Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = video extensometer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 9797 KiB  
Article
Rate-Dependent Tensile Behavior of Glass Fiber Composites Reinforced with Quadriaxial Fabrics, with or Without Coremat Xi3 Interlayer, for Marine Applications
by Lorena Deleanu, George Pelin, Ioana Gabriela Chiracu, Iulian Păduraru, Mario Constandache, George Ghiocel Ojoc and Alexandru Viorel Vasiliu
Polymers 2025, 17(15), 2074; https://doi.org/10.3390/polym17152074 - 29 Jul 2025
Viewed by 296
Abstract
This study is among the first to characterize the tensile response of composites with quadriaxial glass fiber fabrics designed for marine structural applications. Four composite configurations were fabricated at laboratory scale, combining two matrix types (unsaturated polyester resin and epoxy resin) and the [...] Read more.
This study is among the first to characterize the tensile response of composites with quadriaxial glass fiber fabrics designed for marine structural applications. Four composite configurations were fabricated at laboratory scale, combining two matrix types (unsaturated polyester resin and epoxy resin) and the presence or absence of a Coremat Xi3 middle layer. Tensile tests were conducted at four test rates (10 mm/min, 200 mm/min, 500 mm/min, and 1000 mm/min), ranging from quasi-static to moderately dynamic conditions. Tests were conducted using the Instron 5982 universal testing machine (from Laboratory for Advanced Materials and Tribology, INCAS Bucharest, Romania). The specimens have a rectangular cross section, in agreement with SR EN ISO 527-4:2023. For strain measurements, an Instron advanced video extensometer (AVE) was used. Key mechanical parameters, such as maximum force, tensile strength, Young’s modulus, strain at break, and energy absorption, were extracted and analyzed. Results show that the polyester-based composite without a mat interlayer displayed the best overall performance, with the highest ultimate strength (~280 MPa), significant energy absorption (~106 J), and a consistent increase in ductility with increasing test rate. In contrast, the epoxy composite with Coremat Xi3 exhibited lower stiffness and strength, but higher strain and energy absorption at higher test rates, indicating a progressive failure behavior. These findings enhance the understanding of the tensile response of composites made of quadriaxial glass fiber fabric and provide valuable design data for structural components in marine environments, where both strength and energy absorption are essential. These insights support producers and end-users of non-crimp fabrics in making experimentally based selections of a composite, technological strategies, and design optimization. Full article
(This article belongs to the Special Issue Epoxy Resins and Epoxy-Based Composites: Research and Development)
Show Figures

Figure 1

15 pages, 3423 KiB  
Article
Cyclic Testing of Polymer Composites and Textile Cords for Tires
by Jan Krmela, Michal Michna, Zdeněk Růžička, Vladimíra Krmelová and Artem Artyukhov
Polymers 2023, 15(10), 2358; https://doi.org/10.3390/polym15102358 - 18 May 2023
Cited by 3 | Viewed by 2360
Abstract
This paper is oriented toward the specific testing of polymer composites and textile PA66 cords used as reinforcement for composites. The aim of the research is to validate the proposed new testing methods for low-cyclic testing of polymer composites and PA66 cords for [...] Read more.
This paper is oriented toward the specific testing of polymer composites and textile PA66 cords used as reinforcement for composites. The aim of the research is to validate the proposed new testing methods for low-cyclic testing of polymer composites and PA66 cords for the characterization of material parameters useful as input data for computational tire simulations. Part of the research is the design of experimental methods for polymer composites and test parameters such as load rate, preload, and other parameters such as strain for the start and stop of cycle steps. The DIN 53835-13 standard is used for the conditions of textile cord during the first five cycles. A cyclic load is carried out at two temperatures of 20 °C and 120 °C. The testing method includes a hold step for 60 s between each loop. The video-extensometer technique is used for testing. The paper evaluated the effect of temperatures on the material properties of PA66 cords. The true stress-strain (elongation) dependences between points for the video-extensometer of the fifth cycle of every cycle loop are the data results from composite tests. The forcestrain dependences between points for the video-extensometer are the data results from tests of the PA66 cord. These dependencies can be used as input material data of textile cords in the computational simulation of tire casings using a custom material model definition. The fourth cycle in every cycle loop of polymer composites can be considered a stable cycle because the change in the maximum true stress between the fourth and fifth cycles is 1.6%. Other results of this research include a relationship between stress and the number of cycle loops as the second-degree polynomial curve for polymer composites and a simple relationship to describe the value of the force at each end of the cycles for a textile cord. Full article
(This article belongs to the Special Issue Polymer-Based Hybrid Composites II)
Show Figures

