Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (275)

Search Parameters:
Keywords = viral RNA accumulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6867 KB  
Article
A Polycistronic tRNA-amiRNA System Reveals the Antiviral Roles of NbAGO1a/1b/2 Against Soybean mosaic virus Infection
by Wenhua Bao, Danyang Sun, Yan Qiu, Xiaoke Zhao and Hada Wuriyanghan
Plants 2025, 14(24), 3724; https://doi.org/10.3390/plants14243724 - 6 Dec 2025
Viewed by 462
Abstract
RNA interference (RNAi) is a crucial antiviral defense mechanism in plants, where Argonaute (AGO) proteins play a central role. However, the function of AGO proteins in the interaction between Soybean mosaic virus (SMV) and Nicotiana benthamiana remains unclear. In this study, SMV pathogenicity [...] Read more.
RNA interference (RNAi) is a crucial antiviral defense mechanism in plants, where Argonaute (AGO) proteins play a central role. However, the function of AGO proteins in the interaction between Soybean mosaic virus (SMV) and Nicotiana benthamiana remains unclear. In this study, SMV pathogenicity was confirmed using an SMV-GFP infectious clone, with typical symptoms and systemic GFP fluorescence observed 14 days post-inoculation. Real-time quantitative reverse transcription polymerase chain reaction analysis revealed dynamic regulation of multiple NbAGO genes upon infection. Notably, NbAGO1a, NbAGO1b, and NbAGO2 were significantly upregulated and positively correlated with viral accumulation, suggesting their critical roles in antiviral defense. Based on these findings, these three genes were selected as targets for artificial microRNA (amiRNA) silencing. Three amiRNAs were designed for each gene using the Arabidopsis miR1596 backbone, with the most effective sequences exhibiting silencing efficiencies ranging from 75.2% to 98.1%. A polycistronic tRNA-amiRNA (PTA) cassette was constructed using Golden Gate cloning technology to simultaneously target all three genes. Co-infection assays indicated that the PTA cassette enhanced SMV accumulation more effectively than single amiRNAs, as evidenced by increased GFP fluorescence (49.1–60.5%) and pronounced leaf necrosis. The PTA system downregulated the expression of NbAGO1a, NbAGO1b, and NbAGO2 by 18.4–26.7%. Furthermore, silencing NbAGO2 alone resulted in severe necrosis, underscoring its essential role in this antiviral defense mechanism. This study elucidates the importance of NbAGO1a, NbAGO1b, and NbAGO2 in antiviral immunity and demonstrates the utility of the PTA system for efficient multi-gene silencing, offering valuable insights for developing RNAi-based antiviral strategies. Full article
(This article belongs to the Special Issue Advances in Plant Molecular Biology and Gene Function)
Show Figures

Figure 1

22 pages, 10770 KB  
Article
Infection Dynamics and Host Responses to Two IPNV Isolates in Liver of Atlantic Salmon (Salmo salar)
by Valeria Aguilar Quiñones, Fabian Grammes, Victor Boyartchuk and Jacob Seilø Torgersen
Pathogens 2025, 14(12), 1245; https://doi.org/10.3390/pathogens14121245 - 5 Dec 2025
Viewed by 462
Abstract
The infectious pancreatic necrosis virus (IPNV) used to be one of the largest loss factors in Atlantic salmon farming. Since 2009, marker-assisted selection for resistance to IPN, targeting a single major quantitative trait locus (QTL), has led to a ten-fold decrease in the [...] Read more.
The infectious pancreatic necrosis virus (IPNV) used to be one of the largest loss factors in Atlantic salmon farming. Since 2009, marker-assisted selection for resistance to IPN, targeting a single major quantitative trait locus (QTL), has led to a ten-fold decrease in the number of IPN outbreaks in Norway. However, some IPN-related problems remain, due to isolates of the virus which seem to bypass the resistance mechanism of the QTL. We comparatively characterized a classical isolate affected by the IPN-QTL (cIPNV) and an isolate that circumvents the QTL-based protection (rIPNV). Using both in vivo and in vitro challenges, the viral infection dynamics and host responses were evaluated by RT-qPCR and by gene ontology (GO) enrichment analysis from the RNA sequencing data of infected hepatocytes and the whole liver. Overall, cIPNV showed rapid replication with pronounced lytic cytopathology and enrichment for DNA damage, apoptosis and cell cycle disruption GO terms, while rIPNV exhibited slower accumulation of viral RNA and a transcriptional footprint consistent with pro-survival states in hepatocytes. While further research is needed to resolve the causality of QTL evasion, this work provides a first characterization of the pathogenicity of emerging QTL-insensitive IPNV isolates. Full article
(This article belongs to the Special Issue Infectious Diseases in Aquatic Animals)
Show Figures

