Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (265)

Search Parameters:
Keywords = vibrational densities of states

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2376 KiB  
Article
Investigating Helium-Induced Thermal Conductivity Degradation in Fusion-Relevant Copper: A Molecular Dynamics Approach
by Xu Yu, Hanlong Wang and Hai Huang
Materials 2025, 18(15), 3702; https://doi.org/10.3390/ma18153702 - 6 Aug 2025
Abstract
Copper alloys are critical heat sink materials for fusion reactor divertors due to their high thermal conductivity (TC) and strength, yet their performance under extreme particle bombardment and heat fluxes in future tokamaks requires enhancement. While neutron-induced transmutation helium affects the properties of [...] Read more.
Copper alloys are critical heat sink materials for fusion reactor divertors due to their high thermal conductivity (TC) and strength, yet their performance under extreme particle bombardment and heat fluxes in future tokamaks requires enhancement. While neutron-induced transmutation helium affects the properties of copper, the atomistic mechanisms linking helium bubble size to thermal transport remain unclear. This study employs non-equilibrium molecular dynamics (NEMD) simulations to isolate the effect of bubble diameter (10, 20, 30, 40 Å) on TC in copper, maintaining a constant He-to-vacancy ratio of 2.5. Results demonstrate that larger bubbles significantly impair TC. This reduction correlates with increased Kapitza thermal resistance and pronounced lattice distortion from outward helium diffusion, intensifying phonon scattering. Phonon density of states (PDOS) analysis reveals diminished low-frequency peaks and an elevated high-frequency peak for bubbles >30 Å, confirming phonon confinement and localized vibrational modes. The PDOS overlap factor decreases with bubble size, directly linking microstructural evolution to thermal resistance. These findings elucidate the size-dependent mechanisms of helium bubble impacts on thermal transport in copper divertor materials. Full article
(This article belongs to the Special Issue Advances in Computation and Modeling of Materials Mechanics)
Show Figures

Figure 1

27 pages, 4883 KiB  
Article
Stochastic Vibration of Damaged Cable System Under Random Loads
by Yihao Wang, Wei Li and Drazan Kozak
Vibration 2025, 8(3), 44; https://doi.org/10.3390/vibration8030044 - 4 Aug 2025
Viewed by 139
Abstract
This study proposes an integrated framework that combines nonlinear stochastic vibration analysis with reliability assessment to address the safety issues of cable systems under damage conditions. First of all, a mathematical model of the damaged cable is established by introducing damage parameters, and [...] Read more.
This study proposes an integrated framework that combines nonlinear stochastic vibration analysis with reliability assessment to address the safety issues of cable systems under damage conditions. First of all, a mathematical model of the damaged cable is established by introducing damage parameters, and its static configuration is determined. Using the Pearl River Huangpu Bridge as a case study, the accuracy of the analytical solution for the cable’s sag displacement is validated through the finite difference method (FDM). Furthermore, a quantitative relationship between the damage parameters and structural response under stochastic excitation is developed, and the nonlinear stochastic dynamic equations governing the in-plane and out-of-plane motions of the damaged cable are derived. Subsequently, a Gaussian Radial Basis Function Neural Network (GRBFNN) method is employed to solve for the steady-state probability density function of the system response, enabling a detailed analysis of how various damage parameters affect structural behavior. Finally, the First-Order and Second-Order Reliability Method (FORM/SORM) are used to compute the reliability index and failure probability, which are further validated using Monte Carlo simulation (MCS). Results show that the severity parameter η shows the highest sensitivity in influencing the failure probability among the damage parameters. For the system of the Pearl River Huangpu bridge, an increase in the damage extent δ from 0.1 to 0.4 can reduce the reliability-based service life of by approximately 40% under fixed values of the damage severity and location, and failure risk is highest when the damage is located at the midspan of the cable. This study provides a theoretical framework from the point of stochastic vibration for evaluating the response and associated reliability of mechanical systems; the results can be applied in practice with guidance for the engineering design and avoid potential damages of suspended cables. Full article
Show Figures

