Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,153)

Search Parameters:
Keywords = virtual patients

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 9773 KiB  
Review
A Narrative Review of the Clinical Applications of Echocardiography in Right Heart Failure
by North J. Noelck, Heather A. Perry, Phyllis L. Talley and D. Elizabeth Le
J. Clin. Med. 2025, 14(15), 5505; https://doi.org/10.3390/jcm14155505 - 5 Aug 2025
Abstract
Background/Objectives: Historically, echocardiographic imaging of the right heart has been challenging because its abnormal geometry is not conducive to reproducible anatomical and functional assessment. With the development of advanced echocardiographic techniques, it is now possible to complete an integrated assessment of the right [...] Read more.
Background/Objectives: Historically, echocardiographic imaging of the right heart has been challenging because its abnormal geometry is not conducive to reproducible anatomical and functional assessment. With the development of advanced echocardiographic techniques, it is now possible to complete an integrated assessment of the right heart that has fewer assumptions, resulting in increased accuracy and precision. Echocardiography continues to be the first-line imaging modality for diagnostic analysis and the management of acute and chronic right heart failure because of its portability, versatility, and affordability compared to cardiac computed tomography, magnetic resonance imaging, nuclear scintigraphy, and positron emission tomography. Virtually all echocardiographic parameters have been well-validated and have demonstrated prognostic significance. The goal of this narrative review of the echocardiographic parameters of the right heart chambers and hemodynamic alterations associated with right ventricular dysfunction is to present information that must be acquired during each examination to deliver a comprehensive assessment of the right heart and to discuss their clinical significance in right heart failure. Methods: Using a literature search in the PubMed database from 1985 to 2025 and the Cochrane database, which included but was not limited to terminology that are descriptive of right heart anatomy and function, disease states involving acute and chronic right heart failure and pulmonary hypertension, and the application of conventional and advanced echocardiographic modalities that strive to elucidate the pathophysiology of right heart failure, we reviewed randomized control trials, observational retrospective and prospective cohort studies, societal guidelines, and systematic review articles. Conclusions: In addition to the conventional 2-dimensional echocardiography and color, spectral, and tissue Doppler measurements, a contemporary echocardiographic assessment of a patient with suspected or proven right heart failure must include 3-dimensional echocardiographic-derived measurements, speckle-tracking echocardiography strain analysis, and hemodynamics parameters to not only characterize the right heart anatomy but to also determine the underlying pathophysiology of right heart failure. Complete and point-of-care echocardiography is available in virtually all clinical settings for routine care, but this imaging tool is particularly indispensable in the emergency department, intensive care units, and operating room, where it can provide an immediate assessment of right ventricular function and associated hemodynamic changes to assist with real-time management decisions. Full article
(This article belongs to the Special Issue Cardiac Imaging in the Diagnosis and Management of Heart Failure)
Show Figures

