Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,634)

Search Parameters:
Keywords = viral outbreak

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1558 KiB  
Review
Managing Japanese Encephalitis Virus as a Veterinary Infectious Disease Through Animal Surveillance and One Health Control Strategies
by Jae-Yeon Park and Hye-Mi Lee
Life 2025, 15(8), 1260; https://doi.org/10.3390/life15081260 (registering DOI) - 7 Aug 2025
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne zoonotic flavivirus that circulates primarily within animal populations and occasionally spills over to humans, causing severe neurological disease. While humans are terminal hosts, veterinary species such as pigs and birds play essential roles in viral amplification [...] Read more.
Japanese encephalitis virus (JEV) is a mosquito-borne zoonotic flavivirus that circulates primarily within animal populations and occasionally spills over to humans, causing severe neurological disease. While humans are terminal hosts, veterinary species such as pigs and birds play essential roles in viral amplification and maintenance, making JEV fundamentally a veterinary infectious disease with zoonotic potential. This review summarizes the current understanding of JEV transmission dynamics from a veterinary and ecological perspective, emphasizing the roles of amplifying hosts and animal surveillance in controlling viral circulation. Recent genotype shifts and viral evolution have raised concerns regarding vaccine effectiveness and regional emergence. National surveillance systems and animal-based monitoring strategies are examined for their predictive value in detecting outbreaks early. Veterinary and human vaccination strategies are also reviewed, highlighting the importance of integrated One Health approaches. Advances in modeling and climate-responsive surveillance further underscore the dynamic and evolving landscape of JEV transmission. By managing the infection in animal reservoirs, veterinary interventions form the foundation of sustainable zoonotic disease control. Full article
Show Figures

Figure 1

23 pages, 1610 KiB  
Article
Unraveling the Systemic and Local Immune Response of Rainbow Trout (Oncorhynchus mykiss) to the Viral Hemorrhagic Septicemic Virus
by Mariana Vaz, Gonçalo Espregueira Themudo, Felipe Bolgenhagen Schöninger, Inês Carvalho, Carolina Tafalla, Patricia Díaz-Rosales, Lourenço Ramos-Pinto, Benjamín Costas and Marina Machado
Biology 2025, 14(8), 1003; https://doi.org/10.3390/biology14081003 - 5 Aug 2025
Abstract
Viral outbreaks have caused significant mortality and economic losses in aquaculture, highlighting the urgent need for effective therapies and a deeper understanding of antiviral and immune mechanisms in key species. This study investigates the constitutive and virus-induced antiviral responses in juvenile rainbow trout [...] Read more.
Viral outbreaks have caused significant mortality and economic losses in aquaculture, highlighting the urgent need for effective therapies and a deeper understanding of antiviral and immune mechanisms in key species. This study investigates the constitutive and virus-induced antiviral responses in juvenile rainbow trout (Oncorhynchus mykiss) following infection with viral hemorrhagic septicemia virus (VHSV). Trout (30 g) were infected by immersion with VHSV (TCID50 = 105 mL−1) for two hours. Samples were collected at 24, 72, and 120 h post-infection to assess hematology, innate immunity, viral load, and transcriptomic response. At 24 h post-infection, no immune response or increase in viral load was detected, suggesting the host had not yet recognized the virus and was still in the incubation phase. By 72 h, viral replication peaked, with high viral loads observed in mucosal tissues (skin and gills) and immune organs (kidney, spleen, liver), alongside strong up-regulation of antiviral genes, such as viperin. This gene maintained high expression through the final sampling point, indicating its key role in the antiviral response. At this stage, reduced immune competence was observed, marked by elevated nitric oxide and circulating thrombocytes. At 120 h, modest increases in peripheral monocyte, plasma lysozyme, and peroxidase activity were detected; however, these responses were insufficient to reduce viral load, suggesting the resolution phase had not yet begun. In summary, while a limited immune response was observed by the end of the trial, the consistent antiviral activity of viperin from peak infection to 120 h post-infection underscores its importance in the defence against VHSV in rainbow trout. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