Figure 1

11 pages, 7608 KiB  
Article
A Theoretical Raman Spectra Analysis of the Effect of the Li2S and Li3PS4 Content on the Interface Formation Between (110)Li2S and (100)β-Li3PS4
by Naiara Leticia Marana, Eleonora Ascrizzi, Fabrizio Silveri, Mauro Francesco Sgroi, Lorenzo Maschio and Anna Maria Ferrari
Materials 2025, 18(15), 3515; https://doi.org/10.3390/ma18153515 - 26 Jul 2025
Viewed by 377
Abstract
In this study, we perform density functional theory (DFT) simulations to investigate the Raman spectra of the bulk and surface phases of β-Li3PS4 (LPS) and Li2S, as well as their interfaces at varying compositional ratios. This analysis is [...] Read more.
In this study, we perform density functional theory (DFT) simulations to investigate the Raman spectra of the bulk and surface phases of β-Li3PS4 (LPS) and Li2S, as well as their interfaces at varying compositional ratios. This analysis is relevant given the widespread application of these materials in Li–S solid-state batteries, where Li2S functions not only as a cathode material but also as a protective layer for the lithium anode. Understanding the interfacial structure and how compositional variations influence its chemical and mechanical stability is therefore crucial. Our results demonstrate that the LPS/Li2S interface remains stable regardless of the compositional ratio. However, when the content of both materials is low, the Raman-active vibrational mode associated with the [PS4]3− tetrahedral cluster dominates the interface spectrum, effectively obscuring the characteristic peaks of Li2S and other interfacial features. Only when sufficient amounts of both LPS and Li2S are present does the coupling between their vibrational modes become sufficiently pronounced to alter the Raman profile and reveal distinct interfacial fingerprints. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Graphical abstract

33 pages, 41854 KiB  
Article
Application of Signal Processing Techniques to the Vibration Analysis of a 3-DoF Structure Under Multiple Excitation Scenarios
by Leidy Esperanza Pamplona Berón, Marco Claudio De Simone and Domenico Guida
Appl. Sci. 2025, 15(15), 8241; https://doi.org/10.3390/app15158241 - 24 Jul 2025
Viewed by 204
Abstract
Structural Health Monitoring (SHM) techniques are crucial for evaluating the condition of structures, enabling early maintenance interventions, and monitoring factors that could compromise structural integrity. Modal analysis studies the dynamic response of structures when subjected to vibrations, evaluating natural frequencies and vibration modes. [...] Read more.
Structural Health Monitoring (SHM) techniques are crucial for evaluating the condition of structures, enabling early maintenance interventions, and monitoring factors that could compromise structural integrity. Modal analysis studies the dynamic response of structures when subjected to vibrations, evaluating natural frequencies and vibration modes. This study focuses on detecting and comparing the natural frequencies of a 3-DoF structure under various excitation scenarios, including ambient vibration (in healthy and damaged conditions), two types of transient excitation, and three harmonic excitation variations. Signal processing techniques, specifically Power Spectral Density (PSD) and Continuous Wavelet Transform (CWT), were employed. Each method provides valuable insights into frequency and time-frequency domain analysis. Under ambient vibration excitation, the damaged condition exhibits spectral differences in amplitude and frequency compared to the undamaged state. For the transient excitations, the scalogram images reveal localized energetic differences in frequency components over time, whereas PSD alone cannot observe these behaviors. For the harmonic excitations, PSD provides higher spectral resolution, while CWT adds insight into temporal energy evolution near resonance bands. This study discusses how these analyses provide sensitive features for damage detection applications, as well as the influence of different excitation types on the natural frequencies of the structure. Full article
(This article belongs to the Special Issue State-of-the-Art Structural Health Monitoring Application)
Show Figures