Graphical abstract

16 pages, 4716 KiB  
Article
Extrusion-Based Additively Manufactured PAEK and PAEK/CF Polymer Composites Performance: Role of Process Parameters on Strength, Toughness and Deflection at Failure
by S. Sharafi, M. H. Santare, J. Gerdes and S. G. Advani
J. Compos. Sci. 2023, 7(4), 157; https://doi.org/10.3390/jcs7040157 - 11 Apr 2023
Cited by 5 | Viewed by 2633
Abstract
Poly aryl-ether-ketone (PAEK) belongs to a family of high-performance semicrystalline polymers exhibiting outstanding material properties at high temperatures, making them suitable candidates for metallic part replacement in different industries such as aviation, oil and gas, chemical, and biomedical. Fused filament fabrication is an [...] Read more.
Poly aryl-ether-ketone (PAEK) belongs to a family of high-performance semicrystalline polymers exhibiting outstanding material properties at high temperatures, making them suitable candidates for metallic part replacement in different industries such as aviation, oil and gas, chemical, and biomedical. Fused filament fabrication is an additive manufacturing (AM) method that can be used to produce intricate PAEK and PAEK composite parts and to tailor their mechanical properties such as stiffness, strength and deflection at failure. In this work, we present a methodology to identify the layer design and process parameters that will have the highest potential to affect the mechanical properties of additively manufactured parts, using our previously developed multiscale modeling framework. Five samples for each of the ten identified process conditions were fabricated using a Roboze-Argo 500 version 2 with heated chamber and dual extruder nozzle. The manufactured PAEK and PAEK/carbon fiber samples were tested until failure in an Instron, using a video extensometer system. Each sample was prepared with a speckle pattern for post analysis using digital image correlation (DIC) to measure the strain and displacement over its entire surface. The raster angle and the presence of fibers had the largest influence on the mechanical properties of the AM manufactured parts, and the resulting properties were comparable to the mechanical properties of injection molded parts. Full article
(This article belongs to the Special Issue Additive Manufacturing of Advanced Composites)
Show Figures

Figure 1

9 pages, 2262 KiB  
Article
Guided-Motion Bicruciate-Stabilized Total Knee Arthroplasty Reproduces Native Medial Collateral Ligament Strain
by Dai-Soon Kwak, Yong Deok Kim, Nicole Cho, Ho-Jung Cho, Jaeryong Ko, Minji Kim, Jae Hyuk Choi, Dohyung Lim and In Jun Koh
Medicina 2022, 58(12), 1751; https://doi.org/10.3390/medicina58121751 - 29 Nov 2022
Viewed by 2374
Abstract
Background and Objectives: Guided-motion bicruciate-stabilized (BCS) total knee arthroplasty (TKA) includes a dual cam-post mechanism with an asymmetric bearing geometry that promotes normal knee kinematics and enhances anterior-posterior stability. However, it is unclear whether the improved biomechanics after guided-motion BCS TKA reproduce [...] Read more.
Background and Objectives: Guided-motion bicruciate-stabilized (BCS) total knee arthroplasty (TKA) includes a dual cam-post mechanism with an asymmetric bearing geometry that promotes normal knee kinematics and enhances anterior-posterior stability. However, it is unclear whether the improved biomechanics after guided-motion BCS TKA reproduce soft tissue strain similar to the strain generated by native knees. The purpose of this cadaveric study was to compare medial collateral ligament (MCL) strain between native and guided-motion BCS TKA knees using a video extensometer. Materials and Methods: Eight cadaver knees were mounted onto a customized knee squatting simulator to measure MCL strain during flexion in both native and guided-motion BCS TKA knees (Journey II-BCS; Smith & Nephew, Memphis, TN, USA). MCL strain was measured using a video extensometer (Mercury® RT RealTime tracking system, Sobriety s.r.o, Kuřim, Czech Republic). MCL strain level and strain distribution during knee flexion were compared between the native and guided-motion BCS TKA conditions. Results: The mean and peak MCL strain were similar between native and guided-motion BCS TKA knees at all flexion angles (p > 0.1). MCL strain distribution was similar between native and BCS TKA knees at 8 of 9 regions of interest (ROIs), while higher MCL strain was observed after BCS TKA than in the native knee at 1 ROI in the mid portion of the MCL at early flexion angles (p < 0.05 at ≤30° of flexion). Conclusions: Guided-motion BCS TKA restored the amount and distribution of MCL strain to the values observed on native knees. Full article
(This article belongs to the Special Issue Advances in Knee Surgery)
Show Figures