Graphical abstract

15 pages, 2515 KB  
Article
CC-90009, a Cereblon E3 Ligase Modulator, Exhibits Antiviral Efficacy Against JEV In Vitro and In Vivo via Targeted Degradation of GSPT1 and Viral NS5 Protein
by Zhiwei He, Yibo Chen, Binghui Xia, Zimeng Cheng, Ping Zhao, Zhongtian Qi and Yongzhe Zhu
Pharmaceutics 2025, 17(12), 1524; https://doi.org/10.3390/pharmaceutics17121524 - 27 Nov 2025
Viewed by 550
Abstract
Background: Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, remains a leading cause of viral encephalitis. Current management is largely supportive, with no specific antivirals. This study evaluated the antiviral efficacy and mechanism of action of CC-90009 against JEV in vitro and in vivo. [...] Read more.
Background: Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, remains a leading cause of viral encephalitis. Current management is largely supportive, with no specific antivirals. This study evaluated the antiviral efficacy and mechanism of action of CC-90009 against JEV in vitro and in vivo. Methods: Five targeted protein degraders (TPDs) were screened for anti-JEV activity in the human neuroblastoma cell line SH-SY5Y. Time-of-addition, binding, and endocytosis assays were used to delineate the phase of action of CC-90009, a cereblon (CRBN) E3 ligase modulator (CELMoD) and molecular glue degrader. Small interfering RNA knockdown and co-immunoprecipitation (Co-IP) confirmed targets essential for its antiviral effects. The broad-spectrum activity of CC-90009 against other mosquito-borne viruses was also evaluated. In vivo efficacy was tested in a murine JEV model. Results: Of the five TPDs tested, only CC-90009 significantly inhibited JEV infection in SH-SY5Y cells, acting during both viral entry and post-entry phases without reducing adsorbed or internalised virions. CC-90009 reduced JEV RNA and non-structural protein accumulation. Knockdown of G1-to-S phase transition 1 (GSPT1), a key target of CC-90009, suppressed JEV infection and translation; Co-IP confirmed GSPT1 interaction with JEV non-structural protein 5 (NS5). CC-90009 disrupted JEV translation and replication by inducing proteasomal degradation of the GSPT1/NS5 complex, further demonstrating its broad-spectrum antiviral activity through the effective inhibition of West Nile virus and chikungunya virus. In vivo, it protected mice from JEV-induced mortality, reducing viral load, antigen levels, and brain pathology. Conclusions: CC-90009 exerts potent anti-JEV activity both in vitro and in vivo by inducing proteasomal degradation of the GSPT1/NS5 complex, thereby disrupting viral translation and replication. This targeted protein degradation strategy represents a novel host-directed antiviral approach with promising therapeutic potential against mosquito-borne viral encephalitis. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

11 pages, 1092 KB  
Article
ZPR1 Is Dispensable for HPV R-Loop Resolution but Regulates Host R-Loop Dynamics
by Rylann Moffitt, Steven Brooks, Elliot J. Androphy and Marsha DeSmet
Viruses 2025, 17(11), 1502; https://doi.org/10.3390/v17111502 - 13 Nov 2025
Viewed by 625
Abstract
The human papillomavirus (HPV) is a small, non-enveloped virus with a circular double-stranded DNA genome. The HPV genome encodes the E2 activator protein, which is required for viral transcription. R-loops are triple-stranded nucleic acid structures that occur when newly synthesized single-stranded RNA anneals [...] Read more.
The human papillomavirus (HPV) is a small, non-enveloped virus with a circular double-stranded DNA genome. The HPV genome encodes the E2 activator protein, which is required for viral transcription. R-loops are triple-stranded nucleic acid structures that occur when newly synthesized single-stranded RNA anneals to duplex DNA. These structures form during papillomavirus transcription. We and others have demonstrated that resolution of viral R loops is crucial for HPV episomal maintenance. ZPR1 is a zinc finger protein that can recruit SETX to mammalian R-loops to mediate resolution. E2 binds to and recruits SETX, an R-loop helicase, to the viral promoter. We observed E2 in complex with SETX and ZPR1. However, we found that ZPR1 depletion decreased viral R-loops while enhancing cellular R-loops. ZPR1 depletion also increased SETX binding to the viral promoter. These data suggest that ZPR1 is not required for HPV R-loop resolution, in contrast to what has been observed in mammalian cells. We detected the E2 protein associated with R-loops and found that E2 overexpression increases cell-derived R-loop formation. Analysis of TCGA datasets revealed that ZPR1, but not SETX, mRNA expression is significantly reduced in HPV-positive cervical and head and neck cancers. Together, these findings indicate that while E2 mediates HPV R-loop resolution, it also promotes R-loop accumulation in the host genome, likely through SETX sequestration. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