Figure 1

19 pages, 3447 KiB  
Article
Investigation of N-(2-oxo-2H-chromen-3-carbonyl)cytisine’s Crystal Structure and Optical Properties
by Anarkul Kishkentayeva, Kymbat Kopbalina, Zhanar Shaimerdenova, Elvira Shults, Yury Gatilov, Dmitrii Pankin, Mikhail Smirnov, Anastasia Povolotckaia, Dastan Turdybekov and Nurlan Mazhenov
Materials 2025, 18(13), 3153; https://doi.org/10.3390/ma18133153 - 3 Jul 2025
Viewed by 461
Abstract
Coumarin and cytisine and their derivatives have significant biological activity. In addition, the electronic properties of coumarin derivatives are very sensitive to the molecular environment, which allows for their use as sensors for bioluminescent imaging. Due to the fact that cytisine exhibits high [...] Read more.
Coumarin and cytisine and their derivatives have significant biological activity. In addition, the electronic properties of coumarin derivatives are very sensitive to the molecular environment, which allows for their use as sensors for bioluminescent imaging. Due to the fact that cytisine exhibits high activity in binding to nicotinic acetylcholine receptors, a compound combining parts of cytisine and coumarin may have a broader spectrum of biological activity and also act as a photoactive element for promising use in optoelectronic devices. This article reports the synthesis of a crystalline cytisine–coumarin complex (IUPAC: N-(2-oxo-2H-chromene-3-carbonyl)cytisine), along with the results of both theoretical and experimental investigations of its structural and electronic properties. The structure of this new compound was established on the basis of X-ray diffraction and Fourier transform infrared spectroscopy data and was confirmed through density functional theory calculations using periodic crystal and single-molecule approaches. Interpretations of the IR absorption peaks and the atomic patterns of the vibrational modes are given. The electronic band structure and the contributions of individual atoms to the electronic density of states are analyzed. The structural and optical properties considered may be useful for quality control of the compound and for studying similar matrices. Full article
Show Figures

Figure 1

20 pages, 4362 KiB  
Article
Ultra-Low Dielectric Constant Ca3(BO3)2 Microwave Ceramics and Their Performance Simulation in 5G Microstrip Patch Antennas
by Fangyuan Liu, Fuzhou Song, Wanghuai Zhu, Zhengpu Zhang, Zhonghua Yao, Hanxing Liu, Huaao Sun, Guangran Lin, Yue Xu, Lingcui Zhang, Yan Shen, Jinbo Zhao, Zeming Qi, Feng Shi and Jinghui Li
Crystals 2025, 15(7), 599; https://doi.org/10.3390/cryst15070599 - 25 Jun 2025
Viewed by 273
Abstract
Ca3(BO3)2 microwave dielectric ceramics with space group R-3c (#167) were prepared by cold sintering, and their properties were systematically investigated. Phonon density of state diagrams for the Ca3(BO3)2 lattice were obtained based on [...] Read more.
Ca3(BO3)2 microwave dielectric ceramics with space group R-3c (#167) were prepared by cold sintering, and their properties were systematically investigated. Phonon density of state diagrams for the Ca3(BO3)2 lattice were obtained based on first-principles calculations to provide a more comprehensive understanding of the lattice vibrational properties of the material. Raman scattering and infrared reflectance spectroscopy were employed to investigate the lattice vibrational characteristics, identifying two types of vibrational modes: internal modes associated with the planar bending and symmetric stretching vibrations of the [BO3] group, and external modes linked to the vibrations of the [CaO6] octahedron. The intrinsic dielectric properties were determined by fitting the experimental data using a four-parameter semi-quantum model. The results demonstrate that the dielectric properties of Ca3(BO3)2 ceramics are primarily influenced by the external vibrational modes. The sample under 800 MPa exhibits optimal dielectric performance, with a dielectric constant (εr) of 5.95, a quality factor (Q × f) of 11,836 GHz, and a temperature coefficient of resonant frequency (τf) of −39.89 ppm/°C. A simulation of this Ca3(BO3)2 sample as a dielectric substrate was conducted using HFSS to fabricate a microstrip patch antenna operating at 14.97 GHz, which exhibits a return loss (S11) of −25.5 dB and a gain of 7.15 dBi. Full article
Show Figures

