Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,696)

Search Parameters:
Keywords = viral infectious disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 332 KB  
Case Report
Bilateral Facial Palsy and Epstein–Barr Infection in Children: A Case Report and Literature Review
by Simone Pilloni, Camilla Maria Pisa, Giulia Zambonini, Nicoletta de Paulis, Susanna Esposito and Giacomo Biasucci
Viruses 2026, 18(2), 176; https://doi.org/10.3390/v18020176 - 28 Jan 2026
Abstract
Background: Bilateral facial nerve palsy (BFNP) is a rare clinical entity in children and is more often associated with systemic or infectious diseases than unilateral facial palsy. Epstein–Barr virus (EBV) infection is an uncommon but recognized cause of facial nerve palsy and may [...] Read more.
Background: Bilateral facial nerve palsy (BFNP) is a rare clinical entity in children and is more often associated with systemic or infectious diseases than unilateral facial palsy. Epstein–Barr virus (EBV) infection is an uncommon but recognized cause of facial nerve palsy and may present with bilateral involvement. Case presentation: We report the case of a 3-year-old boy who presented with progressive bilateral facial weakness following a febrile illness with pharyngitis and cervical lymphadenopathy. Neurological examination revealed complete bilateral facial paralysis (House–Brackmann grade VI). Laboratory investigations showed lymphocytosis and confirmed acute EBV infection through positive viral capsid antigen IgM and detectable EBV DNA in peripheral blood. Cerebrospinal fluid analysis demonstrated mild pleocytosis with negative EBV DNA. Brain magnetic resonance imaging revealed unilateral enhancement of the left facial nerve. Audiologic evaluation supported peripheral facial nerve dysfunction. The patient was treated with systemic corticosteroids, vitamin B complex supplementation, artificial tears, and speech therapy, resulting in gradual and substantial clinical improvement over five months. Discussion: A review of the pediatric literature identified only six previously reported cases of EBV-associated BFNP. The pathogenesis may involve either direct viral neurotropism or a post-infectious immune-mediated mechanism. Diagnostic evaluation is essential to exclude other serious causes of BFNP, particularly Lyme disease and Guillain–Barré syndrome. Conclusions: EBV infection should be considered in the differential diagnosis of BFNP in children. Prognosis is generally favorable, although recovery may be prolonged. Further studies are needed to clarify optimal diagnostic and therapeutic approaches. Full article
(This article belongs to the Special Issue EBV Infection and EBV-Associated Lymphomas in Children)
22 pages, 2376 KB  
Article
Genetically Shared Signatures Between COVID-19 and Cancer Identified Through In Silico Case–Control Analysis
by Ammar Yasir Ahmed Ahmed and Sevinç Akçay
Genes 2026, 17(2), 150; https://doi.org/10.3390/genes17020150 - 28 Jan 2026
Abstract
Background/Objectives: Cancer patients are highly susceptible to infectious diseases due to malignancy- and treatment-induced immunosuppression. The coronavirus disease 2019 (COVID-19) pandemic highlighted this vulnerability, particularly in aggressive tumors such as triple-negative breast cancer (TNBC) and clear cell renal cell carcinoma (ccRCC). However, the [...] Read more.
Background/Objectives: Cancer patients are highly susceptible to infectious diseases due to malignancy- and treatment-induced immunosuppression. The coronavirus disease 2019 (COVID-19) pandemic highlighted this vulnerability, particularly in aggressive tumors such as triple-negative breast cancer (TNBC) and clear cell renal cell carcinoma (ccRCC). However, the molecular mechanisms linking cancer progression with COVID-19 severity remain poorly defined. This study aimed to identify shared molecular signatures between COVID-19 and TNBC, breast cancer, and ccRCC using integrative bioinformatics approaches. Methods: A comprehensive in silico case–control analysis was conducted using publicly available GEO transcriptomic datasets (GSE164805, GSE139038, GSE45498, and GSE105261). Differentially expressed genes (DEGs) were identified by comparing mild and severe COVID-19 cases with each cancer type. Protein–protein interaction (PPI) networks were constructed to identify hub genes, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Regulatory networks involving microRNAs (miRNAs) and transcription factors (TFs) were also examined. Results: Shared hub genes were identified across COVID-19 and cancer datasets, including IGF1, MMP9, and NOTCH1 in TNBC; TOP2A, PXN, and CCNB1 in breast cancer; and ASPM and TTK in ccRCC. These genes are linked to immune regulation, inflammation, cell cycle control, and tumor progression. Enrichment analyses revealed convergent pathways such as MAPK signaling, cytokine–cytokine receptor interaction, Ras signaling, and proteoglycans in cancer. Key regulatory molecules, including miR-145-5p, miR-192-5p, miR-335-5p, and transcription factors NFKB1, BRCA1, and TP53, modulated both viral and oncogenic processes. Severe COVID-19 was associated with enhanced inflammatory and proliferation-related signaling across all cancer types. Conclusions: This integrative, severity-stratified analysis identifies shared molecular and regulatory features linking severe COVID-19 with aggressive cancers, highlighting persistent immune activation and altered immune communication as common underlying themes without implying causality or clinical outcome effects. These findings provide a systems-level, hypothesis-generating framework for understanding virus–cancer interactions and may inform future biomarker discovery and immune-focused therapeutic strategies in vulnerable cancer populations. Full article
(This article belongs to the Section Bioinformatics)
11 pages, 769 KB  
Article
Anti-Coxsackievirus B4 Activity of Serum and Saliva from Mice Exposed to the Virus via the Mucosal Route
by Chaldam Jespère Mbani, Magloire Pandoua Nekoua, Laurine Couture, Arthur Dechaumes, Cyril Debuysschere, Famara Sane, Enagnon Kazali Alidjinou, Donatien Moukassa and Didier Hober
Microorganisms 2026, 14(2), 289; https://doi.org/10.3390/microorganisms14020289 - 27 Jan 2026
Abstract
Coxsackieviruses B are single-stranded RNA viruses belonging to the Enterovirus genus and are associated with various clinical outcomes, ranging from acute infections to chronic diseases, such as type 1 diabetes (T1D). It was previously shown that inoculation of Swiss albino mice with CVB4 [...] Read more.
Coxsackieviruses B are single-stranded RNA viruses belonging to the Enterovirus genus and are associated with various clinical outcomes, ranging from acute infections to chronic diseases, such as type 1 diabetes (T1D). It was previously shown that inoculation of Swiss albino mice with CVB4 by the intraperitoneal route induced both anti-CVB4 neutralizing and enhancing activities of serum. This study aimed to investigate the humoral immune response of mice inoculated with CVB4 by the mucosal route. Mice were inoculated orally or intranasally with CVB4, and the anti-CVB4 neutralizing activity of serum and saliva was assessed by a cell culture neutralization assay. Anti-enterovirus (EV) IgG and IgA antibodies were detected in serum and saliva, respectively, by ELISA. The serum-dependent enhancement of CVB4 infection in cultures of murine splenocytes was evaluated by detecting intracellular viral RNA using RT-qPCR. At day 45 post-inoculation, an anti-CVB4 neutralizing activity, the extent of which depends on the amount of inoculated infectious particles, was detected in the serum of mice exposed orally or intranasally. An increase in anti-CVB4 neutralizing activity was observed in the saliva of mice inoculated orally or intranasally during the follow-up. Oral or intranasal inoculation of CVB4 induced a systemic IgG and mucosal IgA response. In addition, serum from these mice harbored an anti-CVB4 enhancing activity in vitro. These data indicate that Swiss albino mice exposed to CVB4 via the mucosal route constitute a potentially useful model for testing strategies to promote the production of protective mucosal and systemic anti-CVB4 antibodies and for verifying whether or not enhanced antibodies are produced. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

