Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = very strong hydrogen bond

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4315 KiB  
Article
Electrospun Graphene Oxide/Poly(m-phenylene isophthalamide) Composite Nanofiber Membranes for High Performance
by Enling Tian, Yinping Bi and Yiwei Ren
Membranes 2025, 15(5), 145; https://doi.org/10.3390/membranes15050145 - 12 May 2025
Viewed by 729
Abstract
Due to its distinctive two-dimensional structure and high specific surface area, graphene oxide (GO) is expected to be a very promising material to be used for membrane separation. Not only can it improve the mechanical strength, surface wettability, and thermal stability of the [...] Read more.
Due to its distinctive two-dimensional structure and high specific surface area, graphene oxide (GO) is expected to be a very promising material to be used for membrane separation. Not only can it improve the mechanical strength, surface wettability, and thermal stability of the membrane, but it can also improve the filtration performance and shelf life of the polymer membrane. Graphene oxide/poly(meta-phenylene isophthalamide) (GO/PMIA) nanofiber membranes were prepared by means of an electrospinning technique. The effects of adding different amounts of GO on the PMIA nanofiber membranes were studied. The results indicated that the GO had a strong affinity with the PMIA matrix by forming hydrogen bonds. The composite nanofiber membranes exhibited better filtration and thermostability performance than those of the pristine membrane. As the loading amount of GO was 1.0 wt%, the air filtration efficiency of the composite nanofiber membrane was 97.79%, the pressure drop was 85.45 Pa and the glass transition temperature was 299.8 °C. Full article
(This article belongs to the Special Issue Prospects for Nanocomposite Membrane Applications)
Show Figures

Figure 1

17 pages, 2878 KiB  
Article
A Green Method for Bacterial Cellulose Electrospinning Using 1-Butyl-3-Methylimidazolium Acetate and γ-Valerolactone
by Elona Vasili, Bahareh Azimi, Mahendra P. Raut, David A. Gregory, Andrea Mele, Boyang Liu, Katrin Römhild, Marcus Krieg, Frederik Claeyssens, Patrizia Cinelli, Ipsita Roy, Maurizia Seggiani and Serena Danti
Polymers 2025, 17(9), 1162; https://doi.org/10.3390/polym17091162 - 24 Apr 2025
Cited by 1 | Viewed by 812
Abstract
Bacterial cellulose (BC) is a highly pure and crystalline cellulose produced via bacterial fermentation. However, due to its chemical structure made of strong hydrogen bonds and its high molecular weight, BC can neither be melted nor dissolved by common solvents. Therefore, processing BC [...] Read more.
Bacterial cellulose (BC) is a highly pure and crystalline cellulose produced via bacterial fermentation. However, due to its chemical structure made of strong hydrogen bonds and its high molecular weight, BC can neither be melted nor dissolved by common solvents. Therefore, processing BC implies the use of very strong, often toxic and dangerous chemicals. In this study, we proved a green method to produce electrospun BC fibers by testing different ionic liquids (ILs), namely, 1-butyl-3-methylimidazolium acetate (BmimAc), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimTFSI) and 1-ethyl-3-methylimidazolium dicyanamide (EmimDCA), either individually or as binary mixtures. Moreover, γ-valerolactone (GVL) was tested as a co-solvent derived from renewable sources to replace dimethyl sulfoxide (DMSO), aimed at making the viscosity of the cellulose solutions suitable for electrospinning. A BmimAc and BmimAc/EmimTFSI (1:1 w/w) mixture could dissolve BC up to 3 w%. GVL was successfully applied in combination with BmimAc as an alternative to DMSO. By optimizing the electrospinning parameters, meshes of continuous BC fibers, with average diameters ~0.5 μm, were produced, showing well-defined pore structures and higher water absorption capacity than pristine BC. The results demonstrated that BC could be dissolved and electrospun via a BmimAc/GVL solvent system, obtaining ultrafine fibers with defined morphology, thus suggesting possible greener methods for cellulose processing. Full article
Show Figures

