Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,010)

Search Parameters:
Keywords = vibrating machine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2669 KiB  
Article
Data-Driven Fault Diagnosis for Rotating Industrial Paper-Cutting Machinery
by Luca Viale, Alessandro Paolo Daga, Ilaria Ronchi and Salvatore Caronia
Machines 2025, 13(8), 688; https://doi.org/10.3390/machines13080688 - 5 Aug 2025
Abstract
Machine learning and artificial intelligence have transformed fault detection and maintenance strategies for industrial machinery. This study applies well-established data-driven techniques to a rarely explored industrial application—the condition monitoring of high-precision paper cutting machines—enhancing condition-based maintenance to improve operational efficiency, safety, and cost-effectiveness. [...] Read more.
Machine learning and artificial intelligence have transformed fault detection and maintenance strategies for industrial machinery. This study applies well-established data-driven techniques to a rarely explored industrial application—the condition monitoring of high-precision paper cutting machines—enhancing condition-based maintenance to improve operational efficiency, safety, and cost-effectiveness. A key element of the proposed approach is the integration of an infrared pyrometer into vibration monitoring, utilizing accelerometer data to evaluate the state of health of machinery. Unlike traditional fault detection studies that focus on extreme degradation states, this work successfully identifies subtle deviations from optimal, which even expert technicians struggle to detect. Building on a feasibility study conducted with Tecnau SRL, a comprehensive diagnostic system suitable for industrial deployment is developed. Endurance tests pave the way for continuous monitoring under various operating conditions, enabling real-time industrial diagnostic applications. Multi-scale signal analysis highlights the significance of transient and steady-state phase detection, improving the effectiveness of real-time monitoring strategies. Despite the physical similarity of the classified states, simple time-series statistics combined with machine learning algorithms demonstrate high sensitivity to early-stage deviations, confirming the reliability of the approach. Additionally, a systematic analysis to downgrade acquisition system specifications identifies cost-effective sensor configurations, ensuring the feasibility of industrial implementation. Full article
Show Figures

Figure 1

19 pages, 4156 KiB  
Article
Experimental and Numerical Analyses of Diameter Reduction via Laser Turning with Respect to Laser Parameters
by Emin O. Bastekeli, Haci A. Tasdemir, Adil Yucel and Buse Ortac Bastekeli
J. Manuf. Mater. Process. 2025, 9(8), 258; https://doi.org/10.3390/jmmp9080258 - 1 Aug 2025
Viewed by 103
Abstract
In this study, a novel direct laser beam turning (DLBT) approach is proposed for the precision machining of AISI 308L austenitic stainless steel, which eliminates the need for cutting tools and thereby eradicates tool wear and vibration-induced surface irregularities. A nanosecond-pulsed Nd:YAG fiber [...] Read more.
In this study, a novel direct laser beam turning (DLBT) approach is proposed for the precision machining of AISI 308L austenitic stainless steel, which eliminates the need for cutting tools and thereby eradicates tool wear and vibration-induced surface irregularities. A nanosecond-pulsed Nd:YAG fiber laser (λ = 1064 nm, spot size = 0.05 mm) was used, and Ø1.6 mm × 20 mm cylindrical rods were processed under ambient conditions without auxiliary cooling. The experimental framework systematically evaluated the influence of scanning speed, pulse frequency, and the number of laser passes on dimensional accuracy and material removal efficiency. The results indicate that a maximum diameter reduction of 0.271 mm was achieved at a scanning speed of 3200 mm/s and 50 kHz, whereas 0.195 mm was attained at 6400 mm/s and 200 kHz. A robust second-order polynomial correlation (R2 = 0.99) was established between diameter reduction and the number of passes, revealing the high predictability of the process. Crucially, when the scanning speed was doubled, the effective fluence was halved, considerably influencing the ablation characteristics. Despite the low fluence, evidence of material evaporation at elevated frequencies due to the incubation effect underscores the complex photothermal dynamics governing the process. This work constitutes the first comprehensive quantification of pass-dependent diameter modulation in DLBT and introduces a transformative, noncontact micromachining strategy for hard-to-machine alloys. The demonstrated precision, repeatability, and thermal control position DLBT as a promising candidate for next-generation manufacturing of high-performance miniaturized components. Full article
Show Figures