Figure 1

16 pages, 11377 KiB  
Article
Stability of Postcritical Deformation of CFRP under Static ±45° Tension with Vibrations
by Valeriy Wildemann, Oleg Staroverov, Elena Strungar, Ekaterina Lunegova and Artur Mugatarov
Polymers 2022, 14(21), 4502; https://doi.org/10.3390/polym14214502 - 25 Oct 2022
Cited by 7 | Viewed by 1921
Abstract
The paper presents an experimental study on regularities of postcritical deformation of carbon-fiber-reinforced plastic (CFRP) under static ±45° tension. The employed test method is based on ASTM D3518. Displacement and strain fields were identified by a digital image correlation method (DIC) using a [...] Read more.
The paper presents an experimental study on regularities of postcritical deformation of carbon-fiber-reinforced plastic (CFRP) under static ±45° tension. The employed test method is based on ASTM D3518. Displacement and strain fields were identified by a digital image correlation method (DIC) using a VIC-3D contactless optical video system. Acoustic emission signals were obtained using an AMSY-6 system. The surface analysis of samples was carried out using a CarlZeiss SteREO Discovery. V12 optical stereomicroscope and a DinoLite microscope. Three experimental test types were considered: active loading, deformation with unloadings, and tension under additional torsion vibrations with various amplitudes. Loading diagrams were constructed; they showed a number of stages in the damage accumulation process. It was analyzed how heterogeneous strain fields develop; a neck development during softening process was observed. It was noted that the loading system rigidity influences the failure moment. The research considered various shear strain calculation methods using a “virtual extensometer” instrument. Composite mechanical properties were obtained. A shear modulus reduction during a plastic strain increase was revealed. The acoustic emission signals were analyzed; three characteristic frequency bands were observed. Most of the contribution to cumulative energy was made by matrix cracking. A reduction of the number of AE signals associated with the violation of adhesion between the fibers and the matrix during postcritical deformation was observed. The research identified basic surface defects. An appearance of the defects corresponds with their identification by the AE system. It was revealed that the presence of additional torsion vibration leads to an increase in the softening stage length. It was concluded that due regard for the postcritical deformation stage and the loading system rigidity is reasonable during the structure strength analysis. Full article
(This article belongs to the Special Issue Sustainable Polymeric Composites: Fabrication and Application)
Show Figures

Graphical abstract

11 pages, 3698 KiB  
Article
Restoration of the Joint Line Configuration Reproduces Native Mid-Flexion Biomechanics after Total Knee Arthroplasty: A Matched-Pair Cadaveric Study
by Dai-Soon Kwak, Yong Deok Kim, Nicole Cho, Yong In, Man Soo Kim, Dohyung Lim and In Jun Koh
Bioengineering 2022, 9(10), 564; https://doi.org/10.3390/bioengineering9100564 - 17 Oct 2022
Cited by 7 | Viewed by 2571
Abstract
Background: Recent evidence supports that restoration of the pre-arthritic condition via total knee arthroplasty (TKA) is associated with improved post-TKA performance and patient satisfaction. However, whether the restored pre-arthritic joint line simulates the native mid-flexion biomechanics remains unclear. Objective: We performed a matched-pair [...] Read more.
Background: Recent evidence supports that restoration of the pre-arthritic condition via total knee arthroplasty (TKA) is associated with improved post-TKA performance and patient satisfaction. However, whether the restored pre-arthritic joint line simulates the native mid-flexion biomechanics remains unclear. Objective: We performed a matched-pair cadaveric study to explore whether restoration of the joint line via kinematically aligned (KA) TKA reproduced native knee biomechanics more accurately than the altered joint line associated with mechanically aligned (MA) TKA. Methods: Sixteen fresh-frozen cadaveric knees (eight pairs) were affixed onto a customized knee-squatting simulator for measurement of femoral rollback and medial collateral ligament (MCL) strain during mid-flexion. One knee from each cadaver was randomly designated to the KA TKA group (with the joint line restored to the pre-arthritic condition) and the other to the MA TKA group (with the joint line perpendicular to the mechanical axis). Optical markers were attached to all knees and rollback was analyzed using motion capture cameras. A video extensometer measured real-time variations in MCL strain. The kinematics and MCL strain prior to and following TKA were measured for all specimens. Results: KA TKA was better for restoring the knee kinematics to the native condition than MA TKA. The mid-flexion femoral rollback and axial rotation after KA TKA were consistently comparable to those of the native knee. Meanwhile, those of MA TKA were similar only at ≤40° of flexion. Furthermore, KA TKA better restored the mid-flexion MCL strain to that of the native knee than MA TKA. Over the entire mid-flexion range, the MCL strain of KA TKA and native knees were similar, while the strains of MA TKA knees were more than twice those of native knees at >20° of flexion. Conclusions: The restored joint line after KA TKA effectively reproduced the native mid-flexion rollback and MCL strain, whereas the altered joint line after MA TKA did not. Our findings may explain why patients who undergo KA TKA experience superior outcomes and more natural knee sensations during daily activities than those treated via MA TKA. Full article
(This article belongs to the Special Issue Biomechanics-Based Motion Analysis)
Show Figures