Graphical abstract

16 pages, 5006 KiB  
Article
Insights on Hydrogen Bond Network of Water in Phospholipid Membranes: An Infrared Study at Varying Hydration
by Valeria Conti Nibali, Caterina Branca, Ulderico Wanderlingh, Rosaria Verduci, Elisa Bonaccorso, Andrea Ciccolo and Giovanna D’Angelo
Membranes 2025, 15(2), 46; https://doi.org/10.3390/membranes15020046 - 4 Feb 2025
Cited by 1 | Viewed by 1631
Abstract
Water in membrane interphases is vital for cellular biological functions, but despite its importance, the structure and function of biological water remain elusive. Here, by studying the OH stretching mode in partially hydrated lipid multilayers by FTIR measurements, relevant information on the water [...] Read more.
Water in membrane interphases is vital for cellular biological functions, but despite its importance, the structure and function of biological water remain elusive. Here, by studying the OH stretching mode in partially hydrated lipid multilayers by FTIR measurements, relevant information on the water structure near the surface with lipid membranes has been gathered. The water hydrogen bond network is highly perturbed in the first layers that are in contact with the lipid membrane, exhibiting strong deviations from tetrahedral symmetry and a significant number of defects, such as isolated water molecules and a large number of hydrogen-bonded water dimers in the interphase region. These findings support the hypothesis that water chains form in phospholipid membranes, and are involved in the proton transfer across lipid bilayers by phosphate groups of opposing lipids. Furthermore, we have determined that even at very low hydration levels, a small amount of water is embedded within the confined spaces of the hydrocarbon region of phospholipid bilayers, which could potentially contribute to the structural stability of the lipid membrane. Full article
(This article belongs to the Special Issue Composition and Biophysical Properties of Lipid Membranes)
Show Figures

Figure 1

15 pages, 4503 KiB  
Article
Crystal Structures of Sulfobetaine-8 Solvates: Bend Hydrophobic Chains and Doubly Charge-Assisted Hydrogen Bonds N+CH⋯O3S
by Andrei V. Churakov, Denis V. Anokhin, Paulina Kalle, Marina A. Kiseleva, Mikhail V. Vener and Lyudmila G. Kuz’mina
Crystals 2024, 14(12), 1062; https://doi.org/10.3390/cryst14121062 - 8 Dec 2024
Cited by 1 | Viewed by 1148
Abstract
Three novel solvatomorphs (C13H29NO3S•CH3OH, 1; C13H29NO3S•0.113(H2O), 2; C13H29NO3S•0.038(H2O), 3) of zwitterionic sulfobetaine-8 were obtained and their [...] Read more.
Three novel solvatomorphs (C13H29NO3S•CH3OH, 1; C13H29NO3S•0.113(H2O), 2; C13H29NO3S•0.038(H2O), 3) of zwitterionic sulfobetaine-8 were obtained and their structures were determined using single-crystal X-Ray diffraction. In all cases dimethyl–amino substituted hydrophobic chains -(CH2)3-N+Me2-(CH2)7-Me exhibit kinks at nitrogen atoms resulted from strong intra- and intermolecular CH⋯O hydrogen bonds between negatively charged sulfonic anion -O3S- and positively charged tetraalkylammonium fragments. Periodic (solid state) DFT calculations for structure 1 showed that the energy of the intermolecular hydrogen bonds CH…O is very high, at about 17 kJ/mol. In hydrates 2 and 3, water molecules play the structure-forming role since they interconnect hydrophobic layers by HOH…-O3S hydrogen bonds. The location of only partially occupied water molecules in the interlayer space leads to low stability of both crystals 2 and 3 in open air. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Graphical abstract