12 pages, 2311 KB  
Article
HC-Pro Disrupts miR319–TCP Regulatory Pathways to Induce Sterility in Transgenic Plants
by Taicheng Jin, Weiyan Wang, Jiaxue Yu, Zhuyi Xiao, Yushuo Li, Xu Sun and Liping Yang
Int. J. Mol. Sci. 2025, 26(21), 10551; https://doi.org/10.3390/ijms262110551 - 30 Oct 2025
Viewed by 414
Abstract
Helper component-proteinase (HC-Pro), encoded by tobacco vein banding mosaic virus (TVBMV), can cause various viral symptoms and even abortion. HC-Pro counteracts host-mediated inhibition by interfering with the accumulation of microRNAs (miRNAs) and small interfering RNAs (siRNAs). However, it is unclear whether the abortion [...] Read more.
Helper component-proteinase (HC-Pro), encoded by tobacco vein banding mosaic virus (TVBMV), can cause various viral symptoms and even abortion. HC-Pro counteracts host-mediated inhibition by interfering with the accumulation of microRNAs (miRNAs) and small interfering RNAs (siRNAs). However, it is unclear whether the abortion phenotype of transgenic plants expressing HC-Pro is related to the abnormal expression of TEOSINTE BRANCHED 1/CYCLOIDEA/PROLIFERATING cell factors (TCPs), which are involved in regulating fertility. In this study, the molecular mechanisms through which HC-Pro causes various sterile phenotypes in plants were investigated. Reverse transcription–quantitative polymerase chain reaction (RT–qPCR) and Northern blotting revealed that in HC-Pro transgenic plants, the expression levels of TCP4 and TCP24 significantly increased. The increased expression of TCP4 further upregulated LIPOXYGENASE2 (LOX2), a gene encoding a key enzyme in the synthesis of jasmonic acid (JA) precursors. Further studies confirmed that the aberrant expression of TCP3, TCP4 and TCP24 blocks the elongation of petals and anthers and that the aberrant expression of TCP4 and TCP24 blocks the release of pollen. This study demonstrated that HC-Pro affects the expression levels of the miR319-targeted genes TCP2, TCP3, TCP4, TCP10 and TCP24, thereby affecting the normal development of floral organs and resulting in plant abortion. Both tobacco and Arabidopsis thaliana were used as model systems in this study on virus-mediated fertility, which provides important information for understanding how viral pathogenicity affects the regulation of fertility in crops. Full article
Show Figures