Figure 1

20 pages, 519 KiB  
Article
Bridging the Capacity Building Gap for Antimicrobial Stewardship Implementation: Evidence from Virtual Communities of Practice in Kenya, Ghana, and Malawi
by Ana C. Barbosa de Lima, Kwame Ohene Buabeng, Mavis Sakyi, Hope Michael Chadwala, Nicole Devereaux, Collins Mitambo, Christine Mugo-Sitati, Jennifer Njuhigu, Gunturu Revathi, Emmanuel Tanui, Jutta Lehmer, Jorge Mera and Amy V. Groom
Antibiotics 2025, 14(8), 794; https://doi.org/10.3390/antibiotics14080794 (registering DOI) - 4 Aug 2025
Abstract
Background/Objectives: Strengthening antimicrobial stewardship (AMS) programs is an invaluable intervention in the ongoing efforts to contain the threat of antimicrobial resistance (AMR), particularly in low-resource settings. This study evaluates the impact of the Telementoring, Education, and Advocacy Collaboration initiative for Health through [...] Read more.
Background/Objectives: Strengthening antimicrobial stewardship (AMS) programs is an invaluable intervention in the ongoing efforts to contain the threat of antimicrobial resistance (AMR), particularly in low-resource settings. This study evaluates the impact of the Telementoring, Education, and Advocacy Collaboration initiative for Health through Antimicrobial Stewardship (TEACH AMS), which uses the virtual Extension for Community Healthcare Outcomes (ECHO) learning model to enhance AMS capacity in Kenya, Ghana, and Malawi. Methods: A mixed-methods approach was used, which included attendance data collection, facility-level assessments, post-session and follow-up surveys, as well as focus group discussions. Results: Between September 2023 and February 2025, 77 virtual learning sessions were conducted, engaging 2445 unique participants from hospital-based AMS committees and health professionals across the three countries. Participants reported significant knowledge gain, and data showed facility improvements in two core AMS areas, including the implementation of multidisciplinary ward-based interventions/communications and enhanced monitoring of antibiotic resistance patterns. Along those lines, participants reported that the program assisted them in improving prescribing and culture-based treatments, and also evidence-informed antibiotic selection. The evidence of implementing ward-based interventions was further stressed in focus group discussions, as well as other strengthened practices like point-prevalence surveys, and development or revision of stewardship policies. Substantial improvements in microbiology services were also shared by participants, particularly in Malawi. Other practices mentioned were strengthened multidisciplinary communication, infection prevention efforts, and education of patients and the community. Conclusion: Our findings suggest that a virtual case-based learning educational intervention, providing structured and tailored AMS capacity building, can drive behavior change and strengthen healthcare systems in low resource settings. Future efforts should aim to scale up the engagements and sustain improvements to further strengthen AMS capacity. Full article
12 pages, 732 KiB  
Perspective
Implementing Person-Centered, Clinical, and Research Navigation in Rare Cancers: The Canadian Cholangiocarcinoma Collaborative (C3)
by Samar Attieh, Leonard Angka, Christine Lafontaine, Cynthia Mitchell, Julie Carignan, Carolina Ilkow, Simon Turcotte, Rachel Goodwin, Rebecca C. Auer and Carmen G. Loiselle
Curr. Oncol. 2025, 32(8), 436; https://doi.org/10.3390/curroncol32080436 - 1 Aug 2025
Viewed by 109
Abstract
Person-centered navigation (PCN) in healthcare refers to a proactive collaboration among professionals, researchers, patients, and their families to guide individuals toward timely access to screening, treatment, follow-up, and psychosocial support. PCN—which includes professional, peer, and virtual guidance, is particularly crucial for rare cancers, [...] Read more.
Person-centered navigation (PCN) in healthcare refers to a proactive collaboration among professionals, researchers, patients, and their families to guide individuals toward timely access to screening, treatment, follow-up, and psychosocial support. PCN—which includes professional, peer, and virtual guidance, is particularly crucial for rare cancers, where affected individuals face uncertainty, limited support, financial strain, and difficulties accessing relevant information, testing, and other services. The Canadian Cholangiocarcinoma Collaborative (C3) prioritizes PCN implementation to address these challenges in the context of Biliary Tract Cancers (BTCs). C3 uses a virtual PCN model and staffs a “C3 Research Navigator” who provides clinical and research navigation such as personalized guidance and support, facilitating access to molecular testing, clinical trials, and case reviews through national multidisciplinary rounds. C3 also supports a national network of BTC experts, a patient research registry, and advocacy activities. C3’s implementation strategies include co-design, timely delivery of support, and optimal outcomes across its many initiatives. Future priorities include expanding the C3 network, enhancing user engagement, and further integrating its innovative approach into routine care. Full article
(This article belongs to the Special Issue Feature Reviews in Section "Oncology Nursing")
Show Figures

Figure 1

16 pages, 1134 KiB  
Article
Neural Correlates of Loudness Coding in Two Types of Cochlear Implants—A Model Study
by Ilja M. Venema, Savine S. M. Martens, Randy K. Kalkman, Jeroen J. Briaire and Johan H. M. Frijns
Technologies 2025, 13(8), 331; https://doi.org/10.3390/technologies13080331 - 1 Aug 2025
Viewed by 155
Abstract
Many speech coding strategies have been developed over the years, but comparing them has been convoluted due to the difficulty in disentangling brand-specific and patient-specific factors from strategy-specific factors that contribute to speech understanding. Here, we present a comparison with a ‘virtual’ patient, [...] Read more.
Many speech coding strategies have been developed over the years, but comparing them has been convoluted due to the difficulty in disentangling brand-specific and patient-specific factors from strategy-specific factors that contribute to speech understanding. Here, we present a comparison with a ‘virtual’ patient, by comparing two strategies from two different manufacturers, Advanced Combination Encoder (ACE) versus HiResolution Fidelity 120 (F120), running on two different implant systems in a computational model with the same anatomy and neural properties. We fitted both strategies to an expected T-level and C- or M-level based on the spike rate for each electrode contact’s allocated frequency (center electrode frequency) of the respective array. This paper highlights neural and electrical differences due to brand-specific characteristics such as pulse rate/channel, recruitment of adjacent electrodes, and presence of subthreshold pulses or interphase gaps. These differences lead to considerably different recruitment patterns of nerve fibers, while achieving the same total spike rates, i.e., loudness percepts. Also, loudness growth curves differ significantly between brands. The model is able to demonstrate considerable electrical and neural differences in the way loudness growth is achieved in CIs from different manufacturers. Full article
(This article belongs to the Special Issue The Challenges and Prospects in Cochlear Implantation)
Show Figures