22 pages, 5139 KiB  
Article
Evaluating the Binding Potential and Stability of Drug-like Compounds with the Monkeypox Virus VP39 Protein Using Molecular Dynamics Simulations and Free Energy Analysis
by Ahmed M. Hassan, Hattan S. Gattan, Arwa A. Faizo, Mohammed H. Alruhaili, Azzah S. Alharbi, Leena H. Bajrai, Ibrahim A. AL-Zahrani, Vivek Dhar Dwivedi and Esam I. Azhar
Pharmaceuticals 2024, 17(12), 1617; https://doi.org/10.3390/ph17121617 - 30 Nov 2024
Cited by 10 | Viewed by 3905
Abstract
Background/Objectives: Monkeypox is a re-emerging viral disease with features of infectiously transmitted zoonoses. It is now considered a public health priority because of its rising incidence and transmission from person to person. Monkeypox virus (MPXV) VP39 protein is identified as an essential protein [...] Read more.
Background/Objectives: Monkeypox is a re-emerging viral disease with features of infectiously transmitted zoonoses. It is now considered a public health priority because of its rising incidence and transmission from person to person. Monkeypox virus (MPXV) VP39 protein is identified as an essential protein for replication of the virus, and therefore, it is a potential target for antiviral drugs. Methods: This work analyzes the binding affinities and the differential conformational stability of three target compounds and one control compound with the VP39 protein through multiple computational methods. Results: The re-docking analysis revealed that the compounds had high binding affinities towards the target protein; among these compounds, compounds 1 and 2 showed the highest binding energies in the virtual screening, and thus, these were considered as the most active inhibitor candidates. Intermolecular interaction analysis revealed distinct binding mechanisms. While compound 1 had very strong hydrogen bonds and hydrophobic interactions, compound 2 had numerous water-mediated interactions, and compound 3 had only ionic and hydrophobic contacts. In molecular dynamic simulations, compounds 1 and 2 showed that the protein–ligand complexes had a stable conformation, with protein RMSD values around 2 Å for both compounds. In contrast, compound 3 was slightly flexible, and the control compound was more flexible. MM/GBSA analysis again supported these results, which gave the binding free energies that were also supportive for these compounds. Conclusions: Notably, all the selected compounds, especially compounds 1 and 2, demonstrate high binding affinity. Therefore, these compounds can be further tested as antiviral agents against monkeypox treatment. Full article
Show Figures

Figure 1

17 pages, 3901 KiB  
Article
Experimental and DFT Approaches to Physico-Chemical Properties of Bioactive Resveratrol Analogues
by Borislav Kovačević, Ivana Šagud, Katarina Marija Drmić, Milena Mlakić, Irena Škorić and Sandra Babić
Molecules 2024, 29(22), 5481; https://doi.org/10.3390/molecules29225481 - 20 Nov 2024
Cited by 1 | Viewed by 1120
Abstract
Acetylcholinesterase and butyrylcholinesterase are two related enzymes that represent pharmacologically suitable targets in neurodegenerative disorders, given their physiological roles in the body. The treatment of neurodegenerative disorders currently includes common reversible cholinesterase inhibitors. Resveratrol analogues, as the molecules in focus, have shown the [...] Read more.
Acetylcholinesterase and butyrylcholinesterase are two related enzymes that represent pharmacologically suitable targets in neurodegenerative disorders, given their physiological roles in the body. The treatment of neurodegenerative disorders currently includes common reversible cholinesterase inhibitors. Resveratrol analogues, as the molecules in focus, have shown the very strong inhibition potential of cholinesterases. In this research, experimental and DFT approaches for their pKa value determination were carried out knowing that pKa is very important for predicting the ADMET properties of the potentially bioactive molecules and their behavior in the environment. An in silico study was used to calculate more indicators about the absorption and distribution in the human body. Among the investigated compounds, the weakest acid was experimentally detected and confirmed using three computational models. Additionally performed calculations provided access to the potential of each resveratrol analogue to engage in both π-π stacking and hydrogen bond interactions in the active site of the enzyme crucial for the stability of the ligand–enzyme complex. Full article
Show Figures

Graphical abstract

15 pages, 3350 KiB  
Article
Optimization of a Solvent Exchange Method Enabling the Use of Dehydrated Cellulose Nanofibers as the Thickener in Lubricating Oleogels
by María García-Pérez, Claudia Roman, Samuel D. Fernández-Silva, Miguel A. Delgado and Moisés García-Morales
Gels 2024, 10(11), 690; https://doi.org/10.3390/gels10110690 - 24 Oct 2024
Cited by 1 | Viewed by 1415
Abstract
A method that enabled the formulation of lubricating oleogels using dried cellulose nanofibers (CNFs) as an eco-friendly thickener in castor oil was studied. In their dehydrated state, strong hydrogen bonding between nanofibers and high hydrophilicity are the main obstacles to their dispersion in [...] Read more.
A method that enabled the formulation of lubricating oleogels using dried cellulose nanofibers (CNFs) as an eco-friendly thickener in castor oil was studied. In their dehydrated state, strong hydrogen bonding between nanofibers and high hydrophilicity are the main obstacles to their dispersion in oil. Hence, clusters of dried CNFs had to be previously detached by their dispersion in water. The resulting hydrogels were then subjected to methanol washes to displace the water from the nanofibers. After centrifugation, the methanol-wetted precipitate was readily dispersed in castor oil, forming an oleogel once the methanol was removed. Optimization was conducted in terms of the following variables: (a) hydrogel processing method; (b) hydrogel pH; (c) methanol/hydrogel ratio; (d) number of washes; and (e) oleogel CNF concentration. Their effect on the oleogel linear viscoelastic behavior was analyzed. In general, they demonstrated a prevailing elastic behavior denoted by a well-developed plateau region. The CNF concentration was found to have a more remarkable impact on the oleogels’ rheological behavior than any other variable studied. Hence, substantial differences were observed between 1 and 2 wt.%. The CNFs exhibited a very remarkable thickening capacity in castor oil, achieving a plateau modulus of ca. 700 Pa with just 2 wt.%. Moreover, the resulting oleogels maintained a uniform texture even after one year of storage. This indicates that the oleogels were both homogeneous and storage stable, effectively overcoming the stability issues associated with direct dispersion of dried CNFs in castor oil. Full article
(This article belongs to the Special Issue Recent Progress on Oleogels and Organogels)
Show Figures