21 pages, 862 KB  
Review
Targeting the MR1-MAIT Cell Axis for Vaccination Against Infectious Disease
by Mattie S. M. Timmer, Lisa M. Connor and Bridget L. Stocker
Vaccines 2026, 14(2), 117; https://doi.org/10.3390/vaccines14020117 - 26 Jan 2026
Viewed by 23
Abstract
Mucosal-associated invariant T (MAIT) cells exist in high numbers in the body and have a unique and highly conserved T cell receptor (TCR). They can be activated in a TCR-dependent manner by ligands presented on the monomorphic protein MHC class I-related protein 1 [...] Read more.
Mucosal-associated invariant T (MAIT) cells exist in high numbers in the body and have a unique and highly conserved T cell receptor (TCR). They can be activated in a TCR-dependent manner by ligands presented on the monomorphic protein MHC class I-related protein 1 (MR1) which is found on many cell types, including professional antigen presenting cells (APCs) and epithelial cells. This has sparked interest in the potential to exploit the MR1-MAIT cell axis for the development of vaccines against infectious disease. Within this context an MR1 ligand, typically 5-(2-oxopropylideneamino)-d-ribitylaminouracil (5-OP-RU), is administered with or without a Toll-like receptor (TLR) ligand or cytokine in a pan vaccination approach that would prime the immune response to provide protection against a variety of bacterial and viral pathogens. This strategy has led to enhanced protection in murine models of Legionella longbeachae, Francisella tularensis, Klebsiella pneumoniae, Streptococcus pneumoniae and influenza infection. However, studies against Mycobacterium tuberculosis infection have proven less successful. The second vaccination approach involves pairing the MR1 ligand with more conventional antigens that could activate CD4+ and/or CD8+ T cells. This approach has been successful in murine models of cholera, influenza, and SARS-CoV-2, including in the context of subunit vaccines. However, there are several challenges when using MR1-MAIT cell-mediated vaccine adjuvants. These include the inherent instability of 5-OP-RU and the need for more advanced studies to better understand how the use of MR1 ligands would translate to applications in humans. This review will discuss these aspects and highlight the mechanistic studies that have been undertaken to understand how MAIT cells might elicit their effects within the context of MAIT cell-mediated vaccines for infectious disease. Full article
(This article belongs to the Special Issue Next-Generation Platforms for Vaccine Design and Immune Evaluation)
6 pages, 235 KB  
Communication
Screening for Antivirally Active Flavonoids Against Herpes Simplex Virus Type 2 and Influenza A Virus
by Jung-Bum Lee and Kyoko Hayashi
Compounds 2026, 6(1), 9; https://doi.org/10.3390/compounds6010009 - 23 Jan 2026
Viewed by 85
Abstract
The discovery of antiviral agents is an important research area because the world is increasingly exposed to the risk of viral infectious diseases. Herpes simplex virus type 2 (HSV-2) causes globally prevalent sexually transmitted diseases, and numerous individuals are living with HSV-2. Influenza [...] Read more.
The discovery of antiviral agents is an important research area because the world is increasingly exposed to the risk of viral infectious diseases. Herpes simplex virus type 2 (HSV-2) causes globally prevalent sexually transmitted diseases, and numerous individuals are living with HSV-2. Influenza A virus (IAV) causes annual epidemics and occasional pandemics, attracting great concern in public health. In this study, antiviral activities against HSV-2 and IAV of 103 flavonoids were screened. The screening identified cirsilineol and apigenin as active against HSV-2, while cirsimaritin and hymenoxin displayed anti-IAV activity. These flavonoids have the potential to serve as therapeutic candidates for viral infectious diseases. Full article
Show Figures