Graphical abstract

15 pages, 2389 KiB  
Article
Tracking Photoinduced Charge Redistribution in a Cu(I) Diimine Donor–Bridge–Acceptor System with Time-Resolved Infrared Spectroscopy
by Sean A. Roget, Wade C. Henke, Maxwell Taub, Pyosang Kim, Jonathan T. Yarranton, Xiaosong Li, Karen L. Mulfort and Lin X. Chen
Photochem 2025, 5(2), 16; https://doi.org/10.3390/photochem5020016 - 19 Jun 2025
Viewed by 433
Abstract
Understanding electron density migration along excited-state pathways in photochemical systems is critical for optimizing solar energy conversion processes. In this study, we investigate photoinduced electron transfer (PET) in a covalently linked donor–bridge–acceptor (D-B-A) system, where [Cu(I)-bis(1,10-phenanthroline)]+ acts as an electron donor, and [...] Read more.
Understanding electron density migration along excited-state pathways in photochemical systems is critical for optimizing solar energy conversion processes. In this study, we investigate photoinduced electron transfer (PET) in a covalently linked donor–bridge–acceptor (D-B-A) system, where [Cu(I)-bis(1,10-phenanthroline)]+ acts as an electron donor, and anthraquinone, tethered to one of the phenanthroline ligands via a vibrationally active ethyne bridge, behaves as an electron acceptor. Visible transient absorption spectroscopy revealed the dynamic processes occurring in the excited state, including PET to the acceptor species. This was indicated by the spectral features of the anthraquinone radical anion that appeared on a timescale of 30 ps in polar solvents. Time-resolved infrared (TRIR) spectroscopy of the alkyne vibration (CC stretch) of the ethyne bridge provided insight into electronic structural changes in the metal-to-ligand charge transfer (MLCT) state and along the PET reaction coordinate. The observed spectral shift and enhanced transition dipole moment of the CC stretch demonstrated that there was already partial delocalization to the anthraquinone acceptor following MLCT excitation, verified by DFT calculations. An additional excited-state TRIR signal unrelated to the vibrational mode highlighted delocalization between the phenanthroline ligands in the MLCT state. This signal decayed and the CC stretch narrowed and shifted towards the ground-state frequency following PET, indicating a degree of localization onto the acceptor species. This study experimentally elucidates charge redistribution during PET in a Cu(I) diimine D-B-A system, yielding important information on the ligand design for optimizing PET reactions. Full article
(This article belongs to the Special Issue Feature Papers in Photochemistry, 3rd Edition)
Show Figures

Graphical abstract

15 pages, 1687 KiB  
Article
Study on Regulation Mechanism of Heat Transport at Aluminum Nitride/Graphene/Silicon Carbide Heterogeneous Interface
by Dongjing Liu, Pengbo Wang, Zhiliang Hu, Jia Fu, Wei Qin, Jianbin Yu, Yangyang Zhang, Bing Yang and Yunqing Tang
Nanomaterials 2025, 15(12), 928; https://doi.org/10.3390/nano15120928 - 14 Jun 2025
Viewed by 452
Abstract
In order to solve the self-heating problem of power electronic devices, this paper adopts a nonequilibrium molecular dynamics approach to study the thermal transport regulation mechanism of the aluminum nitride/graphene/silicon carbide heterogeneous interface. The effects of temperature, size, and vacancy defects on interfacial [...] Read more.
In order to solve the self-heating problem of power electronic devices, this paper adopts a nonequilibrium molecular dynamics approach to study the thermal transport regulation mechanism of the aluminum nitride/graphene/silicon carbide heterogeneous interface. The effects of temperature, size, and vacancy defects on interfacial thermal conductivity are analyzed by phonon state density versus phonon participation rate to reveal their phonon transfer mechanisms during thermal transport. It is shown that the interfacial thermal conductance (ITC) increases about three times when the temperature increases from 300 K to 1100 K. It is analyzed that the increase in temperature will enhance lattice vibration, enhance phonon coupling degree, and thus increase its ITC. With the increase in the number of AlN-SiC layers from 8 to 28, the ITC increases by about 295.3%, and it is analyzed that the increase in the number of AlN-SiC layers effectively reduces the interfacial scattering and improves the phonon interfacial transmission efficiency. The increase in the number of graphene layers from 1 layer to 4 layers decreases the ITC by 70.3%. The interfacial thermal conductivity reaches a minimum, which is attributed to the increase in graphene layers aggravating the degree of phonon localization. Under the influence of the increase in graphene single and double vacancy defects concentration, the ITC is slightly reduced. When the defect rate reaches about 20%, the interfacial thermal conductance of SV (single vacancy) and DV (double vacancy) defects rises back to 5.606 × 10−2 GW/m2K and 5.224 × 10−2 GW/m2K, respectively. It is analyzed that the phonon overlapping and the participation rate act at the same time, so the heat-transferring phonons increase, increasing the thermal conductance of their interfaces. The findings provide theoretical support for optimizing the thermal management performance of heterostructure interfaces. Full article
Show Figures

