twin-Spiral Dual-Energy CT
by Ludwig Singer, Daniel Heinze, Tim Alexius Möhle, Alexander Sekita, Angelika Mennecke, Stefan Lang, Stefan T. Gerner, Stefan Schwab, Arnd Dörfler and Manuel Alexander Schmidt
Brain Sci. 2025, 15(8), 821; https://doi.org/10.3390/brainsci15080821 (registering DOI) - 31 Jul 2025
Viewed by 157
Abstract
Objective: This study aimed to evaluate whether modifying the post-processing algorithm of Twin-Spiral Dual-Energy computed tomography (DECT) improves infarct detection compared to conventional Dual-Energy CT (DECT) and Single-Energy CT (SECT) following endovascular therapy (EVT) for large vessel occlusion (LVO). Methods: We retrospectively analyzed [...] Read more.
Objective: This study aimed to evaluate whether modifying the post-processing algorithm of Twin-Spiral Dual-Energy computed tomography (DECT) improves infarct detection compared to conventional Dual-Energy CT (DECT) and Single-Energy CT (SECT) following endovascular therapy (EVT) for large vessel occlusion (LVO). Methods: We retrospectively analyzed 52 patients who underwent Twin-Spiral DECT after endovascular stroke therapy. Ten patients were used to generate a device-specific parameter (“y”) using an AI-based neural network (SynthSR). This parameter was integrated into the post-processing algorithm for edema map generation. Quantitative Hounsfield unit (HU) measurements were used to assess density differences in ischemic brain tissue across conventional virtual non-contrast (VNC) images and edema maps. Results: The median HU of infarcted tissue in conventional mixed DECT was 33.73 ± 4.58, compared to 22.96 ± 3.81 in default VNC images. Edema maps with different smoothing filter settings showed values of 14.39 ± 4.96, 14.50 ± 3.75, and 15.05 ± 2.65, respectively. All edema maps demonstrated statistically significant HU differences of infarcted tissue compared to conventional VNC images (p<0.001) while maintaining the density values of non-infarcted brain tissue. Conclusions: Enhancing the post-processing algorithm of conventional virtual non-contrast imaging improves infarct detection compared to standard mixed or virtual non-contrast reconstructions in Dual-Energy CT. Full article
(This article belongs to the Section Neurotechnology and Neuroimaging)
Show Figures

Figure 1

31 pages, 2007 KiB  
Review
Artificial Intelligence-Driven Strategies for Targeted Delivery and Enhanced Stability of RNA-Based Lipid Nanoparticle Cancer Vaccines
by Ripesh Bhujel, Viktoria Enkmann, Hannes Burgstaller and Ravi Maharjan
Pharmaceutics 2025, 17(8), 992; https://doi.org/10.3390/pharmaceutics17080992 - 30 Jul 2025
Viewed by 473
Abstract
The convergence of artificial intelligence (AI) and nanomedicine has transformed cancer vaccine development, particularly in optimizing RNA-loaded lipid nanoparticles (LNPs). Stability and targeted delivery are major obstacles to the clinical translation of promising RNA-LNP vaccines for cancer immunotherapy. This systematic review analyzes the [...] Read more.
The convergence of artificial intelligence (AI) and nanomedicine has transformed cancer vaccine development, particularly in optimizing RNA-loaded lipid nanoparticles (LNPs). Stability and targeted delivery are major obstacles to the clinical translation of promising RNA-LNP vaccines for cancer immunotherapy. This systematic review analyzes the AI’s impact on LNP engineering through machine learning-driven predictive models, generative adversarial networks (GANs) for novel lipid design, and neural network-enhanced biodistribution prediction. AI reduces the therapeutic development timeline through accelerated virtual screening of millions of lipid combinations, compared to conventional high-throughput screening. Furthermore, AI-optimized LNPs demonstrate improved tumor targeting. GAN-generated lipids show structural novelty while maintaining higher encapsulation efficiency; graph neural networks predict RNA-LNP binding affinity with high accuracy vs. experimental data; digital twins reduce lyophilization optimization from years to months; and federated learning models enable multi-institutional data sharing. We propose a framework to address key technical challenges: training data quality (min. 15,000 lipid structures), model interpretability (SHAP > 0.65), and regulatory compliance (21CFR Part 11). AI integration reduces manufacturing costs and makes personalized cancer vaccine affordable. Future directions need to prioritize quantum machine learning for stability prediction and edge computing for real-time formulation modifications. Full article
Show Figures