Figure 1

20 pages, 4765 KiB  
Article
Ultrasonic EDM for External Cylindrical Surface Machining with Graphite Electrodes: Horn Design and Hybrid NSGA-II–AHP Optimization of MRR and Ra
by Van-Thanh Dinh, Thu-Quy Le, Duc-Binh Vu, Ngoc-Pi Vu and Tat-Loi Mai
Machines 2025, 13(8), 675; https://doi.org/10.3390/machines13080675 - 1 Aug 2025
Viewed by 174
Abstract
This study presents the first investigation into the application of ultrasonic vibration-assisted electrical discharge machining (UV-EDM) using graphite electrodes for external cylindrical surface machining—an essential surface in the production of tablet punches and sheet metal-forming dies. A custom ultrasonic horn was designed and [...] Read more.
This study presents the first investigation into the application of ultrasonic vibration-assisted electrical discharge machining (UV-EDM) using graphite electrodes for external cylindrical surface machining—an essential surface in the production of tablet punches and sheet metal-forming dies. A custom ultrasonic horn was designed and fabricated using 90CrSi material to operate effectively at a resonant frequency of 20 kHz, ensuring stable vibration transmission throughout the machining process. A Box–Behnken experimental design was employed to explore the effects of five process parameters—vibration amplitude (A), pulse-on time (Ton), pulse-off time (Toff), discharge current (Ip), and servo voltage (SV)—on two key performance indicators: material removal rate (MRR) and surface roughness (Ra). The optimization process was conducted in two stages: single-objective analysis to maximize MRR while ensuring Ra < 4 µm, followed by a hybrid multi-objective approach combining NSGA-II and the Analytic Hierarchy Process (AHP). The optimal solution achieved a high MRR of 9.28 g/h while maintaining Ra below the critical surface finish threshold, thus meeting the practical requirements for punch surface quality. The findings confirm the effectiveness of the proposed horn design and hybrid optimization strategy, offering a new direction for enhancing productivity and surface integrity in cylindrical EDM applications using graphite electrodes. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

17 pages, 2622 KiB  
Article
A Method for Evaluating the Performance of Main Bearings of TBM Based on Entropy Weight–Grey Correlation Degree
by Zhihong Sun, Yuanke Wu, Hao Xiao, Panpan Hu, Zhenyong Weng, Shunhai Xu and Wei Sun
Sensors 2025, 25(15), 4715; https://doi.org/10.3390/s25154715 - 31 Jul 2025
Viewed by 241
Abstract
The main bearing of a tunnel boring machine (TBM) is a critical component of the main driving system that enables continuous excavation, and its performance is crucial for ensuring the safe operation of the TBM. Currently, there are few testing technologies for TBM [...] Read more.
The main bearing of a tunnel boring machine (TBM) is a critical component of the main driving system that enables continuous excavation, and its performance is crucial for ensuring the safe operation of the TBM. Currently, there are few testing technologies for TBM main bearings, and a comprehensive testing and evaluation system has yet to be established. This study presents an experimental investigation using a self-developed, full-scale TBM main bearing test bench. Based on a representative load spectrum, both operational condition tests and life cycle tests are conducted alternately, during which the signals of the main bearing are collected. The observed vibration signals are weak, with significant vibration attenuation occurring in the large structural components. Compared with the test bearing, which reaches a vibration amplitude of 10 g in scale tests, the difference is several orders of magnitude smaller. To effectively utilize the selected evaluation indicators, the entropy weight method is employed to assign weights to the indicators, and a comprehensive analysis is conducted using grey relational analysis. This strategy results in the development of a comprehensive evaluation method based on entropy weighting and grey relational analysis. The main bearing performance is evaluated under various working conditions and the same working conditions in different time periods. The results show that the greater the bearing load, the lower the comprehensive evaluation coefficient of bearing performance. A multistage evaluation method is adopted to evaluate the performance and condition of the main bearing across multiple working scenarios. With the increase of the test duration, the bearing performance exhibits gradual degradation, aligning with the expected outcomes. The findings demonstrate that the proposed performance evaluation method can effectively and accurately evaluate the performance of TBM main bearings, providing theoretical and technical support for the safe operation of TBMs. Full article
Show Figures