Figure 1

40 pages, 1207 KB  
Review
Tools to Quantify and Characterize the Persistent Reservoir in People with HIV-1: Focus on Non-B Subtypes
by Zora Sinay, Annefien Tiggeler, Robert-Jan Palstra and Tokameh Mahmoudi
Viruses 2026, 18(1), 110; https://doi.org/10.3390/v18010110 - 14 Jan 2026
Viewed by 557
Abstract
Human immunodeficiency virus type 1 (HIV-1) continues to be a major global health burden. Combination antiretroviral therapy (cART) effectively abrogates HIV-1 replication and has transformed HIV-1 infection from a fatal to chronic disease. While ART can suppress viremia to undetectable levels in people [...] Read more.
Human immunodeficiency virus type 1 (HIV-1) continues to be a major global health burden. Combination antiretroviral therapy (cART) effectively abrogates HIV-1 replication and has transformed HIV-1 infection from a fatal to chronic disease. While ART can suppress viremia to undetectable levels in people living with HIV-1 (PWH), a small reservoir of cells infected with replication-competent HIV-1 persists and can lead to viral rebound upon ART interruption. This persistent HIV-1 reservoir can be quantified and characterized by measuring replication of infectious HIV-1 using a quantitative viral outgrowth assay (qVOA), or by measuring HIV-1 DNA, RNA, or protein levels as a proxy for the reservoir. Tools to quantify the reservoir in these distinct molecular compartments have been developed for HIV-1 subtype B, which is predominant in the Global North. However, non-B subtypes constitute the majority of HIV-1 infections worldwide. Here, we discuss the wide range of reservoir quantitation and characterization tools, explore their limitations, and, where applicable, their adaptations to non-B subtypes. We conclude that standardized tools should be used to characterize reservoir dynamics of HIV-1 B and non-B subtypes. These tests should be well-validated and accessible to all laboratories world-wide to be able to draw conclusions about subtype-specific reservoir dynamics. Full article
(This article belongs to the Special Issue Regulation of HIV-1 Transcription and Latency, 2nd Edition)
Show Figures

Figure 1

29 pages, 7737 KB  
Article
The Regulation of Oxidative Stress Is a Conserved Response to RNA Virus Infection in Fish
by Alejandro Romero, Patricia Pereiro, Antonio Figueras and Beatriz Novoa
Antioxidants 2026, 15(1), 96; https://doi.org/10.3390/antiox15010096 - 12 Jan 2026
Viewed by 265
Abstract
RNA viruses are major pathogens in fish, causing high mortality and substantial economic losses in aquaculture. To uncover conserved antiviral mechanisms, we investigated the response of turbot (Scophthalmus maximus) to viral hemorrhagic septicemia virus (VHSV), infectious pancreatic necrosis virus (IPNV), and [...] Read more.
RNA viruses are major pathogens in fish, causing high mortality and substantial economic losses in aquaculture. To uncover conserved antiviral mechanisms, we investigated the response of turbot (Scophthalmus maximus) to viral hemorrhagic septicemia virus (VHSV), infectious pancreatic necrosis virus (IPNV), and red-spotted grouper nervous necrosis virus (RGNNV) using a comparative proteomic approach complemented by in vivo and in vitro functional assays. Proteomic analyses revealed the central, conserved role of proteins involved in reactive oxygen species (ROS) production and redox homeostasis during early infection. Functional assays using head kidney-derived leukocytes identified neutrophils and macrophages as the primary ROS producers and showed that the modulation of cytoplasmic and mitochondrial ROS, as well as ROS-dependent DNA release, follows virus-specific patterns. The pharmacological inhibition of NADPH oxidase and mitochondrial ROS significantly affected viral replication, demonstrating the direct role of ROS in viral pathogenicity. Collectively, these findings highlight redox modulation as a conserved host response in teleost fish during RNA virus infection, linking oxidative stress regulation to viral progression. This knowledge provides a foundation for developing broad-spectrum therapeutic or preventive strategies to enhance disease resistance and promote sustainable aquaculture. Full article
(This article belongs to the Special Issue Reactive Oxygen Species Signalling and Oxidative Stress in Fish)
Show Figures