Figure 1

17 pages, 4692 KiB  
Article
Contactless Material Tensile Testing Using a High-Resolution Camera
by Jaroslav Bulava, Libor Hargaš and Dušan Koniar
Computation 2022, 10(7), 121; https://doi.org/10.3390/computation10070121 - 15 Jul 2022
Cited by 1 | Viewed by 3379
Abstract
This article deals with the use of contactless measurement with a high-resolution imaging device during tensile testing of materials in a universal tearing machine (UTM). Setting the material parameters in tensile testing is based on changes in the geometrical properties of the sample [...] Read more.
This article deals with the use of contactless measurement with a high-resolution imaging device during tensile testing of materials in a universal tearing machine (UTM). Setting the material parameters in tensile testing is based on changes in the geometrical properties of the sample being tested. In this article, authors propose the method and system for automated measuring the height, width, and crack occurrence during tensile testing. The system is also able to predict the location of crack occurrence. The proposed method is based on selected algorithms of image analysis, feature extraction, and template matching. Our video extensometry, working with common inspection cameras operating in visible range, can be an alternative method to expensive laser extensometry machines. The motivation of our work was to develop an automated measurement system for use in a UTM. Full article
Show Figures

Figure 1

16 pages, 8268 KiB  
Article
Use of Digital Image Correlation Method to Measure Bio-Tissue Deformation
by Terry Yuan-Fang Chen, Nhat Minh Dang, Zhao-Ying Wang, Liang-Wei Chang, Wei-Yu Ku, Yu-Lung Lo and Ming-Tzer Lin
Coatings 2021, 11(8), 924; https://doi.org/10.3390/coatings11080924 - 1 Aug 2021
Cited by 11 | Viewed by 4742
Abstract
Traditionally, strain gauge, extensometer, and reflection tracking markers have been used to measure the deformation of materials under loading. However, the anisotropy and inhomogeneity of most biological materials restricted the accessibility of the real strain field. Compared to the video extensometer, digital image [...] Read more.
Traditionally, strain gauge, extensometer, and reflection tracking markers have been used to measure the deformation of materials under loading. However, the anisotropy and inhomogeneity of most biological materials restricted the accessibility of the real strain field. Compared to the video extensometer, digital image correlation has the advantage of providing full-field displacement as well as strain information. In this study, a digital image correlation method (DIC) measurement system was employed for chicken breast bio-tissue deformation measurement. To increase the contrast for better correlation, a mixture of ground black pepper and white sesame was sprayed on the surface of samples. The first step was to correct the distorted image caused by the lens using the inverse distorted calibration method and then the influence of subset size and correlation criteria, sum of squared differences (SSD), and zero-normalized sum of squared differences (ZNSSD) were investigated experimentally for accurate measurement. Test results of the sample was translated along the horizontal direction from 0 mm to 3 mm, with an increment of 0.1 mm and the measurement result was compared, and the displacement set on the translation stage. The result shows that the error is less than 3%, and accurate measurement can be achieved with proper surface preparation, subset size, correlation criterion, and image correction. Detailed examination of the strain values show that the strain εx is proportional to the displacement of crosshead, but the strain εy indicates the viscoelastic behavior of tested bio-tissue. In addition, the tested bio-tissue’s linear birefringence extracted by a Mueller matrix polarimetry is for comparison and is in good agreement. As noted above, the integration of the optical parameter measurement system and the digital image correlation method is proposed in this paper to analyze the relationship between the strain changes and optical parameters of biological tissue, and thus the relative optic-stress coefficient can be significantly characterized if Young’s modulus of biological tissue is known. Full article
Show Figures