Graphical abstract

27 pages, 1469 KiB  
Systematic Review
Effectiveness of Exercise Loading on Bone Mineral Density and Quality of Life Among People Diagnosed with Osteoporosis, Osteopenia, and at Risk of Osteoporosis—A Systematic Review and Meta-Analysis
by Saeed Mufleh Alnasser, Reem Abdullah Babakair, Amal Fahad Al Mukhlid, Salihah Saleh Saeed Al hassan, Shibili Nuhmani and Qassim Muaidi
J. Clin. Med. 2025, 14(12), 4109; https://doi.org/10.3390/jcm14124109 - 10 Jun 2025
Viewed by 2440
Abstract
Background: This systematic review and meta-analysis aims to provide a detailed analysis of the current state of knowledge on Progressive Exercise Training (PET), encompassing its diverse modalities, effects on bone mineral density (BMD), quality of life outcomes, and implications for clinical practice. Methods: [...] Read more.
Background: This systematic review and meta-analysis aims to provide a detailed analysis of the current state of knowledge on Progressive Exercise Training (PET), encompassing its diverse modalities, effects on bone mineral density (BMD), quality of life outcomes, and implications for clinical practice. Methods: A structured search strategy was employed to retrieve literature from seven databases (PubMed, Web of Science, Scopus, MEDLINE, Science Direct, EBSCO, CINHAL, and PEDro) yielded twenty-four randomized controlled trials (RCTs) meeting the inclusion criteria. The methodological quality of studies was evaluated using the PEDro scale. Meta-analyses were carried out to comprehensively assess the collective impact of PET on bone mineral density outcomes. Results: PET exhibited favorable effects on BMD across multiple anatomical sites, encompassing the femoral neck, total hip, lumbar spine, and others. This effect was observed across different age groups and genders, highlighting its potential benefits for diverse populations. PET encompasses a range of modalities, including resistance training, aerobic training, impact training, whole-body vibration, and tai chi, with a duration ranging from 4 to 24 months, with weekly sessions varying from two to five times. Some studies combined these modalities, reflecting the adaptability of PET to individual preferences and capabilities. Tailoring exercise prescriptions to individual needs emerged as a feasible approach within PET. A subset of studies assessed quality of life using validated instruments such as the 36-item short form survey (SF-36), shortened osteoporosis quality of life questionnaire (SOQLQ), and menopause quality of life instrument (MENQOL). Conclusions: This study provides strong evidence that PET represents a promising intervention for osteoporosis management, enhancing BMD and, to some extent, quality of life. PET offers a beacon of hope for better skeletal health and well-being in individuals grappling with osteoporosis, emphasizing the need for its incorporation into clinical practice. Full article
Show Figures