Figure 1

15 pages, 514 KiB  
Article
Remote Patient Monitoring Applications in Healthcare: Lessons from COVID-19 and Beyond
by Azrin Khan and Dominique Duncan
Electronics 2025, 14(15), 3084; https://doi.org/10.3390/electronics14153084 - 1 Aug 2025
Viewed by 219
Abstract
The COVID-19 pandemic catalyzed the rapid adoption of remote patient monitoring (RPM) technologies such as telemedicine and wearable devices (WDs), significantly transforming healthcare delivery. Telemedicine made virtual consultations possible, reducing in-person visits and infection risks, particularly for the management of chronic diseases. Wearable [...] Read more.
The COVID-19 pandemic catalyzed the rapid adoption of remote patient monitoring (RPM) technologies such as telemedicine and wearable devices (WDs), significantly transforming healthcare delivery. Telemedicine made virtual consultations possible, reducing in-person visits and infection risks, particularly for the management of chronic diseases. Wearable devices enabled the real-time continuous monitoring of health that assisted in condition prediction and management, such as for COVID-19. This narrative review addresses these transformations by uniquely synthesizing findings from 13 diverse studies (sourced from PubMed and Google Scholar, 2020–2024) to analyze the parallel evolution of telemedicine and WDs as interconnected RPM components. It highlights the pandemic’s dual impact, as follows: accelerating RPM innovation and adoption while simultaneously unmasking systemic challenges such as inequities in access and a need for robust integration approaches; while telemedicine usage soared during the pandemic, consumption post-pandemic, as indicated by the reviewed studies, suggests continued barriers to adoption among older adults. Likewise, wearable devices demonstrated significant potential in early disease detection and long-term health management, with promising applications extending beyond COVID-19, including long COVID conditions. Addressing the identified challenges is crucial for healthcare providers and systems to fully embrace these technologies and this would improve efficiency and patient outcomes. Full article
Show Figures

Figure 1

4 pages, 454 KiB  
Interesting Images
Texture and Color Enhancement Imaging-Assisted Endocytoscopy Improves Characterization of Gastric Precancerous Conditions: A Set of Interesting Comparative Images
by Riccardo Vasapolli, Johannes Raphael Westphal and Christian Schulz
Diagnostics 2025, 15(15), 1925; https://doi.org/10.3390/diagnostics15151925 - 31 Jul 2025
Viewed by 172
Abstract
Chronic atrophic gastritis and intestinal metaplasia (IM) are gastric precancerous conditions (GPCs) associated with an increased risk of gastric cancer. Early detection and accurate characterization of GPC are therefore crucial for risk stratification and the implementation of preventive strategies. In the absence of [...] Read more.
Chronic atrophic gastritis and intestinal metaplasia (IM) are gastric precancerous conditions (GPCs) associated with an increased risk of gastric cancer. Early detection and accurate characterization of GPC are therefore crucial for risk stratification and the implementation of preventive strategies. In the absence of clear mucosal changes observed through white-light imaging (WLI) or virtual chromoendoscopy, endocytoscopy can help unveil the presence of GPC by enabling in vivo assessment of nuclear and cellular structures at ultra-high magnification. Endocytoscopy is typically performed using WLI following dye-based staining of the mucosa. In this case, we demonstrate that combining endocytoscopy with the texture and color enhancement imaging (TXI) mode substantially improves the assessment of the gastric mucosa. In a 61-year-old man undergoing esophagogastroduodenoscopy, WLI showed multifocal erythema in the stomach, without clearly visible lesions on either WLI or narrow-band imaging. Conventional endocytoscopy revealed multiple small spots of IM with characteristic changes in glandular structures, which were even more evident when using the TXI mode. Histological analysis of targeted biopsies confirmed small foci of IM in both the antrum and corpus. The patient was enrolled in a surveillance program because of his clinical background. The combination of endocytoscopy with the TXI mode significantly enhances the delineation of mucosal and cellular architecture, supporting a more accurate optical diagnosis. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