Figure 1

20 pages, 8426 KB  
Article
Metabolomic Profile of Weight Gain of People Living with HIV Treated with Integrase Strand Transfer Inhibitor Regimens Reveals Dysregulated Lipid Metabolism and Mitochondrial Dysfunction
by Ana Miriam Ascencio-Anastacio, Violeta Larios-Serrato, José Antonio Mata-Marín, Mara Rodríguez Evaristo, Mireya Núñez-Armendáriz, Ana Luz Cano-Díaz, Alberto Chaparro-Sánchez, Gloria Elizabeth Salinas-Velázquez, Angélica Maldonado-Rodríguez, Javier Torres, María Martha García-Flores, Zuriel Eduardo Martínez-Valencia, Beatriz Irene Arroyo-Sánchez, Viridiana Olin-Sandoval, Fernando Minauro, Jesus Enrique Gaytán-Martínez and Ericka Nelly Pompa-Mera
Metabolites 2025, 15(11), 695; https://doi.org/10.3390/metabo15110695 - 25 Oct 2025
Viewed by 1825
Abstract
Background/Objectives: Excessive weight gain is a growing concern among people living with HIV (PWH) receiving integrase strand transfer inhibitor (INSTI)-based regimens as first-line antiretroviral therapy (ART), as it may contribute to multimorbidity. The mechanisms driving weight gain in INSTI users are not [...] Read more.
Background/Objectives: Excessive weight gain is a growing concern among people living with HIV (PWH) receiving integrase strand transfer inhibitor (INSTI)-based regimens as first-line antiretroviral therapy (ART), as it may contribute to multimorbidity. The mechanisms driving weight gain in INSTI users are not fully understood but are thought to be multifactorial. This study examines the plasma metabolome associated with weight gain in PWH on INSTI-based regimens. Methods: We conducted a nested case–control study within the randomized clinical trial MICTLAN (NCT06629480). Sixty-six participants were randomized to receive INSTI-based regimens, either bictegravir/tenofovir alafenamide/emtricitabine (BIC/TAF/FTC) or dolutegravir/abacavir/lamivudine (DTG/ABC/3TC), and followed for 18 months. Weight gain >10% relative to baseline was considered a primary endpoint and used as a criterium to categorize cases (n = 28) and controls (n = 38). Anthropometric and clinical measurements, plasma insulin, and metabolomic profiles were assessed at baseline and 18 months post-ART. Plasma untargeted metabolomics was performed using liquid chromatography–mass spectrometry (LC-MS/MS) to identify metabolomic changes linked to weight gain. Bioinformatic tools, including Partial Least Squares Discriminant Analysis (PLS-DA), volcano plots, and KEGG pathway enrichment analysis, were used to analyze plasma metabolomes and identify significant differential metabolites. Results: Weight gain at 18 months in PWH on INSTI-based ART was associated with insulin resistance, as measured by HOMA-IR (OR 3.23; 95% CI 1.14–9.10; p = 0.023), and visceral adipose tissue thickness > 4 cm (OR 4.50; 95% CI 1.60–13.03; 9.10; p = 0.004), and hypertriglyceridemia (OR 3.9; 95% CI 1.38–10.94; p = 0.008). Baseline HIV RNA viral load >50,000 copies/mL (OR 8.05; 95% CI 2.65–24.43; p = 0.0002) was identified as a baseline predictor of weight gain (aOR 6.58 (1.83–23.58); p = 0.004). In addition, accumulation of circulating medium-chain acylcarnitines, indicative of mitochondrial dysfunction, and insulin resistance were linked to weight gain in PWH on INSTI-based regimens after 18 months of therapy. Conclusions: This metabolomic study identified metabolites reflecting mitochondrial dysfunction, dysregulated lipid metabolism, and altered amino acid metabolism as key mechanisms underlying insulin resistance and weight gain in PWH on INSTI-based ART. Full article
Show Figures

Figure 1

13 pages, 4730 KB  
Article
Ubiquitin-Conjugating Enzyme Positively Regulates Salicylic Acid and Jasmonic Acid Biosynthesis to Confer Broad-Spectrum Antiviral Resistance in Nicotiana benthamiana
by Xianglong Zhang, Zihao Chen, Shijie Jiang, Lin Xie, Jingjing Fan, Nengbing Hu and Xiangxiang Zhang
Plants 2025, 14(20), 3234; https://doi.org/10.3390/plants14203234 - 21 Oct 2025
Cited by 1 | Viewed by 696
Abstract
Ubiquitin-conjugating enzyme (UBC) plays a significant role in plant hormone signal transduction. In this study, we observed that TuMV infection markedly upregulates UBC mRNA expression, suggesting a close association between UBC and viral infection. Using Tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) [...] Read more.
Ubiquitin-conjugating enzyme (UBC) plays a significant role in plant hormone signal transduction. In this study, we observed that TuMV infection markedly upregulates UBC mRNA expression, suggesting a close association between UBC and viral infection. Using Tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) to downregulate UBC expression in Nicotiana benthamiana, we found that UBC-silenced plants exhibited enhanced susceptibility to TuMV compared with control plants. Conversely, transient overexpression of UBC protein suppressed viral propagation. Further analysis by reverse transcription quantitative PCR (RT-qPCR) revealed a substantial downregulation in the expression of SA and JA biosynthetic genes in UBC-silenced plants. Accordingly, liquid chromatography–tandem mass spectrometry (LC-MS/MS) confirmed a marked decrease in the accumulation of the corresponding hormones. Exogenous application of SA or JA partially restored antiviral resistance in UBC-silenced plants, indicating that hormonal deficiency contributes to enhanced viral susceptibility. Collectively, our results demonstrate that UBC positively regulates SA and JA biosynthesis. UBC silencing impairs both SA- and JA-mediated defense pathways, thereby facilitating viral infection in N. benthamiana. Full article
Show Figures