12 pages, 472 KiB  
Communication
LAMPOX: A Portable and Rapid Molecular Diagnostic Assay for the Epidemic Clade IIb Mpox Virus Detection
by Anna Rosa Garbuglia, Mallory Draye, Silvia Pauciullo, Daniele Lapa, Eliana Specchiarello, Florence Nazé and Pascal Mertens
Diagnostics 2025, 15(15), 1959; https://doi.org/10.3390/diagnostics15151959 - 4 Aug 2025
Viewed by 178
Abstract
The global spread of Mpox virus (MPXV) underscores the urgent need for rapid, field-deployable diagnostic tools, especially in low-resource settings. We evaluated a loop-mediated isothermal amplification (LAMP) assay, termed LAMPOX, developed by Coris BioConcept. The assay was tested in three formats—two liquid versions [...] Read more.
The global spread of Mpox virus (MPXV) underscores the urgent need for rapid, field-deployable diagnostic tools, especially in low-resource settings. We evaluated a loop-mediated isothermal amplification (LAMP) assay, termed LAMPOX, developed by Coris BioConcept. The assay was tested in three formats—two liquid versions and a dried, ready-to-use version—targeting only the ORF F3L (Liquid V1) or both the ORF F3L and N4R (Liquid V2 and dried) genomic regions. Analytical sensitivity and specificity were assessed using 60 clinical samples from confirmed MPXV-positive patients. Sensitivity on clinical samples was 81.7% for Liquid V1 and 88.3% for Liquid V2. The dried LAMPOX assay demonstrated a sensitivity of 88.3% and a specificity of 100% in a panel of 112 negative controls, with most positive samples detected in under 7 min. Additionally, a simplified sample lysis protocol was developed to facilitate point-of-care use. While this method showed slightly reduced sensitivity compared to standard DNA extraction, it proved effective for samples with higher viral loads. The dried format offers key advantages, including ambient-temperature stability and minimal equipment needs, making it suitable for point-of-care testing. These findings support LAMPOX as a promising tool for rapid MPXV detection during outbreaks, especially in resource-limited settings where traditional PCR is impractical. Full article
Show Figures

Figure 1

13 pages, 1412 KiB  
Article
Person-to-Person Transmission During a Norovirus Outbreak in a Korean Kindergarten: A Retrospective Cohort Study
by Yongho Park, Hyelim Jang, Jieun Jang and Ji-Hyuk Park
Children 2025, 12(8), 1027; https://doi.org/10.3390/children12081027 - 4 Aug 2025
Viewed by 180
Abstract
Objectives: Norovirus outbreaks occur in densely populated environments, such as long-term care facilities, hospitals, and schools. On 22 October 2022, an outbreak of acute gastroenteritis was reported at a kindergarten in Korea. An epidemiologic investigation was conducted to identify the source of the [...] Read more.
Objectives: Norovirus outbreaks occur in densely populated environments, such as long-term care facilities, hospitals, and schools. On 22 October 2022, an outbreak of acute gastroenteritis was reported at a kindergarten in Korea. An epidemiologic investigation was conducted to identify the source of the infection and prevent further spread. Methods: Rectal swab and environmental samples were collected for bacterial and viral testing. A retrospective cohort study was conducted among 114 kindergarteners at the kindergarten. Relative risks (RRs) and 95% confidence intervals (CIs) were calculated to assess associations of contact with the primary case, as well as food and water consumption. Results: Of the kindergarteners, 28 out of 114 (24.6%) met the case definition. The primary case occurred on 19 October, and subsequent cases began on 21 October. Sharing the same four-year-old class as the primary case (RR, 2.56; 95% CI, 1.35–4.87), being in the same regular class (RR, 2.37; 95% CI, 1.27–4.41), being on the same floor during after-school class (RR, 3.49; 95% CI, 1.74–7.00), and attending the same English class (RR, 1.98; 95% CI, 1.05–3.72) were statistically significant. Consumption of drinking water on the third floor and fourth floor on 20 October had significantly higher and lower RRs, respectively. Norovirus was detected in 9 out of 18 rectal swab samples (50.0%). Conclusions: This norovirus outbreak at the kindergarten was presumed to have been caused by person-to-person transmission from the primary case. Isolation and restriction of symptomatic children in kindergartens should be thoroughly implemented. Additionally, enhanced surveillance among family members of affected individuals is necessary to prevent further outbreaks. Full article
(This article belongs to the Section Pediatric Infectious Diseases)
Show Figures