10 pages, 2282 KiB  
Article
AI-Assisted Edema Map Optimization Improves Infarction Detection in Twin-Spiral Dual-Energy CT
by Ludwig Singer, Daniel Heinze, Tim Alexius Möhle, Alexander Sekita, Angelika Mennecke, Stefan Lang, Stefan T. Gerner, Stefan Schwab, Arnd Dörfler and Manuel Alexander Schmidt
Brain Sci. 2025, 15(8), 821; https://doi.org/10.3390/brainsci15080821 (registering DOI) - 31 Jul 2025
Viewed by 241
Abstract
Objective: This study aimed to evaluate whether modifying the post-processing algorithm of Twin-Spiral Dual-Energy computed tomography (DECT) improves infarct detection compared to conventional Dual-Energy CT (DECT) and Single-Energy CT (SECT) following endovascular therapy (EVT) for large vessel occlusion (LVO). Methods: We retrospectively analyzed [...] Read more.
Objective: This study aimed to evaluate whether modifying the post-processing algorithm of Twin-Spiral Dual-Energy computed tomography (DECT) improves infarct detection compared to conventional Dual-Energy CT (DECT) and Single-Energy CT (SECT) following endovascular therapy (EVT) for large vessel occlusion (LVO). Methods: We retrospectively analyzed 52 patients who underwent Twin-Spiral DECT after endovascular stroke therapy. Ten patients were used to generate a device-specific parameter (“y”) using an AI-based neural network (SynthSR). This parameter was integrated into the post-processing algorithm for edema map generation. Quantitative Hounsfield unit (HU) measurements were used to assess density differences in ischemic brain tissue across conventional virtual non-contrast (VNC) images and edema maps. Results: The median HU of infarcted tissue in conventional mixed DECT was 33.73 ± 4.58, compared to 22.96 ± 3.81 in default VNC images. Edema maps with different smoothing filter settings showed values of 14.39 ± 4.96, 14.50 ± 3.75, and 15.05 ± 2.65, respectively. All edema maps demonstrated statistically significant HU differences of infarcted tissue compared to conventional VNC images (p<0.001) while maintaining the density values of non-infarcted brain tissue. Conclusions: Enhancing the post-processing algorithm of conventional virtual non-contrast imaging improves infarct detection compared to standard mixed or virtual non-contrast reconstructions in Dual-Energy CT. Full article
(This article belongs to the Section Neurotechnology and Neuroimaging)
Show Figures