Figure 1

20 pages, 2139 KB  
Review
Application of Orthoflavivirus Pseudovirus Technology in Antiviral Research
by Yalan Zhang, Yaqi Zhao, Chaojun Wang, Yuanyuan Zhou, Hao Yuan, Xiaodan Li, Yong Wang and Xiaoling Pan
Int. J. Mol. Sci. 2026, 27(2), 722; https://doi.org/10.3390/ijms27020722 - 10 Jan 2026
Viewed by 181
Abstract
Arthropod-borne orthoflaviviruses, including dengue, Zika, Japanese encephalitis, yellow fever and West Nile viruses, pose a significant global public health threat, causing hundreds of millions of infections annually with severe clinical symptoms. However, the lack of effective vaccines and antiviral drugs, coupled with the [...] Read more.
Arthropod-borne orthoflaviviruses, including dengue, Zika, Japanese encephalitis, yellow fever and West Nile viruses, pose a significant global public health threat, causing hundreds of millions of infections annually with severe clinical symptoms. However, the lack of effective vaccines and antiviral drugs, coupled with the biosafety risks associated with handling live highly pathogenic strains, hinders progress in antiviral research. Pseudovirus technology, which uses single-round infectious viral particles lacking replication competence, has thus gained prominence as a safe and versatile tool for antiviral research. This review systematically summarizes the construction, optimization, and applications of orthoflavivirus pseudoviruses in antiviral research. The primary construction strategies of orthoflavivirus pseudoviruses rely on multi-plasmid co-transfection of viral replicons and structural protein expression vectors, leveraging the host cell secretory pathway to mimic natural viral assembly and maturation. The core applications of pseudovirus technology are highlighted, including high-throughput screening and detection of neutralizing antibodies, identification of antiviral drugs targeting viral entry or replication, and evaluation of vaccine immunogenicity. Despite these strengths, the approach still faces limitations, such as incomplete simulation of native viral structures and batch-to-batch titer variability, which may affect the physiological relevance of findings. In summary, orthoflavivirus pseudovirus technology has become an essential platform in both basic virology research and translational medicine, providing critical insights and tools in the ongoing fight against arthropod-borne orthoflaviviruses diseases. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

28 pages, 2805 KB  
Review
Emerging Trends in Artificial Intelligence-Assisted Colorimetric Biosensors for Pathogen Diagnostics
by Muniyandi Maruthupandi and Nae Yoon Lee
Sensors 2026, 26(2), 439; https://doi.org/10.3390/s26020439 - 9 Jan 2026
Viewed by 325
Abstract
Infectious diseases caused by bacterial and viral pathogens remain a major global threat, particularly in areas with limited diagnostic resources. Conventional optical techniques are time-consuming, prone to operator errors, and require sophisticated instruments. Colorimetric biosensors, which convert biorecognitive processes into visible color changes, [...] Read more.
Infectious diseases caused by bacterial and viral pathogens remain a major global threat, particularly in areas with limited diagnostic resources. Conventional optical techniques are time-consuming, prone to operator errors, and require sophisticated instruments. Colorimetric biosensors, which convert biorecognitive processes into visible color changes, enable simple and low-cost point-of-care testing. Artificial intelligence (AI) enhances decision-making by enabling learning, training, and pattern recognition. Machine learning (ML) and deep learning (DL) improve diagnostic accuracy, but they do not autonomously adapt and are pre-trained on complex color variation, whereas traditional computer-based methods lack analysis ability. This review summarizes major pathogens in terms of their types, toxicity, and infection-related mortality, while highlighting research gaps between conventional optical biosensors and emerging AI-assisted colorimetric approaches. Recent advances in AI models, such as ML and DL algorithms, are discussed with a focus on their applications to clinical samples over the past five years. Finally, we propose a prospective direction for developing robust, explainable, and smartphone-compatible AI-assisted assays to support rapid, accurate, and user-friendly pathogen detection for health and clinical applications. This review provides a comprehensive overview of the AI models available to assist physicians and researchers in selecting the most effective method for pathogen detection. Full article
(This article belongs to the Special Issue Colorimetric Sensors: Methods and Applications (2nd Edition))
Show Figures