Figure 1

18 pages, 5155 KiB  
Article
Effects of Different Test Setups on the Experimental Tensile Behaviour of Basalt Fibre Bidirectional Grids for FRCM Composites
by Jennifer D’Anna, Giuseppina Amato, Jianfei Chen, Giovanni Minafò and Lidia La Mendola
Fibers 2020, 8(11), 68; https://doi.org/10.3390/fib8110068 - 8 Nov 2020
Cited by 9 | Viewed by 3065
Abstract
Fibre-reinforced cementitious matrix (FRCM) composites have been effectively used during the last ten years for the strengthening of existing concrete and masonry structures. These composite materials are made of medium- and high-strength fibre meshes embedded in inorganic matrices. Synthetic fibres are the ones [...] Read more.
Fibre-reinforced cementitious matrix (FRCM) composites have been effectively used during the last ten years for the strengthening of existing concrete and masonry structures. These composite materials are made of medium- and high-strength fibre meshes embedded in inorganic matrices. Synthetic fibres are the ones that are currently the most used; however, natural fibres, such as basalt fibres, have recently been receiving growing attention. This work presents an extensive experimental study on the mechanical characterisation of a primed basalt fibre bidirectional grid. Fifty monotonic tensile tests on basalt grid strips were performed by varying different parameters, such as the dimension of the specimens, the clamping system, the measurement system and the test rate. Some of the tests were carried out using a video-extensometer to measure each specimen’s strain. The aim of the study was to find the most suitable setup for the tensile characterisation of basalt textiles, in particular, to prevent slippage of the samples at the gripping area and fully exploit the tensile capacity of the grid. Full article
Show Figures

Figure 1

15 pages, 6514 KiB  
Article
Biaxial Testing Machine: Development and Evaluation
by António B. Pereira, Fábio A.O. Fernandes, Alfredo B. de Morais and João Maio
Machines 2020, 8(3), 40; https://doi.org/10.3390/machines8030040 - 21 Jul 2020
Cited by 13 | Viewed by 8074
Abstract
Biaxial mechanical testing gained increased importance for characterization of materials that present anisotropic behavior and/or different responses when subjected to tensile and compression loadings. In this work, a new biaxial testing machine was developed. The various systems and components were designed, manufactured, assembled, [...] Read more.
Biaxial mechanical testing gained increased importance for characterization of materials that present anisotropic behavior and/or different responses when subjected to tensile and compression loadings. In this work, a new biaxial testing machine was developed. The various systems and components were designed, manufactured, assembled, and assessed. Uniaxial tensile tests were performed to validate the device, showing results consistent with those obtained on a universal testing machine. Finally, biaxial tensile tests were also performed on polypropylene cruciform specimens. The results revealed high precision levels, thus showing the potential of this new machine. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

13 pages, 5883 KiB  
Article
Application of the Non-Contact Video Gauge on the Mechanical Properties Test for Steel Cable at Elevated Temperature
by Yong Du and Zhang-ming Gou
Appl. Sci. 2019, 9(8), 1670; https://doi.org/10.3390/app9081670 - 23 Apr 2019
Cited by 21 | Viewed by 4415
Abstract
As the limit of traditional contact measurement, it is difficult to precisely measure the steel cables twisted by a branch of wires especially at elevated temperature. In this paper the strain-stress relationships of S355 and S690 structural steel, 1860 MPa steel cable twisted [...] Read more.
As the limit of traditional contact measurement, it is difficult to precisely measure the steel cables twisted by a branch of wires especially at elevated temperature. In this paper the strain-stress relationships of S355 and S690 structural steel, 1860 MPa steel cable twisted by seven wires have been measured by the strain gauge, extensometer and non-contact video gauge at ambient temperature and elevated temperature, respectively. Comparison of the stress-strain curves gotten by different measuring technology, it indicates that the non-contact video gauge can provide a more efficient and reliable database than the strain gauge as well as extensometer, especially at an elevated temperature. It is worth noting that the non-contact video gauge can capture not only the full range of stress-strain curves of steel cables, but is also efficient for the specimens with a complex shape. Full article
(This article belongs to the Special Issue Advances in Digital Image Correlation (DIC))
Show Figures

Figure 1

Back to TopTop