Figure 1

29 pages, 2059 KB  
Review
Roles and Applications of Circular RNA in Virus Infection
by Fang Gou, Yanmei Gao, Keke Zhong, Tian Bu, Yinggang Li, Faxiang Li and Rong Yang
Int. J. Mol. Sci. 2025, 26(19), 9656; https://doi.org/10.3390/ijms26199656 - 3 Oct 2025
Viewed by 1240
Abstract
Circular RNAs (circRNAs) are novel types of covalently closed single-stranded RNA formed by the backsplicing of precursor mRNAs (pre-mRNAs). Recently, circRNAs have been shown to play a crucial role in various diseases, including cancers, cardiovascular and cerebrovascular diseases, and autoimmune diseases. Accumulating evidence [...] Read more.
Circular RNAs (circRNAs) are novel types of covalently closed single-stranded RNA formed by the backsplicing of precursor mRNAs (pre-mRNAs). Recently, circRNAs have been shown to play a crucial role in various diseases, including cancers, cardiovascular and cerebrovascular diseases, and autoimmune diseases. Accumulating evidence has demonstrated that both host-derived and virus-encoded circRNAs play pivotal roles during viral infection, including modulating viral entry, genome replication, latency establishment, and the host antiviral immune responses while simultaneously facilitating viral immune evasion. However, their roles during viral infections and circRNA-host interactions remain to be further investigated. Therefore, this article reviews the key characteristics and biological functions of circRNAs, as well as recent advances in understanding the interactions between circRNAs from different sources and viral infections, which will offer insights for developing therapies targeting virus-associated diseases. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

14 pages, 4597 KB  
Article
Exogenous Application of IR-Specific dsRNA Inhibits Infection of Cucumber Green Mottle Mosaic Virus in Watermelon
by Yanhui Wang, Liming Liu, Yongqiang Fan, Yanli Han, Zhiling Liang, Yanfei Geng, Fengnan Liu, Qinsheng Gu, Baoshan Kang and Chaoxi Luo
Agronomy 2025, 15(10), 2332; https://doi.org/10.3390/agronomy15102332 - 2 Oct 2025
Viewed by 932
Abstract
Cucumber green mottle mosaic virus (CGMMV) represents a serious threat in the production of watermelon. Small RNAs facilitate a mechanism known as RNA interference (RNAi), which regulates gene expression. RNAi technology employs foreign double-stranded RNAs (dsRNAs) to target and reduce the expression levels [...] Read more.
Cucumber green mottle mosaic virus (CGMMV) represents a serious threat in the production of watermelon. Small RNAs facilitate a mechanism known as RNA interference (RNAi), which regulates gene expression. RNAi technology employs foreign double-stranded RNAs (dsRNAs) to target and reduce the expression levels of specific genes in plants by interfering with their mRNAs. In this study, watermelon plants were treated with dsRNAs of CGMMV MET, IR, and HEL fragments that had been generated in E. coli HT115. We investigated variations in several factors, including viral accumulation, virus-derived small interfering RNAs (vsiRNAs), and symptom severity. MET-dsRNA, IR-dsRNA and HEL-dsRNA dramatically decreased the symptoms of CGMMV in plants in the growth chamber test. Plants treated with viral-derived dsRNA showed a considerable decrease in both virus titers and vsiRNA levels. We also explored the mobility of spray-on dsRNA-derived long dsRNA and discovered that it could be identified in both inoculated leaves and the systemic leaves. IR-dsRNA outperformed MET-dsRNA and HEL-dsRNA in dsRNA therapy. Illumina sequencing of small RNAs from watermelon plants treated with IR-dsRNA and those that were not treated showed that the decreased accumulation of vsiRNAs was consistent with interference with CGMMV infection in systemic leaves. dsRNA-treated plants showed a higher level of 24-nt viral siRNA and lower level of 22-nt viral siRNA accumulation, while 22-nt viral siRNA predominated in untreated plants, indicating that dsRNA treatment improved DCL3 activity. In conclusion, our research provides deeper insights into the mechanism of antiviral RNA interference and confirms the effectiveness of applying dsRNA locally to enhance plant antiviral activity. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