Figure 1

14 pages, 871 KiB  
Article
Evaluation of Deviations Produced by Soft Tissue Fitting in Virtually Planned Orthognathic Surgery
by Álvaro Pérez-Sala, Pablo Montes Fernández-Micheltorena, Miriam Bobadilla, Ricardo Fernández-Valadés Gámez, Javier Martínez Goñi, Ángela Villanueva, Iñigo Calvo Archanco, José Luis Del Castillo Pardo de Vera, José Luis Cebrián Carretero, Carlos Navarro Cuéllar, Ignacio Navarro Cuellar, Gema Arenas, Ana López López, Ignacio M. Larrayoz and Rafael Peláez
Appl. Sci. 2025, 15(15), 8478; https://doi.org/10.3390/app15158478 (registering DOI) - 30 Jul 2025
Viewed by 364
Abstract
Orthognathic surgery (OS) is a complex procedure commonly used to treat dentofacial deformities (DFDs). These conditions, related to jaw position or size and often involving malocclusion, affect approximately 15% of the population. Due to the complexity of OS, accurate planning is essential. Digital [...] Read more.
Orthognathic surgery (OS) is a complex procedure commonly used to treat dentofacial deformities (DFDs). These conditions, related to jaw position or size and often involving malocclusion, affect approximately 15% of the population. Due to the complexity of OS, accurate planning is essential. Digital assessment using computer-aided design (CAD) and computer-aided manufacturing (CAM) tools enhances surgical predictability. However, limitations in soft tissue simulation often require surgeon input to optimize aesthetic results and minimize surgical impact. This study aimed to evaluate the accuracy of virtual surgery planning (VSP) by analyzing the relationship between planning deviations and surgical satisfaction. A single-center, retrospective study was conducted on 16 patients who underwent OS at San Pedro University Hospital of La Rioja. VSP was based on CT scans using Dolphin Imaging software (v12.0, Patterson Dental, St. Paul, MN, USA) and surgeries were guided by VSP-designed occlusal splints. Outcomes were assessed using the Orthognathic Quality of Life (OQOL) questionnaire and deviations were measured through pre- and postoperative imaging. The results showed high satisfaction scores and good overall outcomes, despite moderate deviations from the virtual plan in many cases, particularly among Class II patients. A total of 63% of patients required VSP modifications due to poor soft tissue fitting, with 72% of these being Class II DFDs. Most deviations involved less maxillary advancement than planned, while maintaining optimal occlusion. This suggests that VSP may overestimate advancement needs, especially in Class II cases. No significant differences in satisfaction were observed between patients with low (<2 mm) and high (>2 mm) deviations. These findings support the use of VSP as a valuable planning tool for OS. However, surgeon experience remains essential, especially in managing soft tissue behavior. Improvements in soft tissue prediction are needed to enhance accuracy, particularly for Class II DFDs. Full article
(This article belongs to the Special Issue Intelligent Medicine and Health Care, 2nd Edition)
Show Figures

Figure 1

13 pages, 532 KiB  
Article
Medical and Biomedical Students’ Perspective on Digital Health and Its Integration in Medical Curricula: Recent and Future Views
by Srijit Das, Nazik Ahmed, Issa Al Rahbi, Yamamh Al-Jubori, Rawan Al Busaidi, Aya Al Harbi, Mohammed Al Tobi and Halima Albalushi
Int. J. Environ. Res. Public Health 2025, 22(8), 1193; https://doi.org/10.3390/ijerph22081193 - 30 Jul 2025
Viewed by 249
Abstract
The incorporation of digital health into the medical curricula is becoming more important to better prepare doctors in the future. Digital health comprises a wide range of tools such as electronic health records, health information technology, telemedicine, telehealth, mobile health applications, wearable devices, [...] Read more.
The incorporation of digital health into the medical curricula is becoming more important to better prepare doctors in the future. Digital health comprises a wide range of tools such as electronic health records, health information technology, telemedicine, telehealth, mobile health applications, wearable devices, artificial intelligence, and virtual reality. The present study aimed to explore the medical and biomedical students’ perspectives on the integration of digital health in medical curricula. A cross-sectional study was conducted on the medical and biomedical undergraduate students at the College of Medicine and Health Sciences at Sultan Qaboos University. Data was collected using a self-administered questionnaire. The response rate was 37%. The majority of respondents were in the MD (Doctor of Medicine) program (84.4%), while 29 students (15.6%) were from the BMS (Biomedical Sciences) program. A total of 55.38% agreed that they were familiar with the term ‘e-Health’. Additionally, 143 individuals (76.88%) reported being aware of the definition of e-Health. Specifically, 69 individuals (37.10%) utilize e-Health technologies every other week, 20 individuals (10.75%) reported using them daily, while 44 individuals (23.66%) indicated that they never used such technologies. Despite having several benefits, challenges exist in integrating digital health into the medical curriculum. There is a need to overcome the lack of infrastructure, existing educational materials, and digital health topics. In conclusion, embedding digital health into medical curricula is certainly beneficial for creating a digitally competent healthcare workforce that could help in better data storage, help in diagnosis, aid in patient consultation from a distance, and advise on medications, thereby leading to improved patient care which is a key public health priority. Full article
Show Figures