Figure 1

27 pages, 3602 KiB  
Article
Optimal Dispatch of a Virtual Power Plant Considering Distributed Energy Resources Under Uncertainty
by Obed N. Onsomu, Erman Terciyanlı and Bülent Yeşilata
Energies 2025, 18(15), 4012; https://doi.org/10.3390/en18154012 - 28 Jul 2025
Viewed by 282
Abstract
The varying characteristics of grid-connected energy resources necessitate a clear and effective approach for managing and scheduling generation units. Without proper control, high levels of renewable integration can pose challenges to optimal dispatch, especially as more generation sources, like wind and solar PV, [...] Read more.
The varying characteristics of grid-connected energy resources necessitate a clear and effective approach for managing and scheduling generation units. Without proper control, high levels of renewable integration can pose challenges to optimal dispatch, especially as more generation sources, like wind and solar PV, are introduced. As a result, conventional power sources require an advanced management system, for instance, a virtual power plant (VPP), capable of accurately monitoring power supply and demand. This study thoroughly explores the dispatch of battery energy storage systems (BESSs) and diesel generators (DGs) through a distributionally robust joint chance-constrained optimization (DR-JCCO) framework utilizing the conditional value at risk (CVaR) and heuristic-X (H-X) algorithm, structured as a bilevel optimization problem. Furthermore, Binomial expansion (BE) is employed to linearize the model, enabling the assessment of BESS dispatch through a mathematical program with equilibrium constraints (MPECs). The findings confirm the effectiveness of the DRO-CVaR and H-X methods in dispatching grid network resources and BE under the MPEC framework. Full article
(This article belongs to the Special Issue Review Papers in Energy Storage and Related Applications)
Show Figures

Figure 1

20 pages, 3386 KiB  
Article
Design of Realistic and Artistically Expressive 3D Facial Models for Film AIGC: A Cross-Modal Framework Integrating Audience Perception Evaluation
by Yihuan Tian, Xinyang Li, Zuling Cheng, Yang Huang and Tao Yu
Sensors 2025, 25(15), 4646; https://doi.org/10.3390/s25154646 - 26 Jul 2025
Viewed by 369
Abstract
The rise of virtual production has created an urgent need for both efficient and high-fidelity 3D face generation schemes for cinema and immersive media, but existing methods are often limited by lighting–geometry coupling, multi-view dependency, and insufficient artistic quality. To address this, this [...] Read more.
The rise of virtual production has created an urgent need for both efficient and high-fidelity 3D face generation schemes for cinema and immersive media, but existing methods are often limited by lighting–geometry coupling, multi-view dependency, and insufficient artistic quality. To address this, this study proposes a cross-modal 3D face generation framework based on single-view semantic masks. It utilizes Swin Transformer for multi-level feature extraction and combines with NeRF for illumination decoupled rendering. We utilize physical rendering equations to explicitly separate surface reflectance from ambient lighting to achieve robust adaptation to complex lighting variations. In addition, to address geometric errors across illumination scenes, we construct geometric a priori constraint networks by mapping 2D facial features to 3D parameter space as regular terms with the help of semantic masks. On the CelebAMask-HQ dataset, this method achieves a leading score of SSIM = 0.892 (37.6% improvement from baseline) with FID = 40.6. The generated faces excel in symmetry and detail fidelity with realism and aesthetic scores of 8/10 and 7/10, respectively, in a perceptual evaluation with 1000 viewers. By combining physical-level illumination decoupling with semantic geometry a priori, this paper establishes a quantifiable feedback mechanism between objective metrics and human aesthetic evaluation, providing a new paradigm for aesthetic quality assessment of AI-generated content. Full article
(This article belongs to the Special Issue Convolutional Neural Network Technology for 3D Imaging and Sensing)
Show Figures