Figure 1

24 pages, 1293 KiB  
Article
Singular Perturbation Decoupling and Composite Control Scheme for Hydraulically Driven Flexible Robotic Arms
by Jianliang Xu, Zhen Sui and Xiaohua Wei
Processes 2025, 13(6), 1805; https://doi.org/10.3390/pr13061805 - 6 Jun 2025
Viewed by 472
Abstract
Hydraulically driven flexible robotic arms (HDFRAs) play an indispensable role in industrial precision operations such as aerospace assembly and nuclear waste handling, owing to their high power density and adaptability to complex environments. However, inherent mechanical flexibility-induced vibrations, hydraulic nonlinear dynamics, and electromechanical [...] Read more.
Hydraulically driven flexible robotic arms (HDFRAs) play an indispensable role in industrial precision operations such as aerospace assembly and nuclear waste handling, owing to their high power density and adaptability to complex environments. However, inherent mechanical flexibility-induced vibrations, hydraulic nonlinear dynamics, and electromechanical coupling effects lead to multi-timescale control challenges, severely limiting high-precision trajectory tracking performance. The present study introduces a novel hierarchical control framework employing dual-timescale perturbation analysis, which effectively addresses the constraints inherent in conventional single-timescale control approaches. First, the system is decoupled into three subsystems via dual perturbation parameters: a second-order rigid-body motion subsystem (SRS), a second-order flexible vibration subsystem (SFS), and a first-order hydraulic dynamic subsystem (FHS). For SRS/SFS, an adaptive fast terminal sliding mode active disturbance rejection controller (AFTSM-ADRC) is designed, featuring a dual-bandwidth extended state observer (BESO) to estimate parameter perturbations and unmodeled dynamics in real time. A novel reaching law with power-rate hybrid characteristics is developed to suppress sliding mode chattering while ensuring rapid convergence. For FHS, a sliding mode observer-integrated sliding mode coordinated controller (SMO-ISMCC) is proposed, achieving high-precision suppression of hydraulic pressure fluctuations through feedforward compensation of disturbance estimation and feedback integration of tracking errors. The globally asymptotically stable property of the composite system has been formally verified through systematic Lyapunov-based analysis. Through comprehensive simulations, the developed methodology demonstrates significant improvements over conventional ADRC and PID controllers, including (1) joint tracking precision reaching 104 rad level under nominal conditions and (2) over 40% attenuation of current oscillations when subjected to stochastic disturbances. These results validate its superiority in dynamic decoupling and strong disturbance rejection. Full article
(This article belongs to the Special Issue Modelling and Optimizing Process in Industry 4.0)
Show Figures

Figure 1

15 pages, 6231 KiB  
Article
Alternative Sensing for State-of-Charge Estimation of Latent Heat Thermal Energy Storage
by James Wilson, Robert J. Barthorpe and Furkan Terzioglu
Energies 2025, 18(11), 2853; https://doi.org/10.3390/en18112853 - 29 May 2025
Cited by 1 | Viewed by 403
Abstract
Thermal energy storage (TES) is likely to play a significant role in the decarbonisation of domestic heat, allowing consumers to shift their energy consumption away from peak demand periods and reducing overall strain on the grid. Phase change materials (PCMs) are a promising [...] Read more.
Thermal energy storage (TES) is likely to play a significant role in the decarbonisation of domestic heat, allowing consumers to shift their energy consumption away from peak demand periods and reducing overall strain on the grid. Phase change materials (PCMs) are a promising option for TES, in which energy can be stored in the latent heat of the melting of the PCM; these offer greater storage densities than sensible heat TES and have the benefit of releasing stored heat at a consistent temperature (the crystallisation temperature of the PCM). One of the key difficulties for PCM-based TES is state of charge (SoC) estimation (the estimation of the proportion of energy stored in the TES unit up to its maximum capacity), particularly during idle periods while the unit is storing heat. SoC estimation is key to the implementation of TES, as it enables the effective control of the units. The use of a resonator within the PCM for SoC estimation could potentially provide a global estimate of the SoC, since the resonator passes through the full depth of the PCM in the unit. The SoC could be inferred by measuring the vibrational response of the resonator under excitation, which varies depending on the melt state of the PCM. This paper presents findings from a test rig investigating this proposal, including discussions on the features required from the resonator response for SoC inference. Full article
(This article belongs to the Special Issue Advanced Energy Storage Technologies)
Show Figures