Figure 1

13 pages, 5974 KiB  
Article
Proof of Concept and Validation of Single-Camera AI-Assisted Live Thumb Motion Capture
by Huy G. Dinh, Joanne Y. Zhou, Adam Benmira, Deborah E. Kenney and Amy L. Ladd
Sensors 2025, 25(15), 4633; https://doi.org/10.3390/s25154633 - 26 Jul 2025
Viewed by 245
Abstract
Motion analysis can be useful for multiplanar analysis of hand kinematics. The carpometacarpal (CMC) joint has been traditionally difficult to capture with surface-based motion analysis but is the most commonly arthritic joint of the hand and is of particular clinical interest. Traditional 3D [...] Read more.
Motion analysis can be useful for multiplanar analysis of hand kinematics. The carpometacarpal (CMC) joint has been traditionally difficult to capture with surface-based motion analysis but is the most commonly arthritic joint of the hand and is of particular clinical interest. Traditional 3D motion capture of the CMC joint using multiple cameras and reflective markers and manual goniometer measurement has been challenging to integrate into clinical workflow. We therefore propose a markerless single-camera artificial intelligence (AI)-assisted motion capture method to provide real-time estimation of clinically relevant parameters. Our study enrolled five healthy subjects, two male and three female. Fourteen clinical parameters were extracted from thumb interphalangeal (IP), metacarpal phalangeal (MP), and CMC joint motions using manual goniometry and live motion capture with the Google AI MediaPipe Hands landmarker model. Motion capture measurements were assessed for accuracy, precision, and correlation with manual goniometry. Motion capture demonstrated sufficient accuracy in 11 and precision in all 14 parameters, with mean error of −2.13 ± 2.81° (95% confidence interval [CI]: −5.31, 1.05). Strong agreement was observed between both modalities across all subjects, with a combined Pearson correlation coefficient of 0.97 (p < 0.001) and an intraclass correlation coefficient of 0.97 (p < 0.001). The results suggest AI-assisted live motion capture can be an accurate and practical thumb assessment tool, particularly in virtual patient encounters, for enhanced range of motion (ROM) analysis. Full article
Show Figures

Figure 1

23 pages, 1118 KiB  
Systematic Review
Management of Preoperative Anxiety via Virtual Reality Technology: A Systematic Review
by Elina Christiana Alimonaki, Anastasia Bothou, Athina Diamanti, Anna Deltsidou, Styliani Paliatsiou, Grigorios Karampas and Giannoula Kyrkou
Nurs. Rep. 2025, 15(8), 268; https://doi.org/10.3390/nursrep15080268 - 25 Jul 2025
Viewed by 216
Abstract
Background: Perioperative care is an integral part of the procedure of a surgical operation, with strictly defined rules. The need to upgrade and improve some individual long-term processes aims at optimal patient care and the provision of high-level health services. Therefore, preoperative care [...] Read more.
Background: Perioperative care is an integral part of the procedure of a surgical operation, with strictly defined rules. The need to upgrade and improve some individual long-term processes aims at optimal patient care and the provision of high-level health services. Therefore, preoperative care is drawn up with new data resulting from the evolution of technology to upgrade the procedures that need improvement. According to the international literature, a factor considered to be of major importance is high preoperative anxiety and its effects on the patient’s postoperative course. High preoperative anxiety is postoperatively responsible for prolonged hospital stays, increased postoperative pain, decreased effect of anesthetic agents, increased amounts of analgesics, delayed healing of surgical wounds, and increased risk of infections. The use of Virtual Reality technology appears as a new method of managing preoperative anxiety. Objective: This study investigates the effect and effectiveness of Virtual Reality (VR) technology in managing preoperative anxiety in adult patients. Methods: A literature review was performed on 193 articles, published between 2017 and 2024, sourced from the scientific databases PubMed and Cochrane, as well as the trial registry ClinicalTrials, with a screening and exclusion process to meet the criterion of investigating VR technology’s effectiveness in managing preoperative anxiety in adult patients. This systematic review was conducted under the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) guidelines. Results: Out of the 193 articles, 29 were selected. All articles examined the efficacy of VR in adult patients (≥18) undergoing various types of surgery. The studies represent a total of 2.354 participants from 15 countries. There are two types of VR applications: distraction therapy and patient education. From the studies, 14 (48%) used the distraction VR intervention, 14 (48%) used the training VR intervention, and 1 (4%) used both VR interventions, using a range of validated anxiety scales such as the STAI, VAS-A, APAIS, and HADS. Among the 29 studies reviewed, 25 (86%) demonstrated statistically significant reductions in preoperative anxiety levels following the implementation of VR interventions. VR technology appears to manage preoperative anxiety effectively. It is a non-invasive and non-pharmacological intervention with minimal side effects. Conclusions: Based on the review, the management of preoperative anxiety with VR technology shows good levels of effectiveness. Further investigation of the efficacy by more studies and randomized controlled trials, with a larger patient population, is recommended to establish and universally apply VR technology in the preoperative care process as an effective method of managing preoperative anxiety. Full article
Show Figures