Figure 1

11 pages, 258 KB  
Review
A Paediatric Perspective: Opportunities and Challenges in Emergency Department Antimicrobial Stewardship
by Karen N. McCarthy, Kara Tedford and Eimear Kitt
Antibiotics 2026, 15(1), 71; https://doi.org/10.3390/antibiotics15010071 - 9 Jan 2026
Viewed by 238
Abstract
The Emergency Department (ED) represents an ideal location for antimicrobial stewardship (AMS) intervention, given the large volume of antibiotics seen prescribed to a wide variety of patients. This is particularly true in paediatrics, where most infectious presentations are viral in nature. A recent [...] Read more.
The Emergency Department (ED) represents an ideal location for antimicrobial stewardship (AMS) intervention, given the large volume of antibiotics seen prescribed to a wide variety of patients. This is particularly true in paediatrics, where most infectious presentations are viral in nature. A recent European Society of Clinical Microbiology and Infectious Diseases (ESCMID) position paper addressed four key areas affecting adult ED. This included: (1) the utility of biomarkers or rapid pathogen tests, (2) the impact of blood cultures on antibiotic prescribing, (3) the effect of watchful waiting on clinical outcomes, and (4) the potential for structured follow-up programmes within the ED to impact prescribing. Comparatively, the paediatric ED remains underrepresented in the literature with regard to AMS interventions. In this review article, we review the evidence surrounding the above four key areas as they relate to the paediatric population. Full article
22 pages, 4979 KB  
Article
Investigating the Potential Role of Capsaicin in Facilitating the Spread of Coxsackievirus B3 via Extracellular Vesicles
by Shruti Chatterjee, Ramina Kordbacheh, Haylee Tilley, Devin Briordy, Richard T. Waldron, William D. Cutts, Jayden Aleman, Alexis Cook, Raeesa Dhanji, Lok-Yin Roy Wong, Stephen J. Pandol, Brandon J. Kim, DeLisa Fairweather and Jon Sin
Int. J. Mol. Sci. 2026, 27(2), 661; https://doi.org/10.3390/ijms27020661 - 9 Jan 2026
Viewed by 199
Abstract
Coxsackievirus B3 (CVB3) is a picornavirus that causes systemic inflammatory diseases including myocarditis, pericarditis, pancreatitis, and meningoencephalitis. We have previously reported that CVB3 induces mitochondrial fission and mitophagy while inhibiting lysosomal degradation by blocking autophagosome-lysosome fusion. This promotes the release of virus-laden mitophagosomes [...] Read more.
Coxsackievirus B3 (CVB3) is a picornavirus that causes systemic inflammatory diseases including myocarditis, pericarditis, pancreatitis, and meningoencephalitis. We have previously reported that CVB3 induces mitochondrial fission and mitophagy while inhibiting lysosomal degradation by blocking autophagosome-lysosome fusion. This promotes the release of virus-laden mitophagosomes from host cells as infectious extracellular vesicles (EVs), enabling non-lytic viral egress. Transient receptor potential vanilloid 1 (TRPV1), a heat and capsaicin-sensitive cation channel, regulates mitochondrial dynamics by inducing mitochondrial membrane depolarization and fission. In this study, we found that TRPV1 activation by capsaicin dramatically enhances CVB3 egress from host cells via EVs. Released EVs revealed increased levels of viral capsid protein VP1, mitochondrial protein TOM70, and fission protein phospho-DRP1. Moreover, these EVs were enriched in heat shock protein HSP70, suggesting its role in facilitating infectious EV release from cells. Furthermore, TRPV1 inhibition with capsazepine and SB-366791 significantly reduced viral infection in vitro. Our in vivo studies also found that SB-366791 significantly mitigates pancreatic damage and reduces viral titers in a mouse model of CVB3 pancreatitis. Given the lack of understanding regarding factors that contribute to diverse clinical manifestations of CVB3, our study highlights capsaicin and TRPV1 as potential exacerbating factors that facilitate CVB3 dissemination via mitophagy-derived EVs. Full article
Show Figures