12 pages, 965 KiB  
Article
A Severe Form of Mpox Infection and the Current Epidemiological Status in Romania
by Anca Ruxandra Negru, David Valentin Mangaloiu, Ovidiu Vlaicu, Alexandra Cornovac, Violeta Molagic, Irina Duport-Dodot, Cătălin Tilișcan, Laurențiu Stratan, Adrian Marinescu, Lia Cavaropol, Mihaela Nicoleta Bercea, Andreea Marilena Păuna, Daniela Pițigoi, Victoria Aramă and Sorin-Stefan Aramă
Microorganisms 2025, 13(8), 1814; https://doi.org/10.3390/microorganisms13081814 - 3 Aug 2025
Viewed by 153
Abstract
Mpox has become a significant health concern since the global outbreak that began in 2022. The aim of this study is to present the epidemiological situation of Mpox in Romania during 2022–2023 and to describe a severe case of Mpox in a patient [...] Read more.
Mpox has become a significant health concern since the global outbreak that began in 2022. The aim of this study is to present the epidemiological situation of Mpox in Romania during 2022–2023 and to describe a severe case of Mpox in a patient who survived despite multiple co-pathologies. Forty-seven confirmed cases were reported at the national level, all in men, in 2022. The median age was 33 years. Twenty-six cases involved men who have sex with men (MSM), and twenty-three tested positive for HIV. We also describe a severe case involving a 34-year-old bisexual male with newly diagnosed AIDS who developed severe Mpox with persistent necrotic skin lesions, respiratory involvement, and multiple opportunistic infections: tuberculosis, pneumocystis pneumonia, syphilis, and oral candidiasis. The patient presented with fever, night sweats, weight loss, and dyspnea, with a single ulcerative facial lesion that later disseminated. Mpox infection was confirmed through PCR from skin lesion, serum, saliva, urine, rectal, nasal, and pharyngeal swab samples, with high viral loads persisting despite prolonged Tecovirimat therapy. The patient developed immune reconstitution inflammatory syndrome following the initiation of antiretroviral therapy. This case emphasizes the challenges of treating Mpox in immunocompromised patients. Full article
(This article belongs to the Special Issue Infectious Disease Surveillance in Romania)
Show Figures

Figure 1

19 pages, 8583 KiB  
Article
Development and Immunogenic Evaluation of a Recombinant Vesicular Stomatitis Virus Expressing Nipah Virus F and G Glycoproteins
by Huijuan Guo, Renqiang Liu, Dan Pan, Yijing Dang, Shuhuai Meng, Dan Shan, Xijun Wang, Jinying Ge, Zhigao Bu and Zhiyuan Wen
Viruses 2025, 17(8), 1070; https://doi.org/10.3390/v17081070 - 31 Jul 2025
Viewed by 307
Abstract
Nipah virus (NiV) is a highly pathogenic bat-borne zoonotic pathogen that poses a significant threat to human and animal health, with fatality rates exceeding 70% in some outbreaks. Despite its significant public health impact, there are currently no licensed vaccines or specific therapeutics [...] Read more.
Nipah virus (NiV) is a highly pathogenic bat-borne zoonotic pathogen that poses a significant threat to human and animal health, with fatality rates exceeding 70% in some outbreaks. Despite its significant public health impact, there are currently no licensed vaccines or specific therapeutics available. Various virological tools—such as reverse genetics systems, replicon particles, VSV-based pseudoviruses, and recombinant Cedar virus chimeras—have been widely used to study the molecular mechanisms of NiV and to support vaccine development. Building upon these platforms, we developed a replication-competent recombinant vesicular stomatitis virus (rVSVΔG-eGFP-NiVBD F/G) expressing NiV attachment (G) and fusion (F) glycoproteins. This recombinant virus serves as a valuable tool for investigating NiV entry mechanisms, cellular tropism, and immunogenicity. The virus was generated by replacing the VSV G protein with NiV F/G through reverse genetics, and protein incorporation was confirmed via immunofluorescence and electron microscopy. In vitro, the virus exhibited robust replication, characteristic cell tropism, and high viral titers in multiple cell lines. Neutralization assays showed that monoclonal antibodies HENV-26 and HENV-32 effectively neutralized the recombinant virus. Furthermore, immunization of golden hamsters with inactivated rVSVΔG-eGFP-NiVBD F/G induced potent neutralizing antibody responses, demonstrating its robust immunogenicity. These findings highlight rVSVΔG-eGFP-NiVBD F/G as an effective platform for NiV research and vaccine development. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