Figure 1

18 pages, 3728 KiB  
Article
Very Strong Hydrogen Bond in Nitrophthalic Cocrystals
by Kinga Jóźwiak, Aneta Jezierska, Jarosław J. Panek, Andrzej Kochel, Barbara Łydżba-Kopczyńska and Aleksander Filarowski
Molecules 2024, 29(15), 3565; https://doi.org/10.3390/molecules29153565 - 29 Jul 2024
Cited by 1 | Viewed by 1785
Abstract
This work presents the studies of a very strong hydrogen bond (VSHB) in biologically active phthalic acids. Research on VSHB comes topical due to its participation in many biological processes. The studies cover the modelling of intermolecular interactions and phthalic acids with 2,4,6-collidine [...] Read more.
This work presents the studies of a very strong hydrogen bond (VSHB) in biologically active phthalic acids. Research on VSHB comes topical due to its participation in many biological processes. The studies cover the modelling of intermolecular interactions and phthalic acids with 2,4,6-collidine and N,N-dimethyl-4-pyridinamine complexes with aim to obtain a VSHB. The four synthesized complexes were studied by experimental X-ray, IR, and Raman methods, as well as theoretical Car–Parrinello Molecular Dynamics (CP-MD) and Density Functional Theory (DFT) simulations. By variation of the steric repulsion and basicity of the complex’ components, a very short intramolecular hydrogen bond was achieved. The potential energy curves calculated by the DFT method were characterized by a low barrier (0.7 and 0.9 kcal/mol) on proton transfer in the OHN intermolecular hydrogen bond for 3-nitrophthalic acid with either 2,4,6-collidine or N,N-dimethyl-4-pyridinamine cocrystals. Moreover, the CP-MD simulations exposed very strong bridging proton dynamics in the intermolecular hydrogen bonds. The accomplished crystallographic and spectroscopic studies indicate that the OHO intramolecular hydrogen bond in 4-nitrophthalic cocrystals is VSHB. The influence of a strong steric effect on the geometry of the studied cocrystals and the stretching vibration bands of the carboxyl and carboxylate groups was elaborated. Full article
(This article belongs to the Special Issue Molecular Modeling: Advancements and Applications, 3rd Edition)
Show Figures

Figure 1

23 pages, 11117 KiB  
Article
Comparative Study of Two Spectral Methods for Estimating the Excited State Dipole Moment of Non-Fluorescent Molecules
by Mihaela Iuliana Avadanei and Dana Ortansa Dorohoi
Molecules 2024, 29(14), 3358; https://doi.org/10.3390/molecules29143358 - 17 Jul 2024
Cited by 2 | Viewed by 1073
Abstract
The electronic absorption spectral characteristics of cycloimmonium ylids with a zwitterionic structure have been analyzed in forty-three solvents with different hydrogen bonding abilities. The two ylids lack fluorescence emission but are very dynamic in electronic absorption spectra. Using the maximum of the ICT [...] Read more.
The electronic absorption spectral characteristics of cycloimmonium ylids with a zwitterionic structure have been analyzed in forty-three solvents with different hydrogen bonding abilities. The two ylids lack fluorescence emission but are very dynamic in electronic absorption spectra. Using the maximum of the ICT band, the goal was to establish an accurate relationship between the shift of the ICT visible band and the solvent parameters and to estimate two of the descriptors of the first (the) excited state: the dipole moment and the polarizability. Two procedures were involved: the variational method and the relationships of the Abe model. The results indicate that the excited state dipole moment of the two methylids decreases in the absorption process in comparison with the ground state. The introduction of a correction term in the Abe model that neglects the intermolecular H-bonding interactions leads to a more accurate determination of the two descriptors. The strong solvatochromic response of both ylids has been further applied in distinguishing the solvents as a function of their specific parameters. Principal component analysis was applied to five selected properties, including the maximum of the charge transfer band. The results were further applied to discriminate several binary solvent mixtures. Full article
(This article belongs to the Special Issue Chemical Bond and Intermolecular Interactions, 2nd Edition)
Show Figures