Figure 1

16 pages, 1064 KB  
Article
Identifying Laboratory Parameters Profiles of COVID-19 and Influenza in Children: A Decision Tree Model
by George Maniu, Ioana Octavia Matacuta-Bogdan, Ioana Boeras, Grażyna Suchacka, Ionela Maniu and Maria Totan
Appl. Sci. 2026, 16(2), 668; https://doi.org/10.3390/app16020668 - 8 Jan 2026
Viewed by 196
Abstract
Background: The COVID-19 pandemic has put other infectious diseases, especially in children, into a new perspective. Our study focuses on two important viral infections: COVID-19 and influenza, which often present with similar clinical symptoms. Taking into consideration that the pathophysiology and systemic impact [...] Read more.
Background: The COVID-19 pandemic has put other infectious diseases, especially in children, into a new perspective. Our study focuses on two important viral infections: COVID-19 and influenza, which often present with similar clinical symptoms. Taking into consideration that the pathophysiology and systemic impact of the two viruses are distinct, which can lead to measurable differences in laboratory values, this study aimed to analyze laboratory features that differentiate between COVID-19 and influenza virus infections in pediatric patients. Methods: We statistically analyzed the routinely available laboratory data of 98 patients with influenza virus and 78 patients with COVID-19. Afterwards, the classification and regression tree (CART) method was performed to identify specific clinical scenarios, based on multilevel interactions of different features that could assist clinicians in evidence-based differentiation. Results: Significant differences between the two groups were observed in ALT, eosinophils, hemoglobin, and creatinine. Influenza-infected infants presented significantly higher leukocyte, neutrophil, and basophil counts compared to infants infected with COVID-19. Regarding children (over 12 months), significantly lower levels of ALT and eosinophil counts were observed in those with influenza compared to those with COVID-19. Furthermore, the CART decision tree model identified distinct profiles based on a combination of features such as age, leukocytes, lymphocytes, platelets, and neutrophils. Conclusions: After further refinement and application, such machine learning-based, evidence-driven models, considering the large scale of clinical and laboratory variables, might help to improve, support, and sustain healthcare practices. The differential decision tree may contribute to enhanced clinical risk assessment and decision making. Full article
Show Figures

Figure 1

13 pages, 1447 KB  
Article
Longitudinal Wastewater-Based Epidemiology Reveals the Spatiotemporal Dynamics and Genotype Diversity of Diarrheal Viruses in Urban Guangdong, China
by Shuling Li, Jiadian Cao, Yuxi Yan, Wenwen Deng, Yuwei He, Siling Xiang, Chuting Zeng, Heshi Long, Shuxian Li, Qiao Yao, Biao Zeng, Baisheng Li, Song Tang and Jing Lu
Viruses 2026, 18(1), 83; https://doi.org/10.3390/v18010083 - 8 Jan 2026
Viewed by 332
Abstract
Following the normalization of the COVID-19 pandemic, the focus of wastewater-based epidemiology (WBE) must be broadened from SARS-CoV-2 to encompass surveillance of other major infectious diseases, particularly for pathogens where conventional clinical monitoring systems exhibit inherent surveillance gaps. In this study, we conducted [...] Read more.
Following the normalization of the COVID-19 pandemic, the focus of wastewater-based epidemiology (WBE) must be broadened from SARS-CoV-2 to encompass surveillance of other major infectious diseases, particularly for pathogens where conventional clinical monitoring systems exhibit inherent surveillance gaps. In this study, we conducted a continuous two-year WBE study (January 2023 to December 2024) across three high-population-density cities in Guangdong, China to establish epidemiological baselines for enteric diarrheal viruses. We analyzed monthly raw wastewater samples from major treatment plants using advanced molecular methods, including digital PCR (ddPCR) for viral load quantification and targeted high-throughput sequencing (tNGS) for genotypic analysis. Our findings revealed diverse circulation patterns among the monitored enteric viruses. Astrovirus (AstV) had the highest detection rate (100%), reflecting its broad endemic distribution, while Norovirus genogroup II (NoV GII) exhibited relatively high viral loads (median 4 × 104 copies/mL) and presented explosive seasonal peaks (significant upward trend in spring.), highlighting its epidemic potential. Furthermore, distinct spatiotemporal patterns were observed, with Sapovirus showing a significant summer peak in Foshan city, contrasting with the winter/spring peaks in the other cities. The tNGS results demonstrated similar sensitivity to RT-PCR in virus detection, and sequencing analyses uncovered the co-circulation and periodic shifts in dominant viral genotypes, such as the emergence of multiple NoV and AstV lineages. This longitudinal WBE surveillance successfully established critical baseline data and demonstrated significant regional heterogeneity in viral circulation, providing essential, complementary data to inform public health strategies for preventing diarrheal outbreaks in urban settings. Full article
Show Figures