18 pages, 4641 KB  
Article
Role of the Chaperone Protein 14-3-3η in Regulation of the Infection Dynamics of the Influenza A (H1N1) Virus
by Debarima Chatterjee, Partha Pratim Mondal, Anneshwa Bhattacharya and Alok Kumar Chakrabarti
Viruses 2025, 17(10), 1337; https://doi.org/10.3390/v17101337 - 30 Sep 2025
Cited by 1 | Viewed by 815
Abstract
The 14-3-3 protein family, which includes the isoforms η, γ, ε, θ, β, and ζ, is essential for controlling a number of pathways linked to DNA and RNA viruses, including HIV, influenza A virus (IAV), measles virus, HRSV, and double-stranded DNA viruses. TRIM32, [...] Read more.
The 14-3-3 protein family, which includes the isoforms η, γ, ε, θ, β, and ζ, is essential for controlling a number of pathways linked to DNA and RNA viruses, including HIV, influenza A virus (IAV), measles virus, HRSV, and double-stranded DNA viruses. TRIM32, an E3 ubiquitin ligase, has been reported to target IAV’s PB1 polymerase for species-specific degradation via ubiquitination. Notably, 14-3-3η binds to phosphorylated TRIM32, preventing its autoubiquitylation and forming soluble but inactive cytoplasmic aggregates that regulate TRIM32 levels. However, the functional link between 14-3-3η, TRIM32, and PB1 during viral infection remains unclear. In this study, we establish a mechanistic connection between 14-3-3η–TRIM32 and TRIM32–PB1 interactions in IAV (H1N1) infection. We demonstrate that 14-3-3η directly interacts with PB1, influencing viral replication. Using transient knockdown models, we show that 14-3-3η deficiency alters influenza virus-induced cytotoxicity, cell death, immune responses, and reactive oxygen species (ROS) production. Additionally, we observe a significant reduction in the soluble TRIM32 levels in 14-3-3η-deficient cells, which leads to increased PB1 accumulation and thus suggests a critical regulatory role for 14-3-3η in PB1 stability. Our findings reveal a novel function of 14-3-3η in influenza virus infection, demonstrating its role in PB1 regulation via TRIM32 and its impact on innate immune activation. This study highlights 14-3-3η as a possible target for antiviral treatments against influenza and offers fresh insights into the host–virus relationship. Full article
(This article belongs to the Special Issue Interplay Between Influenza Virus and Host Factors)
Show Figures

Figure 1

20 pages, 1008 KB  
Review
Transcription, Maturation and Degradation of Mitochondrial RNA: Implications for Innate Immune Response
by Chaojun Yan, Jianglong Yu, Hao Lyu, Shuai Xiao, Dong Guo, Qi Zhang, Rui Zhang, Jingfeng Tang, Zhiyin Song and Cefan Zhou
Biomolecules 2025, 15(10), 1379; https://doi.org/10.3390/biom15101379 - 28 Sep 2025
Viewed by 1299
Abstract
Mitochondria are crucial for a wide range of cellular processes. One of the most important is innate immunity regulation. Apart from functioning as a signaling hub in immune reactions, mitochondrial nucleic acids can themselves act as damage-associated molecular patterns (DAMPs) to participate in [...] Read more.
Mitochondria are crucial for a wide range of cellular processes. One of the most important is innate immunity regulation. Apart from functioning as a signaling hub in immune reactions, mitochondrial nucleic acids can themselves act as damage-associated molecular patterns (DAMPs) to participate in immune processes directly. This review synthesizes the current understanding of mitochondrial RNA (mtRNA) biology and its link to immune activation through aberrant accumulation. We focus on its origin through bidirectional mitochondrial transcription and metabolism, encompassing maturation (cleavage, polyadenylation, modification) and degradation. Dysregulation of mtRNA metabolism leads to mt-dsRNA (mitochondrial double-stranded RNA) accumulation, which escapes mitochondria via specific channels into the cytosol and serves as DAMPs to trigger an immune response. We discuss the critical roles of key regulatory factors, including PNPT1 (PNPase, Polyribonucleotide Nucleotidyltrans ferase 1), in controlling mt-dsRNA levels and preventing inappropriate immune activation. Finally, we review the implications of mt-dsRNA-driven inflammation in human diseases, including autoimmune disorders, cellular senescence, and viral infection pathologies, highlighting unresolved questions regarding mt-dsRNA release mechanisms. Full article
(This article belongs to the Special Issue Mitochondria as a Target for Tissue Repair and Regeneration)
Show Figures