Figure 1

20 pages, 3903 KiB  
Article
Void Detection of Airport Concrete Pavement Slabs Based on Vibration Response Under Moving Load
by Xiang Wang, Ziliang Ma, Xing Hu, Xinyuan Cao and Qiao Dong
Sensors 2025, 25(15), 4703; https://doi.org/10.3390/s25154703 - 30 Jul 2025
Viewed by 219
Abstract
This study proposes a vibration-based approach for detecting and quantifying sub-slab corner voids in airport cement concrete pavement. Scaled down slab models were constructed and subjected to controlled moving load simulations. Acceleration signals were collected and analyzed to extract time–frequency domain features, including [...] Read more.
This study proposes a vibration-based approach for detecting and quantifying sub-slab corner voids in airport cement concrete pavement. Scaled down slab models were constructed and subjected to controlled moving load simulations. Acceleration signals were collected and analyzed to extract time–frequency domain features, including power spectral density (PSD), skewness, and frequency center. A finite element model incorporating contact and nonlinear constitutive relationships was established to simulate structural response under different void conditions. Based on the simulated dataset, a random forest (RF) model was developed to estimate void size using selected spectral energy indicators and geometric parameters. The results revealed that the RF model achieved strong predictive performance, with a high correlation between key features and void characteristics. This work demonstrates the feasibility of integrating simulation analysis, signal feature extraction, and machine learning to support intelligent diagnostics of concrete pavement health. Full article
Show Figures

Figure 1

30 pages, 5612 KiB  
Review
In-Situ Monitoring and Process Control in Material Extrusion Additive Manufacturing: A Comprehensive Review
by Alexander Isiani, Kelly Crittenden, Leland Weiss, Okeke Odirachukwu, Ramanshu Jha, Okoye Johnson and Osinachi Abika
J. Exp. Theor. Anal. 2025, 3(3), 21; https://doi.org/10.3390/jeta3030021 - 29 Jul 2025
Viewed by 187
Abstract
Material extrusion additive manufacturing (MEAM) has emerged as a versatile and widely adopted 3D printing technology due to its cost-effectiveness and ability to process a diverse range of materials. However, achieving consistent part quality and repeatability remains a challenge, mainly due to variations [...] Read more.
Material extrusion additive manufacturing (MEAM) has emerged as a versatile and widely adopted 3D printing technology due to its cost-effectiveness and ability to process a diverse range of materials. However, achieving consistent part quality and repeatability remains a challenge, mainly due to variations in process parameters and material behavior during fabrication. In-situ monitoring and advanced process control systems have been increasingly integrated into MEAM to address these issues, enabling real-time detection of defects, optimization of printing conditions, reliability of fabricated parts, and enhanced control over mechanical properties. This review examines the state-of-the-art in-situ monitoring techniques, including thermal imaging, vibrational sensing, rheological monitoring, printhead positioning, acoustic sensing, image recognition, and optical scanning, and their integration with process control strategies, such as closed-loop feedback systems and machine learning algorithms. Key challenges, including sensor accuracy, data processing complexity, and scalability, are discussed alongside recent advancements and their implications for industrial applications. By synthesizing current research, this work highlights the critical role of in-situ monitoring and process control in advancing the reliability and precision of MEAM, paving the way for its broader adoption in high-performance manufacturing. Full article
Show Figures