Figure 1

24 pages, 3798 KiB  
Article
Stochastic Optimal Control for Uncertain Structural Systems Under Random Excitations Based on Bayes Optimal Estimation
by Hua Lei, Zhao-Zhong Ying and Zu-Guang Ying
Buildings 2025, 15(9), 1579; https://doi.org/10.3390/buildings15091579 - 7 May 2025
Viewed by 367
Abstract
Stochastic vibration control of uncertain structures under random loading is an important problem and its minimax optimal control strategy remains to be developed. In this paper, a stochastic optimal control strategy for uncertain structural systems under random excitations is proposed, based on the [...] Read more.
Stochastic vibration control of uncertain structures under random loading is an important problem and its minimax optimal control strategy remains to be developed. In this paper, a stochastic optimal control strategy for uncertain structural systems under random excitations is proposed, based on the minimax stochastic dynamical programming principle and the Bayes optimal estimation method with the combination of stochastic dynamics and Bayes inference. The general description of the stochastic optimal control problem is presented including optimal parameter estimation and optimal state control. For the estimation, the posterior probability density conditional on observation states is expressed using the likelihood function conditional on system parameters according to Bayes’ theorem. The likelihood is replaced by the geometrically averaged likelihood, and the posterior is converted into its logarithmic expression to avoid numerical singularity. The expressions of state statistics are derived based on stochastic dynamics. The statistics are further transformed into those conditional on observation states based on optimal state estimation. Then, the obtained posterior will be more reliable and accurate, and the optimal estimation will greatly reduce uncertain parameter domains. For the control, the minimax strategy is designed by minimizing the performance index for the worst-parameter system, which is obtained by maximizing the performance index based on game theory. The dynamical programming equation for the uncertain system is derived according to the minimax stochastic dynamical programming principle. The worst parameters are determined by the maximization of the equation, and the optimal control is determined by the minimization of the resulting equation. The minimax optimal control by combining the Bayes optimal estimation and minimax stochastic dynamical programming will be more effective and robust. Finally, numerical results for a five-story frame structure under random excitations show the control effectiveness of the proposed strategy. Full article
(This article belongs to the Special Issue The Vibration Control of Building Structures)
Show Figures

Figure 1

12 pages, 2166 KiB  
Article
119Sn Element-Specific Phonon Density of States of BaSnO3
by Alexey Rulev, Hongxin Wang, Selma Erat, Murat Aycibin, Daniel Rentsch, Vladimir Pomjakushin, Stephen P. Cramer, Qianli Chen, Nobumoto Nagasawa, Yoshitaka Yoda and Artur Braun
Crystals 2025, 15(5), 440; https://doi.org/10.3390/cryst15050440 - 5 May 2025
Viewed by 381
Abstract
Vibration spectroscopy is routinely used in analytical chemistry for molecular speciation. Less common is its use in studying the dynamics of reaction and transport processes. A shortcoming of vibration spectroscopies is that they are not inherently specific to chemical elements. Progress in synchrotron [...] Read more.
Vibration spectroscopy is routinely used in analytical chemistry for molecular speciation. Less common is its use in studying the dynamics of reaction and transport processes. A shortcoming of vibration spectroscopies is that they are not inherently specific to chemical elements. Progress in synchrotron radiation-based X-ray technology has developed nuclear resonance vibration spectroscopy (NRVS), which can be used to produce element-specific vibration spectra and partial vibrational density of states (PVDOS), provided the material under investigation contains a Mössbauer-active element. While the method has been recently used successfully for protein spectroscopy, fewer studies have been conducted for condensed matter. We have employed NRVS on the BaSnO3 perovskite structure, which is a model compound for ceramic proton conductors in intermediate temperature fuel cells. Since we used 119Sn as a Mössbauer isotope, the derived experimental PVDOS is specific to the element Sn in BaSnO3. We show how this phonon DOS is used as an experimental anchor for the interpretation of the DFT-calculated PVDOS of BaSnO3. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