24 pages, 2310 KiB  
Review
Exploring the Use of Viral Vectors Pseudotyped with Viral Glycoproteins as Tools to Study Antibody-Mediated Neutralizing Activity
by Miguel Ramos-Cela, Vittoria Forconi, Roberta Antonelli, Alessandro Manenti and Emanuele Montomoli
Microorganisms 2025, 13(8), 1785; https://doi.org/10.3390/microorganisms13081785 - 31 Jul 2025
Viewed by 283
Abstract
Recent outbreaks of highly pathogenic human RNA viruses from probable zoonotic origin have highlighted the relevance of epidemic preparedness as a society. However, research in vaccinology and virology, as well as epidemiologic surveillance, is often constrained by the biological risk that live virus [...] Read more.
Recent outbreaks of highly pathogenic human RNA viruses from probable zoonotic origin have highlighted the relevance of epidemic preparedness as a society. However, research in vaccinology and virology, as well as epidemiologic surveillance, is often constrained by the biological risk that live virus experimentation entails. These also involve expensive costs, time-consuming procedures, and advanced personnel expertise, hampering market access for many drugs. Most of these drawbacks can be circumvented with the use of pseudotyped viruses, which are surrogate, non-pathogenic recombinant viral particles bearing the surface envelope protein of a virus of interest. Pseudotyped viruses significantly expand the research potential in virology, enabling the study of non-culturable or highly infectious pathogens in a safer environment. Most are derived from lentiviral vectors, which confer a series of advantages due to their superior efficiency. During the past decade, many studies employing pseudotyped viruses have evaluated the efficacy of vaccines or monoclonal antibodies for relevant pathogens such as HIV-1, Ebolavirus, Influenza virus, or SARS-CoV-2. In this review, we aim to provide an overview of the applications of pseudotyped viruses when evaluating the neutralization capacity of exposed individuals, or candidate vaccines and antivirals in both preclinical models and clinical trials, to further help develop effective countermeasures against emerging neutralization-escape phenotypes. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

20 pages, 732 KiB  
Review
AI Methods Tailored to Influenza, RSV, HIV, and SARS-CoV-2: A Focused Review
by Achilleas Livieratos, George C. Kagadis, Charalambos Gogos and Karolina Akinosoglou
Pathogens 2025, 14(8), 748; https://doi.org/10.3390/pathogens14080748 - 30 Jul 2025
Viewed by 430
Abstract
Artificial intelligence (AI) techniques—ranging from hybrid mechanistic–machine learning (ML) ensembles to gradient-boosted decision trees, support-vector machines, and deep neural networks—are transforming the management of seasonal influenza, respiratory syncytial virus (RSV), human immunodeficiency virus (HIV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Symptom-based [...] Read more.
Artificial intelligence (AI) techniques—ranging from hybrid mechanistic–machine learning (ML) ensembles to gradient-boosted decision trees, support-vector machines, and deep neural networks—are transforming the management of seasonal influenza, respiratory syncytial virus (RSV), human immunodeficiency virus (HIV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Symptom-based triage models using eXtreme Gradient Boosting (XGBoost) and Random Forests, as well as imaging classifiers built on convolutional neural networks (CNNs), have improved diagnostic accuracy across respiratory infections. Transformer-based architectures and social media surveillance pipelines have enabled real-time monitoring of COVID-19. In HIV research, support-vector machines (SVMs), logistic regression, and deep neural network (DNN) frameworks advance viral-protein classification and drug-resistance mapping, accelerating antiviral and vaccine discovery. Despite these successes, persistent challenges remain—data heterogeneity, limited model interpretability, hallucinations in large language models (LLMs), and infrastructure gaps in low-resource settings. We recommend standardized open-access data pipelines and integration of explainable-AI methodologies to ensure safe, equitable deployment of AI-driven interventions in future viral-outbreak responses. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