Figure 1

31 pages, 3715 KiB  
Review
Cutting Force—Vibration Interactions in Precise—and Micromilling Processes: A Critical Review on Prediction Methods
by Szymon Wojciechowski, Marcin Suszyński, Rafał Talar, Vit Černohlávek and Jan Štěrba
Materials 2025, 18(15), 3539; https://doi.org/10.3390/ma18153539 - 28 Jul 2025
Viewed by 321
Abstract
In recent years, much research has been devoted to the evaluation of physical phenomena and the technological effects of precise and micromilling processes. However, the available current literature lacks synthetic work covering the current state of the art regarding cutting force–tool displacement interactions [...] Read more.
In recent years, much research has been devoted to the evaluation of physical phenomena and the technological effects of precise and micromilling processes. However, the available current literature lacks synthetic work covering the current state of the art regarding cutting force–tool displacement interactions in precise and micromilling manufacturing systems. Therefore, this literature review aims to fill this research gap and focuses on the critical literature review regarding the current state of the art within the prediction methods of cutting forces and machining system’s displacements/vibrations during precise and micromilling techniques. In the first part, a currently available cutting force, as well as the static and dynamic machining system displacement models applied in precise and micromilling conditions are presented. In the next stage, a relationship between the geometrical elements of cut and generated cutting forces and tool displacements are discussed, based on the recent literature. A subsequent part concerns the formulation of the generalized analytical models for a prediction of cutting forces and vibrations during precise and micromilling conditions. In the last stage, the conclusions and outlook are formulated based on the conducted analysis of the literature. In this context, this paper constitutes a synthetic work presenting current trends in the prediction of precise milling and micromilling mechanics. Full article
Show Figures

Figure 1

29 pages, 3064 KiB  
Review
Inelastic Electron Tunneling Spectroscopy of Molecular Electronic Junctions: Recent Advances and Applications
by Hyunwook Song
Crystals 2025, 15(8), 681; https://doi.org/10.3390/cryst15080681 - 26 Jul 2025
Viewed by 366
Abstract
Inelastic electron tunneling spectroscopy (IETS) has emerged as a powerful vibrational spectroscopy technique for molecular electronic junctions, providing unique insights into molecular vibrations and electron–phonon coupling at the nanoscale. In this review, we present a comprehensive overview of IETS in molecular junctions, tracing [...] Read more.
Inelastic electron tunneling spectroscopy (IETS) has emerged as a powerful vibrational spectroscopy technique for molecular electronic junctions, providing unique insights into molecular vibrations and electron–phonon coupling at the nanoscale. In this review, we present a comprehensive overview of IETS in molecular junctions, tracing its development from foundational principles to the latest advances. We begin with the theoretical background, detailing the mechanisms by which inelastic tunneling processes generate vibrational fingerprints of molecules, and highlighting how IETS complements optical spectroscopies by accessing electrically driven vibrational excitations. We then discuss recent progress in experimental techniques and device architectures that have broadened the applicability of IETS. Central focus is given to emerging applications of IETS over the last decade: molecular sensing (identification of chemical bonds and conformational changes in junctions), thermoelectric energy conversion (probing vibrational contributions to molecular thermopower), molecular switches and functional devices (monitoring bias-driven molecular state changes via vibrational signatures), spintronic molecular junctions (detecting spin excitations and spin–vibration interplay), and advanced data analysis approaches such as machine learning for interpreting complex tunneling spectra. Finally, we discuss current challenges, including sensitivity at room temperature, spectral interpretation, and integration into practical devices. This review aims to serve as a thorough reference for researchers in physics, chemistry, and materials science, consolidating state-of-the-art understanding of IETS in molecular junctions and its growing role in molecular-scale device characterization. Full article
(This article belongs to the Special Issue Advances in Multifunctional Materials and Structures)
Show Figures

Figure 1

18 pages, 4490 KiB  
Article
Tandem Neural Network Based Design of Acoustic Metamaterials for Low-Frequency Vibration Reduction in Automobiles
by Jianjiao Deng, Jiawei Wu, Xi Chen, Xinpeng Zhang, Shoukui Li, Yu Song, Jian Wu, Jing Xu, Shiqi Deng and Yudong Wu
Crystals 2025, 15(8), 676; https://doi.org/10.3390/cryst15080676 - 24 Jul 2025
Viewed by 345
Abstract
Automotive NVH (Noise, Vibration, and Harshness) performance significantly impacts driving comfort and traffic safety. Vehicles exhibiting superior NVH characteristics are more likely to achieve consumer acceptance and enhance their competitiveness in the marketplace. In the development of automotive NVH performance, traditional vibration reduction [...] Read more.
Automotive NVH (Noise, Vibration, and Harshness) performance significantly impacts driving comfort and traffic safety. Vehicles exhibiting superior NVH characteristics are more likely to achieve consumer acceptance and enhance their competitiveness in the marketplace. In the development of automotive NVH performance, traditional vibration reduction methods have proven to be mature and widely implemented. However, due to constraints related to size and weight, these methods typically address only high-frequency vibration control. Consequently, they struggle to effectively mitigate vehicle body and component vibration noise at frequencies below 200 Hz. In recent years, acoustic metamaterials (AMMs) have emerged as a promising solution for suppressing low-frequency vibrations. This development offers a novel approach for low-frequency vibration control. Nevertheless, conventional design methodologies for AMMs predominantly rely on empirical knowledge and necessitate continuous parameter adjustments to achieve desired bandgap characteristics—an endeavor that entails extensive calculations and considerable time investment. With advancements in machine learning technology, more efficient design strategies have become feasible. This paper presents a tandem neural network (TNN) specifically developed for the design of AMMs. The trained neural network is capable of deriving both the bandgap characteristics from the design parameters of AMMs as well as deducing requisite design parameters based on specified bandgap targets. Focusing on addressing low-frequency vibrations in the back frame of automobile seats, this method facilitates the determination of necessary AMMs design parameters. Experimental results demonstrate that this approach can effectively guide AMMs designs with both speed and accuracy, and the designed AMMs achieved an impressive vibration attenuation rate of 63.6%. Full article
(This article belongs to the Special Issue Metamaterials and Their Devices, Second Edition)
Show Figures