Graphical abstract

17 pages, 3100 KiB  
Article
Exfoliation of Molecular Solids by the Synergy of Ultrasound and Use of Surfactants: A Novel Method Applied to Boric Acid
by Sara Calistri, Alberto Ubaldini, Chiara Telloli, Francesco Gennerini, Giuseppe Marghella, Alessandro Gessi, Stefania Bruni and Antonietta Rizzo
Molecules 2024, 29(14), 3324; https://doi.org/10.3390/molecules29143324 - 15 Jul 2024
Viewed by 1491
Abstract
Boric acid, H3BO3, is a molecular solid made up of layers held together by weak van der Waals forces. It can be considered a pseudo “2D” material, like graphite, compared to graphene. The key distinction is that within each [...] Read more.
Boric acid, H3BO3, is a molecular solid made up of layers held together by weak van der Waals forces. It can be considered a pseudo “2D” material, like graphite, compared to graphene. The key distinction is that within each individual layer, the molecular units are connected not only by strong covalent bonds but also by hydrogen bonds. Therefore, classic liquid exfoliation is not suitable for this material, and a specific method needs to be developed. Preliminary results of exfoliation of boric acid particles by combination of ultrasound and the use of surfactants are presented. Ultrasound provides the system with the energy needed for the process, and the surfactant can act to keep the crystalline flakes apart. A system consisting of a saturated solution and large excess solid residue of boric acid was treated in this way for a few hours at 40 °C in the presence of various sodium stearate, proving to be very promising, and an incipient exfoliation was achieved. Full article
Show Figures

Graphical abstract

12 pages, 5325 KiB  
Article
The Peculiar H-Bonding Network of 4-Methylcatechol: A Coupled Diffraction and In Silico Study
by Mattia Lopresti, Luca Palin, Giovanni Calegari and Marco Milanesio
Molecules 2024, 29(10), 2173; https://doi.org/10.3390/molecules29102173 - 7 May 2024
Cited by 2 | Viewed by 1544
Abstract
The crystal structure of 4-methylcatechol (4MEC) has, to date, never been solved, despite its very simple chemical formula C7O2H8 and the many possible applications envisaged for this molecule. In this work, this gap is filled and the structure [...] Read more.
The crystal structure of 4-methylcatechol (4MEC) has, to date, never been solved, despite its very simple chemical formula C7O2H8 and the many possible applications envisaged for this molecule. In this work, this gap is filled and the structure of 4MEC is obtained by combining X-ray powder diffraction and first principle calculations to carefully locate hydrogen atoms. Two molecules are present in the asymmetric unit. Hirshfeld analysis confirmed the reliability of the solved structure, since the two molecules show rather different environments and H-bond interactions of different directionality and strength. The packing is characterised by a peculiar hydrogen bond network with hydroxyl nests formed by two adjacent octagonal frameworks. It is noteworthy that the observed short contacts suggest strong inter-molecular interactions, further confirmed by strong inter-crystalline aggregation observed by microscopic images, indicating the growth, in many crystallization attempts, of single aggregates taller than half a centimetre and, often, with spherical shapes. These peculiarities are induced by the presence of methyl group in 4MEC, since the parent compound catechol, despite its chemical similarity, shows a standard layered packing alternating hydrophobic and polar layers. Finally, the complexity and peculiarity of the packing and crystal growth features explain why a single crystal could not be obtained for a standard structural analysis. Full article
Show Figures