Graphical abstract

17 pages, 922 KB  
Article
Demographics and Prevalence of HBV, HCV, and Syphilis Among the Female Sex Workers of Daulatdia, Bangladesh: A Cross-Sectional Study
by Md. Ahsanul Haque, Rahima Begum, Md. Zulfekar Ali, Dewan Zubaer Islam, Ashikur Rahman, Ismail Khalil and Shahad Saif Khandker
Venereology 2026, 5(1), 3; https://doi.org/10.3390/venereology5010003 - 7 Jan 2026
Viewed by 540
Abstract
Background: In Bangladesh, a number of sex workers are involved in commercial sex work in different brothels in both legal and illegal settlements due to reasons such as lack of social support, depression, forced sex, abuse, violence, polyamory, being kidnapped, and unemployment. [...] Read more.
Background: In Bangladesh, a number of sex workers are involved in commercial sex work in different brothels in both legal and illegal settlements due to reasons such as lack of social support, depression, forced sex, abuse, violence, polyamory, being kidnapped, and unemployment. In this study, we tried to evaluate the demographic characteristics and prevalence of viral and sexually transmitted diseases (STDs) among the study population. Methods: A total of 250 female sex workers were interviewed and tested from the Daulatdia brothel of Rajbari district, Bangladesh, who had been working there for at least 1 month. Through questionnaires, demographic data were collected. Primarily, lateral flow immunoassay (LFIA) tests were used to investigate HCV (Hepatitis C Virus), HBV (Hepatitis B Virus), and Syphilis, which were reconfirmed using enzyme-linked immunosorbent assay (ELISA) in cases of positive results. Results: The mean age was 27.51 ± 6.69 years with a range of 18–50 years. Most of them (n = 243, 97.98%) had elementary knowledge of STDs. We determined that overall, 96 (38.40%) were positive for either of these diseases. Individually, 10 (4.00%), 18 (7.20%), and 68 (27.20%) were positive for HCV, HBV, and syphilis, respectively. Conclusions: Our observation indicates that females of all ages should be strictly protected from forced sex work. Current sex workers should be educated regarding the dangers and protective mechanisms of STDs. In addition, as a public health concern, regular clinical check-ups and STD associated diagnoses are necessary to ensure the safety of FSW from these highly infectious and concerning diseases. Due to their socio-economic condition, proper treatment and rehabilitation are highly recommended. Full article
Show Figures

Figure 1

17 pages, 6095 KB  
Article
Molecular Characteristics and Pathogenicity Analysis of Bovine Viral Diarrhea Virus Strain Isolated from Persistently Infected Cattle
by Jiaxing Zhong, Fen Sun, Ming Zhou, Kaiqiang Fu and Hongjun Yang
Animals 2026, 16(1), 153; https://doi.org/10.3390/ani16010153 - 5 Jan 2026
Viewed by 303
Abstract
Bovine viral diarrhea virus (BVDV) primarily causes bovine viral diarrhea/mucosal disease, an infectious disease having a significant economic impact on the cattle-farming industry globally. Comprehensive monitoring and in-depth studies of the pathological characteristics of viruses are crucial in formulating effective prevention and control [...] Read more.
Bovine viral diarrhea virus (BVDV) primarily causes bovine viral diarrhea/mucosal disease, an infectious disease having a significant economic impact on the cattle-farming industry globally. Comprehensive monitoring and in-depth studies of the pathological characteristics of viruses are crucial in formulating effective prevention and control strategies. The isolation, identification, molecular characterization, and pathogenicity analysis of a BVDV strain isolated from persistently infected cattle ear tissue samples are reported in this study. This newly isolated strain is a noncytopathogenic BVDV, which we named HB2411. Homology between the HB2411 and U63479 strains was determined to be 96.7%, and the phylogenetic tree indicated that HB2411 belongs to the BVDV-1b subtype. Genetic variation analysis of the E2 protein of the HB2411 strain revealed multiple amino-acid mutation sites. Recombination analysis of the newly isolated HB2411 strain suggested a potential cross-geographical transmission event. BALB/c mice were intraperitoneally inoculated with the BVDV strain to evaluate the pathogenicity and virulence of BVDV-1b HB2411. BVDV was detected in multiple organs of BALB/c mice, with the highest viral load in the liver. BVDV infection promoted the expression of inflammatory cytokines in mice livers, necessitating further studies on the virulence and pathogenic mechanisms of this new strain to reduce economic losses caused to the animal husbandry industry. Full article
(This article belongs to the Collection Cattle Diseases)
Show Figures

Figure 1

Back to TopTop