Figure 1

32 pages, 5164 KiB  
Article
Decentralized Distributed Sequential Neural Networks Inference on Low-Power Microcontrollers in Wireless Sensor Networks: A Predictive Maintenance Case Study
by Yernazar Bolat, Iain Murray, Yifei Ren and Nasim Ferdosian
Sensors 2025, 25(15), 4595; https://doi.org/10.3390/s25154595 - 24 Jul 2025
Viewed by 370
Abstract
The growing adoption of IoT applications has led to increased use of low-power microcontroller units (MCUs) for energy-efficient, local data processing. However, deploying deep neural networks (DNNs) on these constrained devices is challenging due to limitations in memory, computational power, and energy. Traditional [...] Read more.
The growing adoption of IoT applications has led to increased use of low-power microcontroller units (MCUs) for energy-efficient, local data processing. However, deploying deep neural networks (DNNs) on these constrained devices is challenging due to limitations in memory, computational power, and energy. Traditional methods like cloud-based inference and model compression often incur bandwidth, privacy, and accuracy trade-offs. This paper introduces a novel Decentralized Distributed Sequential Neural Network (DDSNN) designed for low-power MCUs in Tiny Machine Learning (TinyML) applications. Unlike the existing methods that rely on centralized cluster-based approaches, DDSNN partitions a pre-trained LeNet across multiple MCUs, enabling fully decentralized inference in wireless sensor networks (WSNs). We validate DDSNN in a real-world predictive maintenance scenario, where vibration data from an industrial pump is analyzed in real-time. The experimental results demonstrate that DDSNN achieves 99.01% accuracy, explicitly maintaining the accuracy of the non-distributed baseline model and reducing inference latency by approximately 50%, highlighting its significant enhancement over traditional, non-distributed approaches, demonstrating its practical feasibility under realistic operating conditions. Full article
Show Figures

Figure 1

19 pages, 13331 KiB  
Article
Multi-Scale Study on Ultrasonic Cutting of Nomex Honeycomb Composites of Disc Cutters
by Yiying Liang, Feng Feng, Wenjun Cao, Ge Song, Xinman Yuan, Jie Xu, Qizhong Yue, Si Pan, Enlai Jiang, Yuan Ma and Pingfa Feng
Materials 2025, 18(15), 3476; https://doi.org/10.3390/ma18153476 - 24 Jul 2025
Viewed by 197
Abstract
To address the issues of burr formation, structural deformation, and tearing in the conventional machining of Nomex honeycomb composites, this study aims to clarify the mechanisms by which ultrasonic vibration-assisted cutting enhances machining quality. A multi-scale analysis framework is developed to examine the [...] Read more.
To address the issues of burr formation, structural deformation, and tearing in the conventional machining of Nomex honeycomb composites, this study aims to clarify the mechanisms by which ultrasonic vibration-assisted cutting enhances machining quality. A multi-scale analysis framework is developed to examine the effects of ultrasonic vibration on fiber distribution, cell-level shear response, and the overall cutting mechanics. At the microscale, analyses show that ultrasonic vibration mitigates stress concentrations, thereby shortening fiber length. At the mesoscale, elastic buckling and plastic yielding models show that ultrasonic vibration lowers shear strength and modifies the deformation. A macro-scale comparison of cutting behavior with and without ultrasonic vibration was conducted. The results indicate that the intermittent contact effect induced by vibration significantly reduces cutting force. Specifically, at an amplitude of 40 μm, the cutting force decreased by approximately 29.7% compared to the condition without ultrasonic vibration, with an average prediction error below 8.6%. Compared to conventional machining, which causes the honeycomb angle to deform to approximately 130°, ultrasonic vibration preserves the original 120° geometry and reduces burr length by 36%. These results demonstrate that ultrasonic vibration effectively reduces damage through multi-scale interactions, offering theoretical guidance for high-precision machining of fiber-reinforced composites. Full article
Show Figures