Figure 1

24 pages, 74760 KiB  
Article
The Application of Mobile Devices for Measuring Accelerations in Rail Vehicles: Methodology and Field Research Outcomes in Tramway Transport
by Michał Urbaniak, Jakub Myrcik, Martyna Juda and Jan Mandrysz
Sensors 2025, 25(15), 4635; https://doi.org/10.3390/s25154635 - 26 Jul 2025
Viewed by 395
Abstract
Unbalanced accelerations occurring during tram travel have a significant impact on passenger comfort and safety, as well as on the rate of wear and tear on infrastructure and rolling stock. Ideally, these dynamic forces should be monitored continuously in real-time; however, traditional systems [...] Read more.
Unbalanced accelerations occurring during tram travel have a significant impact on passenger comfort and safety, as well as on the rate of wear and tear on infrastructure and rolling stock. Ideally, these dynamic forces should be monitored continuously in real-time; however, traditional systems require high-precision accelerometers and proprietary software—investments often beyond the reach of municipally funded tram operators. To this end, as part of the research project “Accelerometer Measurements in Rail Passenger Transport Vehicles”, pilot measurement campaigns were conducted in Poland on tram lines in Gdańsk, Toruń, Bydgoszcz, and Olsztyn. Off-the-shelf smartphones equipped with MEMS accelerometers and GPS modules, running the Physics Toolbox Sensor Suite Pro app, were used. Although the research employs widely known methods, this paper addresses part of the gap in affordable real-time monitoring by demonstrating that, in the future, equipment equipped solely with consumer-grade MEMS accelerometers can deliver sufficiently accurate data in applications where high precision is not critical. This paper presents an analysis of a subset of results from the Gdańsk tram network. Lateral (x) and vertical (z) accelerations were recorded at three fixed points inside two tram models (Pesa 128NG Jazz Duo and Düwag N8C), while longitudinal accelerations were deliberately omitted at this stage due to their strong dependence on driver behavior. Raw data were exported as CSV files, processed and analyzed in R version 4.2.2, and then mapped spatially using ArcGIS cartograms. Vehicle speed was calculated both via the haversine formula—accounting for Earth’s curvature—and via a Cartesian approximation. Over the ~7 km route, both methods yielded virtually identical results, validating the simpler approach for short distances. Acceleration histograms approximated Gaussian distributions, with most values between 0.05 and 0.15 m/s2, and extreme values approaching 1 m/s2. The results demonstrate that low-cost mobile devices, after future calibration against certified accelerometers, can provide sufficiently rich data for ride-comfort assessment and show promise for cost-effective condition monitoring of both track and rolling stock. Future work will focus on optimizing the app’s data collection pipeline, refining standard-based analysis algorithms, and validating smartphone measurements against benchmark sensors. Full article
(This article belongs to the Collection Sensors and Actuators for Intelligent Vehicles)
Show Figures

Figure 1

17 pages, 8512 KiB  
Article
Interactive Holographic Display System Based on Emotional Adaptability and CCNN-PCG
by Yu Zhao, Zhong Xu, Ting-Yu Zhang, Meng Xie, Bing Han and Ye Liu
Electronics 2025, 14(15), 2981; https://doi.org/10.3390/electronics14152981 - 26 Jul 2025
Viewed by 289
Abstract
Against the backdrop of the rapid advancement of intelligent speech interaction and holographic display technologies, this paper introduces an interactive holographic display system. This paper applies 2D-to-3D technology to acquisition work and uses a Complex-valued Convolutional Neural Network Point Cloud Gridding (CCNN-PCG) algorithm [...] Read more.
Against the backdrop of the rapid advancement of intelligent speech interaction and holographic display technologies, this paper introduces an interactive holographic display system. This paper applies 2D-to-3D technology to acquisition work and uses a Complex-valued Convolutional Neural Network Point Cloud Gridding (CCNN-PCG) algorithm to generate a computer-generated hologram (CGH) with depth information for application in point cloud data. During digital human hologram building, 2D-to-3D conversion yields high-precision point cloud data. The system uses ChatGLM for natural language processing and emotion-adaptive responses, enabling multi-turn voice dialogs and text-driven model generation. The CCNN-PCG algorithm reduces computational complexity and improves display quality. Simulations and experiments show that CCNN-PCG enhances reconstruction quality and speeds up computation by over 2.2 times. This research provides a theoretical framework and practical technology for holographic interactive systems, applicable in virtual assistants, educational displays, and other fields. Full article
(This article belongs to the Special Issue Artificial Intelligence, Computer Vision and 3D Display)
Show Figures

Figure 1

Back to TopTop