32 pages, 12574 KiB  
Article
Stochastic and Nonlinear Dynamic Response of Drillstrings in Deepwater Riserless Casing Drilling Operation
by He Li, Guodong Cheng, Shiming Zhou, Wenyang Shi and Jieli Wang
J. Mar. Sci. Eng. 2025, 13(5), 876; https://doi.org/10.3390/jmse13050876 - 28 Apr 2025
Viewed by 368
Abstract
In order to gain an insight into the stress state of drillstring in riserless drilling conditions with Casing while Drilling (CwD) technology, a stochastic and nonlinear dynamic model of the drillstring under the excitation of the environmental load is established based on Hamilton [...] Read more.
In order to gain an insight into the stress state of drillstring in riserless drilling conditions with Casing while Drilling (CwD) technology, a stochastic and nonlinear dynamic model of the drillstring under the excitation of the environmental load is established based on Hamilton principle and finite deformation theory. The distribution of tensile stress, bending stress, and effective stress along the axial direction of drillstring that is exposed to the ambient environment is emphasized, the influence of wall thickness and material of the drillpipe on the stress state of drillstring is also discussed. The numerical results show that significant fluctuations in cross-sectional stress occur during the riserless drilling process, particularly under varying hydrodynamic loads; the tensile stress and effective stress are larger on landing string and the maximum values of these stresses occur at the connection point of the landing string and casing string; the bending stress is larger on casing string and the maximum value occurs near the sea floor; and increasing the wall thickness and selecting the low-density material can help to reduce the stress of the drillstring. It can be concluded from the numerical results that during the CwD riserless drilling process, the effective stress on the cross section of drillstring is mainly determined by the tensile stress and the contribution of bending stress is comparably small, and the dangerous cross section of the drillstring is located at the connection point of landing string and casing string. The proposed dynamic model offers theoretical insights that can inform drillstring design and vibration mitigation strategies in CwD operations. Full article
Show Figures

Figure 1

12 pages, 3414 KiB  
Article
Mechanistic and Kinetic Insights into Hydroxyl Radical-Mediated Tetracycline Transformation in Photocatalytic Oxidation Processes
by Juanjuan Liu, Tao Sui, Yongcai Zhang, He Bian, Yi Lu and Chaosheng Zhu
Catalysts 2025, 15(5), 420; https://doi.org/10.3390/catal15050420 - 24 Apr 2025
Viewed by 668
Abstract
Antibiotic pollution, particularly via tetracycline (TC), poses significant environmental risks due to its recalcitrance and potential to induce antibiotic resistance. This study employed density functional theory (DFT) and transition state theory (TST) to investigate TC degradation by hydroxyl radicals (·OH), focusing on hydrogen [...] Read more.
Antibiotic pollution, particularly via tetracycline (TC), poses significant environmental risks due to its recalcitrance and potential to induce antibiotic resistance. This study employed density functional theory (DFT) and transition state theory (TST) to investigate TC degradation by hydroxyl radicals (·OH), focusing on hydrogen atom transfer (HAT) and radical adduct formation (RAF) pathways. Geometry optimizations and vibrational analysis validated stationary points, while intrinsic reaction coordinate (IRC) calculations confirmed transition states. Key findings reveal that RAF pathways exhibit lower activation barriers (1.23–30.33 kJ/mol) and greater exothermicity (−164.42 kJ/mol) compared to HAT pathways (3.51–42.04 kJ/mol, −109.58 kJ/mol), making them kinetically and thermodynamically dominant. Frontier molecular orbital (FMO) analysis links HAT to TC’s HOMO (π-orbital character on aromatic rings) and RAF to its LUMO (electrophilic sites). Rate constants calculated at 298 K (TST with Wigner correction) confirm RAF’s kinetic superiority (up to 7.0 × 1011 s−1), surpassing HAT’s fastest pathway (6.2 × 1011 s−1). These insights advance the understanding of TC degradation mechanisms and help with the design of efficient photocatalytic oxidation processes for antibiotic removal. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalysis Research in Asia)
Show Figures

Figure 1

Back to TopTop