31 pages, 7303 KiB  
Review
Membrane-Targeting Antivirals
by Maxim S. Krasilnikov, Vladislav S. Denisov, Vladimir A. Korshun, Alexey V. Ustinov and Vera A. Alferova
Int. J. Mol. Sci. 2025, 26(15), 7276; https://doi.org/10.3390/ijms26157276 - 28 Jul 2025
Viewed by 283
Abstract
The vast majority of viruses causing human and animal diseases are enveloped—their virions contain an outer lipid bilayer originating from a host cell. Small molecule antivirals targeting the lipid bilayer cover the broadest spectrum of viruses. In this context, we consider the chemical [...] Read more.
The vast majority of viruses causing human and animal diseases are enveloped—their virions contain an outer lipid bilayer originating from a host cell. Small molecule antivirals targeting the lipid bilayer cover the broadest spectrum of viruses. In this context, we consider the chemical nature and mechanisms of action of membrane-targeting antivirals. They can affect virions by (1) physically modulating membrane properties to inhibit fusion of the viral envelope with the cell membrane, (2) physically affecting envelope lipids and proteins leading to membrane damage, pore formation and lysis, (3) causing photochemical damage of unsaturated membrane lipids resulting in integrity loss and fusion arrest. Other membrane-active compounds can target host cell membranes involved in virion’s maturation, coating, and egress (endoplasmic reticulum, Golgi apparatus, and outer membrane) affecting these last stages of viral reproduction. Both virion- and host-targeting membrane-active molecules are promising concepts for broad-spectrum antivirals. A panel of approved antivirals would be a superior weapon to respond to and control emerging disease outbreaks caused by new viral strains and variants. Full article
Show Figures

Figure 1

13 pages, 2039 KiB  
Article
Establishment of Singleplex and Duplex TaqMan RT-qPCR Detection Systems for Strawberry Mottle Virus (SMoV) and Strawberry Vein Banding Virus (SVBV)
by Tengfei Xu, Dehang Gao, Mengmeng Wu, Hongqing Wang and Chengyong He
Plants 2025, 14(15), 2330; https://doi.org/10.3390/plants14152330 - 27 Jul 2025
Viewed by 314
Abstract
SMoV and SVBV are two major viruses that pose significant threats to the global strawberry industry. Both are latent viruses, making early detection difficult due to their uneven distribution and low concentration in host tissues. Traditional RT-PCR techniques are insufficient for precise and [...] Read more.
SMoV and SVBV are two major viruses that pose significant threats to the global strawberry industry. Both are latent viruses, making early detection difficult due to their uneven distribution and low concentration in host tissues. Traditional RT-PCR techniques are insufficient for precise and quantitative detection. In this study, TaqMan RT-qPCR detection systems for SMoV and SVBV were established for application in practical production settings, enabling accurate, rapid, and efficient detection of strawberry viruses. When viral accumulation in plants is low, the highly sensitive TaqMan RT-qPCR technique allows for accurate quantification, facilitating the early identification of infected plants and preventing large-scale outbreaks in cultivation areas. The development of a duplex TaqMan RT-qPCR assay enables simultaneous quantification of SMoV and SVBV in a single reaction, improving detection efficiency and providing technical support for risk assessment and effective control of strawberry viral diseases. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

13 pages, 643 KiB  
Review
Heat Shock Protein 70 in Cold-Stressed Farm Animals: Implications for Viral Disease Seasonality
by Fanzhi Kong, Xinyue Zhang, Qi Xiao, Huilin Jia and Tengfei Jiang
Microorganisms 2025, 13(8), 1755; https://doi.org/10.3390/microorganisms13081755 - 27 Jul 2025
Viewed by 377
Abstract
The seasonal patterns of viral diseases in farm animals present significant challenges to global livestock productivity, with cold stress emerging as a potential modulator of host–pathogen interactions. This review synthesizes current knowledge on the expression dynamics of heat shock protein 70 (HSP70) in [...] Read more.
The seasonal patterns of viral diseases in farm animals present significant challenges to global livestock productivity, with cold stress emerging as a potential modulator of host–pathogen interactions. This review synthesizes current knowledge on the expression dynamics of heat shock protein 70 (HSP70) in farm animals under cold-stress conditions and its potential roles as (1) a viral replication facilitator and (2) an immune response regulator. This review highlights cold-induced HSP70 overexpression in essential organs, as well as its effects on significant virus life cycles, such as porcine epidemic diarrhea virus (PEDV), porcine reproductive and respiratory syndrome virus (PRRSV), and bovine viral diarrhea virus (BVDV), through processes like viral protein chaperoning, replication complex stabilization, and host defense modulation. By integrating insights from thermophysiology, virology, and immunology, we suggest that HSP70 serves as a crucial link between environmental stress and viral disease seasonality. We also discuss translational opportunities targeting HSP70 pathways to break the cycle of seasonal outbreaks, while addressing key knowledge gaps requiring further investigation. This article provides a framework for understanding climate-driven disease patterns and developing seasonally adjusted intervention strategies. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