Figure 1

11 pages, 5737 KB  
Article
Coinfection of Gynura bicolor with a New Strain of Vanilla Distortion Mosaic Virus and a Novel Maculavirus in China
by Zhengnan Li, Mengze Guo, Pingping Sun and Lei Zhang
Viruses 2025, 17(10), 1290; https://doi.org/10.3390/v17101290 - 24 Sep 2025
Viewed by 542
Abstract
In recent years, symptoms suggestive of viral infection have commonly occurred in Gynura bicolor in China. However, no viral genome infecting G. bicolor has been reported. This study applied high-throughput sequencing to plant samples with chlorotic spots in Sanya, Hainan. Viral sequences were [...] Read more.
In recent years, symptoms suggestive of viral infection have commonly occurred in Gynura bicolor in China. However, no viral genome infecting G. bicolor has been reported. This study applied high-throughput sequencing to plant samples with chlorotic spots in Sanya, Hainan. Viral sequences were confirmed using RT-PCR and RACE. Complete genomes of vanilla distortion mosaic virus (VDMV, Potyvirus vanillae) and an unknown virus were obtained. Sequence analysis indicated that the VDMV isolate from the G. bicolor is a novel variant. It shares 81.13% identity with its closest known strain. The unknown virus is phylogenetically related to maculaviruses but shares less than 76% nucleotide identity with other tymovirids. According to the ICTV, it should be classified as a new member of the genus Maculavirus. In this study, we provisionally designated the virus as gynura bicolor maculavirus (GBMV). Transmission electron microscopy revealed both filamentous and icosahedral virions in stems, but only filamentous virions in leaves. Quantitative RT-PCR showed high RNA accumulation of both viruses in the stems. GBMV levels were significantly lower in leaves. Dodder-mediated mechanical transmission successfully transferred VDMV and GBMV to Nicotiana occidentalis, Oenothera biennis, and Chenopodium amaranticolor. O. biennis developed chlorotic symptoms 15 days after dual infection. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

18 pages, 5078 KB  
Article
Nicotiana tabacum Kunitz Peptidase Inhibitor-like Protein Regulates Intercellular Transport
by Natalia M. Ershova, Ekaterina V. Sheshukova, Alfiya R. Alimova, Kamila A. Kamarova, Eugene A. Arifulin and Tatiana V. Komarova
Plants 2025, 14(19), 2955; https://doi.org/10.3390/plants14192955 - 23 Sep 2025
Viewed by 680
Abstract
A coordinated and generalized plant response to adverse environmental factors largely depends on the proper and finely-tuned regulation of intercellular transport via plasmodesmata (PD). However, the knowledge of the whole network of PD-controlling mechanisms is far from complete. Earlier, a cellular factor, Kunitz [...] Read more.
A coordinated and generalized plant response to adverse environmental factors largely depends on the proper and finely-tuned regulation of intercellular transport via plasmodesmata (PD). However, the knowledge of the whole network of PD-controlling mechanisms is far from complete. Earlier, a cellular factor, Kunitz peptidase inhibitor-like protein (KPILP), that affects PD gating and plays a proviral role, was identified in Nicotiana benthamiana plants. Here we characterized its homolog from N. tabacum, NtKPILP, which is hardly detectable in leaves of intact plants, in contrast to roots, flowers and seeds where NtKPILP is highly expressed. However, its mRNA accumulation in leaves increases in response to various stresses, including viral infection. NtKPILP was demonstrated to affect chloroplast functioning. Using the virus-induced gene silencing approach, we have shown that NtKPILP downregulation negatively affects intercellular transport of macromolecules, inducing callose deposition at PD and suppressing beta-1,3-glucanase mRNA accumulation. Together, the obtained results indicate that NtKPILP is a viral infection-responsive cellular factor that is involved in PD permeability regulation, sharing thus the features of KPILPs from other Nicotiana species. Full article
(This article belongs to the Special Issue The Mechanisms of Plant Resistance and Pathogenesis)
Show Figures