Figure 1

23 pages, 5107 KiB  
Article
Linear Rolling Guide Surface Wear-State Identification Based on Multi-Scale Fuzzy Entropy and Random Forest
by Conghui Nie, Changguang Zhou, Tieqiang Wang, Xiaoyi Wang, Huaxi Zhou and Hutian Feng
Lubricants 2025, 13(8), 323; https://doi.org/10.3390/lubricants13080323 - 24 Jul 2025
Viewed by 258
Abstract
As a critical precision transmission element in numerical control (NC) machines, the linear rolling guide (LRG) suffers from surface wear degradation, which significantly impairs machining accuracy and operational reliability. Despite its importance, effective identification methods for LRG degradation remain limited. In this study, [...] Read more.
As a critical precision transmission element in numerical control (NC) machines, the linear rolling guide (LRG) suffers from surface wear degradation, which significantly impairs machining accuracy and operational reliability. Despite its importance, effective identification methods for LRG degradation remain limited. In this study, a hybrid approach combining multi-scale fuzzy entropy (MFE) with a gray wolf-optimized random forest (GWO-RF) algorithm was proposed to identify the surface wear state of the LRG. Preload degradation and vibration signals were collected at three surface wear stages throughout the LGR’s service life. The vibration signals were decomposed and reconstructed using complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), followed by multi-scale fuzzy entropy analysis of the reconstructed signals. After dimensionality reduction via kernel principal component analysis (KPCA), the processed features were fed into the GWO-RF model for classification. Experimental results demonstrated a recognition accuracy of 97.9%. Full article
(This article belongs to the Special Issue High Performance Machining and Surface Tribology)
Show Figures

Figure 1

39 pages, 13464 KiB  
Article
Micro-Doppler Signal Features of Idling Vehicle Vibrations: Dependence on Gear Engagements and Occupancy
by Ram M. Narayanan, Benjamin D. Simone, Daniel K. Watson, Karl M. Reichard and Kyle A. Gallagher
Signals 2025, 6(3), 35; https://doi.org/10.3390/signals6030035 - 24 Jul 2025
Viewed by 354
Abstract
This study investigates the use of a custom-built 10 GHz continuous wave micro-Doppler radar system to analyze external vibrations of idling vehicles under various conditions. Scenarios included different gear engagements with one occupant and parked gear with up to four occupants. Motivated by [...] Read more.
This study investigates the use of a custom-built 10 GHz continuous wave micro-Doppler radar system to analyze external vibrations of idling vehicles under various conditions. Scenarios included different gear engagements with one occupant and parked gear with up to four occupants. Motivated by security concerns, such as the threat posed by idling vehicles with multiple occupants, the research explores how micro-Doppler signatures can indicate vehicle readiness to move. Experiments focused on a mid-size SUV, with similar trends seen in other vehicles. Radar data were compared to in situ accelerometer measurements, confirming that the radar system can detect subtle frequency changes, especially during gear shifts. The system’s sensitivity enables it to distinguish variations tied to gear state and passenger load. Extracted features like frequency and magnitude show strong potential for use in machine learning models, offering a non-invasive, remote sensing method for reliably identifying vehicle operational states and occupancy levels in security or monitoring contexts. Spectrogram and PSD analyses reveal consistent tonal vibrations around 30 Hz, tied to engine activity, with harmonics at 60 Hz and 90 Hz. Gear shifts produce impulse signatures primarily below 20 Hz, and transient data show distinct peaks at 50, 80, and 100 Hz. Key features at 23 Hz and 45 Hz effectively indicate engine and gear states. Radar and accelerometer data align well, supporting the potential for remote sensing and machine learning-based classification. Full article
Show Figures