18 pages, 11606 KiB  
Article
Emerging Highly Pathogenic Avian Influenza H5N1 Clade 2.3.4.4b Causes Neurological Disease and Mortality in Scavenging Ducks in Bangladesh
by Rokshana Parvin, Sumyea Binta Helal, Md Mohi Uddin, Shadia Tasnim, Md. Riabbel Hossain, Rupaida Akter Shila, Jahan Ara Begum, Mohammed Nooruzzaman, Ann Kathrin Ahrens, Timm Harder and Emdadul Haque Chowdhury
Vet. Sci. 2025, 12(8), 689; https://doi.org/10.3390/vetsci12080689 - 23 Jul 2025
Viewed by 509
Abstract
Scavenging domestic ducks significantly contribute to the transmission and maintenance of highly pathogenic H5N1 clade 2.3.4.4b avian influenza viruses in Bangladesh, a strain of growing global concern due to its broad host range, high pathogenicity, and spillover potential. This study investigates the molecular [...] Read more.
Scavenging domestic ducks significantly contribute to the transmission and maintenance of highly pathogenic H5N1 clade 2.3.4.4b avian influenza viruses in Bangladesh, a strain of growing global concern due to its broad host range, high pathogenicity, and spillover potential. This study investigates the molecular epidemiology and pathology of HPAI H5N1 viruses in unvaccinated scavenging ducks in Bangladesh, with the goal of assessing viral evolution and associated disease outcomes. Between June 2022 and March 2024, 40 scavenging duck flocks were investigated for HPAI outbreaks. Active HPAIV H5N1 infection was detected in 35% (14/40) of the flocks using RT-qPCR. Affected ducks exhibited clinical signs of incoordination, torticollis, and paralysis. Pathological examination revealed prominent meningoencephalitis, encephalopathy and encephalomalacia, along with widespread lesions in the trachea, lungs, liver, and spleen, indicative of systemic HPAIV infection. A phylogenetic analysis of full-genome sequences confirmed the continued circulation of clade 2.3.2.1a genotype G2 in these ducks. Notably, two samples of 2022 and 2023 harbored HPAIV H5N1 of clade 2.3.4.4b, showing genetic similarity to H5N1 strains circulating in Korea and Vietnam. A mutation analysis of the HA protein in clade 2.3.4.4b viruses revealed key substitutions, including T156A (loss of an N-linked glycosylation site), S141P (antigenic site A), and E193R/K (receptor-binding pocket), indicating potential antigenic drift and receptor-binding adaptation compared to clade 2.3.2.1a. The emergence of clade 2.3.4.4b with the first report of neurological and systemic lesions suggests ongoing viral evolution with increased pathogenic potential for ducks. These findings highlight the urgent need for enhanced surveillance and biosecurity to control HPAI spread in Bangladesh. Full article
Show Figures

Figure 1

17 pages, 1065 KiB  
Review
Kyasanur Forest Disease Virus: Epidemiological Insights, Pathogenesis, Therapeutic Strategies, and Advances in Vaccines and Diagnostics
by Babita Bohra, Kumar Saurabh Srivastava, Ayush Raj, Nabanita Pal and Rahul Shukla
Viruses 2025, 17(8), 1022; https://doi.org/10.3390/v17081022 - 22 Jul 2025
Viewed by 527
Abstract
Kyasanur Forest disease virus (KFDV), a tick-borne Orthoflavivirus endemic to the Indian subcontinent, is a public health threat due to its recurrent outbreaks and expanding geographic range. This review provides a comprehensive overview of KFDV, encompassing its epidemiological trends, transmission dynamics, and ecological [...] Read more.
Kyasanur Forest disease virus (KFDV), a tick-borne Orthoflavivirus endemic to the Indian subcontinent, is a public health threat due to its recurrent outbreaks and expanding geographic range. This review provides a comprehensive overview of KFDV, encompassing its epidemiological trends, transmission dynamics, and ecological determinants that influence its spread. We delve into the current understanding of KFDV pathogenesis, highlighting key viral and host factors that drive infection and disease progression. Despite the absence of targeted antiviral therapies, recent advances have spurred the development of candidate therapeutics, including broad-spectrum antivirals and immunomodulators. We also discuss progress in vaccine development, with an emphasis on the limitations of the existing formalin-inactivated vaccine and the promise of next-generation platforms. Furthermore, we explore recent innovations in diagnostics, including molecular and serological tools, that aim to improve early detection and surveillance. A multidisciplinary approach integrating virology, immunology, ecology, and public health is essential for the effective management and eventual control of KFDV outbreaks. Full article
Show Figures