Figure 1

21 pages, 8810 KiB  
Article
Synthesis and Crystal Structures of Two Crystalline Silicic Acids: Hydrated H-Apophyllite, H16Si16O40 • 8–10 H2O and H-Carletonite, H32Si64O144
by Bernd Marler and Isabel Grosskreuz
Crystals 2024, 14(4), 326; https://doi.org/10.3390/cryst14040326 - 30 Mar 2024
Viewed by 1507
Abstract
Hydrated H-Apophyllite (HH-Apo) and H-carletonite (H-Car) were synthesized at 0 °C by leaching an apophyllite and a carletonite single crystal in a large surplus of 1.2 molar hydrochloric acid. The XRD powder patterns of HH-Apo and H-Car were indexed with space group symmetries [...] Read more.
Hydrated H-Apophyllite (HH-Apo) and H-carletonite (H-Car) were synthesized at 0 °C by leaching an apophyllite and a carletonite single crystal in a large surplus of 1.2 molar hydrochloric acid. The XRD powder patterns of HH-Apo and H-Car were indexed with space group symmetries of P4/ncc and I4/mcm and lattice parameters of a = 8.4872(2) Å, c = 16.8684(8) Å and a = 13.8972(3) Å, c = 20.4677(21) Å, respectively. The crystal structures were solved based on model building of the structures of the precursors and a physico-chemical characterization. Rietveld structure refinements confirmed the structure models. HH-Apo and H-Car are among the very few crystalline silicic acids whose structures have been determined and confirmed based on a structure refinement. The structure of HH-Apo contains thin silicate monolayers that can be regarded as constructed by rings of interconnected [SiO3OH] tetrahedra which form a puckered silicate layer. A sheet of water molecules is intercalated between the silicate layers. There are no direct hydrogen bonds between the silanol groups, but there are hydrogen bonds of different strengths between the terminal O atoms of the silicate layers and the intercalated water molecules. The 1H MAS NMR spectrum presents a strong signal at 4.9 ppm related to the aforementioned bonds and interactions between the water molecules, as well as a small signal at 22.5 ppm corresponding to an extremely strong hydrogen bond with d(O...O) ≈ 2.2 Å. The structure of H-Car is free of structural water and consists exclusively of microporous silicate double-layers with 4-connected [SiO4] and 3-connected [SiO3OH] tetrahedra in a ratio of 1:1 and a thickness of 9.2 Å. Neighboring layers are connected to each other by medium–strong hydrogen bonds with O...O distances of 2.56 Å. The structure of HH-Apo decays within several hours while H-Car is stable. A topotactic condensation reaction applied to H-Car forms an irregularly condensed silicate which still contains the layers in a distorted form as building blocks. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

28 pages, 17235 KiB  
Article
Combination of Hydrogen and Halogen Bonds in the Crystal Structures of 5-Halogeno-1H-isatin-3-oximes: Involvement of the Oxime Functionality in Halogen Bonding
by Eric Meier, Wilhelm Seichter and Monika Mazik
Molecules 2024, 29(5), 1174; https://doi.org/10.3390/molecules29051174 - 6 Mar 2024
Cited by 2 | Viewed by 1663
Abstract
Various functional groups have been considered as acceptors for halogen bonds, but the oxime functionality has received very little attention in this context. In this study, we focus on the analysis of the hydrogen and halogen bond preferences observed in the crystal structures [...] Read more.
Various functional groups have been considered as acceptors for halogen bonds, but the oxime functionality has received very little attention in this context. In this study, we focus on the analysis of the hydrogen and halogen bond preferences observed in the crystal structures of 5-halogeno-1H-isatin-3-oximes. These molecules can be involved in various non-covalent interactions, and the competition between these interactions has a decisive influence on their self-organization. In particular, we were interested to see whether the crystal structures of 5-halogeno-1H-isatin-3-oximes, especially bromine- and iodine-substituted ones, are characterized by the presence of halogen bonds formed with the oxime functionality. The oxime group proved its ability to compete with the other strong donor and acceptor sites by participating in the formation of cyclic hydrogen-bonded heterosynthons oxime∙∙∙amide and Ooxime∙∙∙Br/I halogen bonds. Full article
(This article belongs to the Special Issue Exploring Non-bonded Interactions in Macromolecular Chemistry)
Show Figures