Figure 1

15 pages, 1800 KiB  
Article
Digital Orthodontic Setups in Orthognathic Surgery: Evaluating Predictability and Precision of the Workflow in Surgical Planning
by Olivier de Waard, Frank Baan, Robin Bruggink, Ewald M. Bronkhorst, Anne Marie Kuijpers-Jagtman and Edwin M. Ongkosuwito
J. Clin. Med. 2025, 14(15), 5270; https://doi.org/10.3390/jcm14155270 - 25 Jul 2025
Viewed by 324
Abstract
Background: Inadequate presurgical planning is a key contributor to suboptimal outcomes in orthognathic surgery. This study aims to assess the accuracy of a digital surgical planning workflow conducted prior to any orthodontic intervention. Methods: Digital planning was performed for 26 patients before orthodontic [...] Read more.
Background: Inadequate presurgical planning is a key contributor to suboptimal outcomes in orthognathic surgery. This study aims to assess the accuracy of a digital surgical planning workflow conducted prior to any orthodontic intervention. Methods: Digital planning was performed for 26 patients before orthodontic treatment (T0) and compared to the actual preoperative planning (T1). Digitized plaster casts were merged with CBCT data and converted to orthodontic setups to create a 3D virtual head model. After voxel-based registration of T0 and T1, dental arches were virtually osteotomized and repositioned according to planned outcomes. These T0 segments were then aligned with T1 planning using bony landmarks of the maxilla. Anatomical landmarks were used to construct virtual triangles on maxillary and mandibular segments, enabling assessment of positional and orientational differences. Transformations between T0 and T1 were translated into clinically meaningful metrics. Results: Significant differences were found between T0 and T1 at the dental level. T1 exhibited a greater clockwise rotation of the dental maxilla (mean: 2.85°) and a leftward translation of the mandibular dental arch (mean: 1.19 mm). In SARME cases, the bony mandible showed larger anti-clockwise roll differences. Pitch variations were also more pronounced in maxillary extraction cases, with both the dental maxilla and bony mandible demonstrating increased clockwise rotations. Conclusions: The proposed orthognathic surgical planning workflow shows potential for simulating mandibular outcomes but lacks dental-level accuracy, especially in maxillary anterior torque. While mandibular bony outcome predictions align reasonably with pretreatment planning, notable discrepancies exceed clinically acceptable thresholds. Current accuracy limits routine use; further refinement and validation in larger, homogeneous patient groups are needed to enhance clinical reliability and applicability. Full article
(This article belongs to the Special Issue Orthodontics: Current Advances and Future Options)
Show Figures

Figure 1

22 pages, 1329 KiB  
Review
Visual Field Examinations for Retinal Diseases: A Narrative Review
by Ko Eun Kim and Seong Joon Ahn
J. Clin. Med. 2025, 14(15), 5266; https://doi.org/10.3390/jcm14155266 - 25 Jul 2025
Viewed by 213
Abstract
Visual field (VF) testing remains a cornerstone in assessing retinal function by measuring how well different parts of the retina detect light. It is essential for early detection, monitoring, and management of many retinal diseases. By mapping retinal sensitivity, VF exams can reveal [...] Read more.
Visual field (VF) testing remains a cornerstone in assessing retinal function by measuring how well different parts of the retina detect light. It is essential for early detection, monitoring, and management of many retinal diseases. By mapping retinal sensitivity, VF exams can reveal functional loss before structural changes become visible. This review summarizes how VF testing is applied across key conditions: hydroxychloroquine (HCQ) retinopathy, age-related macular degeneration (AMD), diabetic retinopathy (DR) and macular edema (DME), and inherited disorders including inherited dystrophies such as retinitis pigmentosa (RP). Traditional methods like the Goldmann kinetic perimetry and simple tools such as the Amsler grid help identify large or central VF defects. Automated perimetry (e.g., Humphrey Field Analyzer) provides detailed, quantitative data critical for detecting subtle paracentral scotomas in HCQ retinopathy and central vision loss in AMD. Frequency-doubling technology (FDT) reveals early neural deficits in DR before blood vessel changes appear. Microperimetry offers precise, localized sensitivity maps for macular diseases. Despite its value, VF testing faces challenges including patient fatigue, variability in responses, and interpretation of unreliable results. Recent advances in artificial intelligence, virtual reality perimetry, and home-based perimetry systems are improving test accuracy, accessibility, and patient engagement. Integrating VF exams with these emerging technologies promises more personalized care, earlier intervention, and better long-term outcomes for patients with retinal disease. Full article
(This article belongs to the Special Issue New Advances in Retinal Diseases)
Show Figures