Graphical abstract

17 pages, 5504 KiB  
Article
Multi-Objective Optimization of Acoustic Black Hole Plate Attached to Electric Automotive Steering Machine for Maximizing Vibration Attenuation Performance
by Xiaofei Du, Weilong Li, Fei Hao and Qidi Fu
Machines 2025, 13(8), 647; https://doi.org/10.3390/machines13080647 - 24 Jul 2025
Viewed by 315
Abstract
This research introduces an innovative passive vibration control methodology employing acoustic black hole (ABH) structures to mitigate vibration transmission in electric automotive steering machines—a prevalent issue adversely affecting driving comfort and vehicle safety. Leveraging the inherent bending wave manipulation properties of ABH configurations, [...] Read more.
This research introduces an innovative passive vibration control methodology employing acoustic black hole (ABH) structures to mitigate vibration transmission in electric automotive steering machines—a prevalent issue adversely affecting driving comfort and vehicle safety. Leveraging the inherent bending wave manipulation properties of ABH configurations, we conceive an integrated vibration suppression framework synergizing advanced computational modeling with intelligent optimization algorithms. A high-fidelity finite element (FEM) model integrating ABH-attached steering machine system was developed and subjected to experimental validation via rigorous modal testing. To address computational challenges in design optimization, a hybrid modeling strategy integrating parametric design (using Latin Hypercube Sampling, LHS) with Kriging surrogate modeling is proposed. Systematic parameterization of ABH geometry and damping layer dimensions generated 40 training datasets and 12 validation datasets. Surrogate model verification confirms the model’s precise mapping of vibration characteristics across the design space. Subsequent multi-objective genetic algorithm optimization targeting RMS velocity suppression achieved substantial vibration attenuation (29.2%) compared to baseline parameters. The developed methodology provides automotive researchers and engineers with an efficient suitable design tool for vibration-sensitive automotive component design. Full article
Show Figures

Figure 1

20 pages, 4960 KiB  
Article
A Fault Diagnosis Method for Planetary Gearboxes Using an Adaptive Multi-Bandpass Filter, RCMFE, and DOA-LSSVM
by Xin Xia, Aiguo Wang and Haoyu Sun
Symmetry 2025, 17(8), 1179; https://doi.org/10.3390/sym17081179 - 23 Jul 2025
Viewed by 171
Abstract
Effective fault feature extraction and classification methods serve as the foundation for achieving the efficient fault diagnosis of planetary gearboxes. Considering the vibration signals of planetary gearboxes that contain both symmetrical and asymmetrical components, this paper proposes a novel feature extraction method integrating [...] Read more.
Effective fault feature extraction and classification methods serve as the foundation for achieving the efficient fault diagnosis of planetary gearboxes. Considering the vibration signals of planetary gearboxes that contain both symmetrical and asymmetrical components, this paper proposes a novel feature extraction method integrating an adaptive multi-bandpass filter (AMBPF) and refined composite multi-scale fuzzy entropy (RCMFE). And a dream optimization algorithm (DOA)–least squares support vector machine (LSSVM) is also proposed for fault classification. Firstly, the AMBPF is proposed, which can effectively and adaptively separate the meshing frequencies, harmonic frequencies, and their sideband frequency information of the planetary gearbox, and is combined with RCMFE for fault feature extraction. Secondly, the DOA is employed to optimize the parameters of the LSSVM, aiming to enhance its classification efficiency. Finally, the fault diagnosis of the planetary gearbox is achieved by the AMBPF, RCMFE, and DOA-LSSVM. The experimental results demonstrate that the proposed method achieves significantly higher diagnostic efficiency and exhibits superior noise immunity in planetary gearbox fault diagnosis. Full article
(This article belongs to the Special Issue Symmetry in Fault Detection and Diagnosis for Dynamic Systems)
Show Figures

Figure 1

Back to TopTop