Figure 1

13 pages, 6112 KB  
Article
Genomic-Encoded Mitovirus RdRp Is Required for Embryo Development and Maintaining Mitochondrial Dynamics in Arabidopsis
by Yadi Gong, Rongqin Chen, Chen Yang, Yingcui Lu, Zhenjie Fu, Ye Feng, Xiaomeng Li, Ling Li and Xiaoyun Li
Int. J. Mol. Sci. 2025, 26(18), 9035; https://doi.org/10.3390/ijms26189035 - 17 Sep 2025
Cited by 1 | Viewed by 783
Abstract
Mitoviral-derived sequences are frequently detected in plant genomes, encoding an RNA-dependent RNA polymerase (RdRp). These sequences share many similarities with mitoviruses that are known to commonly infect plant mitochondria. However, the functional characterization of nuclear-encoded mitoviral-RdRp remains unclear. This study elucidates the critical [...] Read more.
Mitoviral-derived sequences are frequently detected in plant genomes, encoding an RNA-dependent RNA polymerase (RdRp). These sequences share many similarities with mitoviruses that are known to commonly infect plant mitochondria. However, the functional characterization of nuclear-encoded mitoviral-RdRp remains unclear. This study elucidates the critical role of mRdRp (AT2G07749) in maintaining mitochondrial homeostasis and embryo viability, highlighting the dual role of viral-derived genes in plant development and stress response. Phylogenetic analysis reveals that mRdRp shares 96.8% identity with the mitoviral RdRp encoded by mitochondrial-genomes, suggesting that this nuclear mRdRp gene originated from horizontal transfer events following ancestral plant-mitovirus infections. To dissect mRdRp function, we generated a mRdRp knockout mutant via CRISPR-Cas9 or knockdown mutant by RNA interference (RNAi). These mRdRp mutants exhibited severe developmental defects, including dwarfism, embryo lethality, and sterility. Phenotypic assays further showed that mRdRp mutants displayed heightened susceptibility to ABA and rotenone, indicating impaired adaptive capacity to both hormonal and metabolic stress. Loss of mRdRp led to fragmented mitochondrial networks and a significant reduction in mitochondrial abundance in both leaf protoplasts and root meristematic cells. Additionally, mitochondrial-derived small RNA (sRNA) aberrantly accumulated in mRdRp mutants, which potentially disrupts endogenous RNA-silencing pathways that rely on sRNA-mediated gene regulation. Collectively, these results provide mechanistic insights into the function integration of a virus-derived gene into plant cellular networks, advancing our understanding of host–virus coevolution and the role of horizontally transferred viral genes in shaping plant physiology. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

27 pages, 2190 KB  
Article
Heat Stress Induces Partial Resistance to Tomato Bushy Stunt Virus in Nicotiana benthamiana Via Combined Stress Pathways
by Nurgul Iksat, Almas Madirov, Dana Artykbayeva, Oleksiy Shevchenko, Kuralay Zhanassova, Zhaksat Baikarayev and Zhaksylyk Masalimov
Viruses 2025, 17(9), 1250; https://doi.org/10.3390/v17091250 - 16 Sep 2025
Cited by 3 | Viewed by 873
Abstract
Global climate change is the impact of combined abiotic and biotic stresses negatively affecting plant health and productivity. This study investigated the molecular and cellular responses of Nicotiana benthamiana L. plants to wild-type tomato bushy stunt virus (wtTBSV) infection under conditions of pre-existing [...] Read more.
Global climate change is the impact of combined abiotic and biotic stresses negatively affecting plant health and productivity. This study investigated the molecular and cellular responses of Nicotiana benthamiana L. plants to wild-type tomato bushy stunt virus (wtTBSV) infection under conditions of pre-existing heat stress. The experiments were conducted under controlled temperature regimes of 30 °C and 37 °C in combination with virus challenge. Morphological and biochemical analyses in plants under the influence of combined stress showed the alleviation of disease symptoms, reduction in virus content and reduced expression levels of viral proteins P19 and P33. Under conditions of combined stress, accumulation of hydrogen peroxide and malondialdehyde, as well as activation of the antioxidant enzyme catalase, especially in root tissues, were observed. Notably, at 37 °C, virus infection was suppressed despite high levels of oxidative stress, whereas at 30 °C, a marked decrease in the expression of host factors was observed. The results indicate that thermal stress modulates virus–host interactions and activates defense mechanisms, including antioxidant and RNA interference pathways. Therefore, temperature adaptation can be considered as a promising strategy for enhancing plant resistance to viral pathogens under climate changes. Full article
(This article belongs to the Special Issue Molecular and Biological Virus-Plant-Insect Vector Interactions)
Show Figures

Figure 1

Back to TopTop