Figure 1

24 pages, 4249 KiB  
Article
Developing a Serious Video Game to Engage the Upper Limb Post-Stroke Rehabilitation
by Jaime A. Silva, Manuel F. Silva, Hélder P. Oliveira and Cláudia D. Rocha
Appl. Sci. 2025, 15(15), 8240; https://doi.org/10.3390/app15158240 - 24 Jul 2025
Viewed by 285
Abstract
Stroke often leads to severe motor impairment, especially in the upper limbs, greatly reducing a patient’s ability to perform daily tasks. Effective rehabilitation is essential to restore function and improve quality of life. Traditional therapies, while useful, may lack engagement, leading to low [...] Read more.
Stroke often leads to severe motor impairment, especially in the upper limbs, greatly reducing a patient’s ability to perform daily tasks. Effective rehabilitation is essential to restore function and improve quality of life. Traditional therapies, while useful, may lack engagement, leading to low motivation and poor adherence. Gamification—using game-like elements in non-game contexts—offers a promising way to make rehabilitation more engaging. The authors explore a gamified rehabilitation system designed in Unity 3D using a Kinect V2 camera. The game includes key features such as adjustable difficulty, real-time and predominantly positive feedback, user friendliness, and data tracking for progress. The evaluations were conducted with 18 healthy participants, most of whom had prior virtual reality experience. About 77% found the application highly motivating. While the gameplay was well received, the visual design was noted as lacking engagement. Importantly, all users agreed that the game offers a broad range of difficulty levels, making it accessible to various users. The results suggest that the system has strong potential to improve rehabilitation outcomes and encourage long-term use through enhanced motivation and interactivity. Full article
Show Figures

Figure 1

14 pages, 851 KiB  
Article
Evaluating Accuracy of Smartphone Facial Scanning System with Cone-Beam Computed Tomography Images
by Konstantinos Megkousidis, Elie Amm and Melih Motro
Bioengineering 2025, 12(8), 792; https://doi.org/10.3390/bioengineering12080792 - 23 Jul 2025
Viewed by 287
Abstract
Objectives: Facial soft tissue imaging is crucial in orthodontic treatment planning, and the structured light scanning technology found in the latest iPhone models constitutes a promising method. Currently, studies which evaluate the accuracy of smartphone-based three-dimensional (3D) facial scanners are scarce. This study [...] Read more.
Objectives: Facial soft tissue imaging is crucial in orthodontic treatment planning, and the structured light scanning technology found in the latest iPhone models constitutes a promising method. Currently, studies which evaluate the accuracy of smartphone-based three-dimensional (3D) facial scanners are scarce. This study compares smartphone scans with cone-beam computed tomography (CBCT) images. Materials and Methods: Three-dimensional images of 23 screened patients were captured with the camera of an iPhone 13 Pro Max and processed with the Scandy Pro application; CBCT scans were also taken as a standard of care. After establishing unique image pairs of the same patient, linear and angular measurements were compared between the images to assess the scanner’s two-dimensional trueness. Following the co-registration of the virtual models, a heat map was generated, and root mean square (RMS) deviations were calculated for quantitative assessment of 3D trueness. Precision was determined by comparing consecutive 3D facial scans of five participants, while intraobserver reliability was assessed by repeating measurements on five subjects after a two-week interval. Results: This study found no significant difference in soft tissue measurements between smartphone and CBCT images (p > 0.05). The mean absolute difference was 1.43 mm for the linear and 3.16° for the angular measurements. The mean RMS value was 1.47 mm. Intraobserver reliability and scanner precision were assessed, and the Intraclass Correlation Coefficients were found to be excellent. Conclusions: Smartphone facial scanners offer an accurate and reliable alternative to stereophotogrammetry systems, though clinicians should exercise caution when examining the lateral sections of those images due to inherent inaccuracies. Full article
(This article belongs to the Special Issue Orthodontic Biomechanics)
Show Figures

Figure 1

Back to TopTop