Figure 1

9 pages, 592 KiB  
Article
Mpox Surveillance and Laboratory Response in Portugal: Lessons Learned from Three Outbreak Waves (2022–2025)
by Rita Cordeiro, Rafaela Francisco, Ana Pelerito, Isabel Lopes de Carvalho and Maria Sofia Núncio
Infect. Dis. Rep. 2025, 17(4), 86; https://doi.org/10.3390/idr17040086 - 21 Jul 2025
Viewed by 272
Abstract
Background/Objectives: Mpox re-emerged in 2022 as a global health concern. Between 2022 and 2025, Portugal experienced three distinct outbreak waves, highlighting the critical role of laboratory surveillance and public health interventions. This study describes the epidemiological trends, diagnostic performance, and key lessons [...] Read more.
Background/Objectives: Mpox re-emerged in 2022 as a global health concern. Between 2022 and 2025, Portugal experienced three distinct outbreak waves, highlighting the critical role of laboratory surveillance and public health interventions. This study describes the epidemiological trends, diagnostic performance, and key lessons learned to improve outbreak preparedness. Methods: A total of 5610 clinical samples from 2802 suspected cases were analyzed at the National Institute of Health Doutor Ricardo Jorge using real-time PCR methods. Positivity rates and viral loads (Ct values) were assessed across different clinical specimen types, including lesion, anal, oropharyngeal swabs, and urine samples. Results: Mpox was confirmed in 1202 patients. The first outbreak accounted for 79.3% of cases (n = 953), followed by a significant reduction in transmission during subsequent waves. Lesion and rectal swabs provided the highest diagnostic sensitivity (95.1% and 87.9%, respectively). Oropharyngeal swabs contributed to diagnosis in cases without visible lesions, while urine samples showed limited utility. Conclusions: This study underscores the importance of sustained laboratory surveillance and adaptive public health strategies in controlling mpox outbreaks. Optimizing specimen collection enhances diagnostic accuracy, supporting early detection. Continuous monitoring, combined with targeted vaccination and effective risk communication, is essential to prevent resurgence and ensure rapid response in non-endemic regions. Full article
Show Figures

Figure 1

23 pages, 39249 KiB  
Article
Single-Cell Atlas of Spleen Remodeling Reveals Macrophage Subset-Driven ASFV Pathogenesis
by Liyuan Wang, Shouzhang Sun, Lei Liu, Yun Chen, Haixue Zheng and Zhonglin Tang
Biology 2025, 14(7), 882; https://doi.org/10.3390/biology14070882 - 18 Jul 2025
Viewed by 438
Abstract
African swine fever virus (ASFV) causes global swine outbreaks, but its cellular pathogenesis is poorly understood. Using single-cell RNA data from ASFV-infected pig spleens across four timepoints, we identified macrophages as the primary viral reservoir, with infection driving lymphoid depletion and myeloid expansion. [...] Read more.
African swine fever virus (ASFV) causes global swine outbreaks, but its cellular pathogenesis is poorly understood. Using single-cell RNA data from ASFV-infected pig spleens across four timepoints, we identified macrophages as the primary viral reservoir, with infection driving lymphoid depletion and myeloid expansion. We characterized four functionally distinct macrophage subsets, including a metabolically reprogrammed SusceptibleMac population serving as the major viral niche and an AntiviralMac subset rapidly depleted during infection. Viral gene expression analysis revealed E165R as a central hub in viral replication networks, while host transcriptomics uncovered disruption of Netrin signaling pathways that may facilitate immune evasion. Pseudotime analysis revealed dynamic macrophage state transitions during infection. These findings provide a high-resolution cellular atlas of ASFV pathogenesis, revealing macrophage subset-specific responses that shape disease outcomes and identifying potential targets for therapeutic intervention. Full article
(This article belongs to the Special Issue Viral Infections in Animals: Pathogenesis and Immunity)
Show Figures

Figure 1

Back to TopTop