Graphical abstract

16 pages, 3128 KiB  
Article
Cationic Surfactant-Modified Tetraselmis sp. for the Removal of Organic Dyes from Aqueous Solution
by Buhani, Istikomah, Suharso, Sumadi, Sutarto, Huda M. Alghamdi and Khalid Z. Elwakeel
Molecules 2023, 28(23), 7839; https://doi.org/10.3390/molecules28237839 - 29 Nov 2023
Cited by 55 | Viewed by 2356
Abstract
The modification of the Tetraselmis sp. algae material (Tetra-Alg) with surfactant Cethyltrimethylammonium Bromide (CTAB) yielded adsorbent Tetra-Alg-CTAB as an adsorbent of methyl orange (MO) and methylene blue (MB) solutions. The characterization of the adsorbent used an infrared (IR) spectrometer to identify functional groups [...] Read more.
The modification of the Tetraselmis sp. algae material (Tetra-Alg) with surfactant Cethyltrimethylammonium Bromide (CTAB) yielded adsorbent Tetra-Alg-CTAB as an adsorbent of methyl orange (MO) and methylene blue (MB) solutions. The characterization of the adsorbent used an infrared (IR) spectrometer to identify functional groups and Scanning Electron Microscopy with Energy Dispersive X-ray (SEM-EDX FEI Inspect-S50, Midland, ON, Canada) to determine the surface morphology and elemental composition. Methyl orange and methylene blue adsorption on the adsorbent Tetra-Alg, Tetraselmis sp. algae-modified Na+ ions (Tetra-Alg-Na), and Tetra-Alg-CTAB were studied, including variations in pH, contact time, concentration, and reuse of adsorbents. The adsorption of MO and MB by Tetra-Alg-CTAB at pH 10, during a contact time of 90 min, and at a concentration of 250 mg L−1 resulted in MO and MB being absorbed in the amounts of 128.369 and 51.013 mg g−1, respectively. The adsorption kinetics and adsorption isotherms of MO and MB and Tetra-Alg, Tetra-Alg-Na, and Tetra-Alg-CTAB tend to follow pseudo-second-order kinetics models and Freundlich adsorption isotherms with each correlation coefficient value (R2) approaching 1. Due to the modification with the cationic surfactant CTAB, anionic dyes can be strongly sorbed in alkaline pH due to strong electrostatic attraction, while MB is more likely to involve cation exchange and hydrogen bonding. The reuse of Tetra-Alg-CTAB was carried out four times with adsorption percent > 70%, and the adsorbent was very effective in the adsorption of anionic dyes such as MO. Full article
(This article belongs to the Special Issue Biomass-Derived Materials for Environmental Applications)
Show Figures

Figure 1

25 pages, 11434 KiB  
Article
Exceptionally Fast Temperature-Responsive, Mechanically Strong and Extensible Monolithic Non-Porous Hydrogels: Poly(N-isopropylacrylamide) Intercalated with Hydroxypropyl Methylcellulose
by Beata Strachota, Adam Strachota, Leana Vratović, Ewa Pavlova, Miroslav Šlouf, Samir Kamel and Věra Cimrová
Gels 2023, 9(12), 926; https://doi.org/10.3390/gels9120926 - 24 Nov 2023
Cited by 3 | Viewed by 2844
Abstract
Exceptionally fast temperature-responsive, mechanically strong, tough and extensible monolithic non-porous hydrogels were synthesized. They are based on divinyl-crosslinked poly(N-isopropyl-acrylamide) (PNIPAm) intercalated by hydroxypropyl methylcellulose (HPMC). HPMC was largely extracted after polymerization, thus yielding a ‘template-modified’ PNIPAm network intercalated with a modest residue of [...] Read more.
Exceptionally fast temperature-responsive, mechanically strong, tough and extensible monolithic non-porous hydrogels were synthesized. They are based on divinyl-crosslinked poly(N-isopropyl-acrylamide) (PNIPAm) intercalated by hydroxypropyl methylcellulose (HPMC). HPMC was largely extracted after polymerization, thus yielding a ‘template-modified’ PNIPAm network intercalated with a modest residue of HPMC. High contents of divinyl crosslinker and of HPMC caused a varying degree of micro-phase-separation in some products, but without detriment to mechanical or tensile properties. After extraction of non-fixed HPMC, the micro-phase-separated products combine superior mechanical properties with ultra-fast T-response (in 30 s). Their PNIPAm network was highly regular and extensible (intercalation effect), toughened by hydrogen bonds to HPMC, and interpenetrated by a network of nano-channels (left behind by extracted HPMC), which ensured the water transport rates needed for ultra-fast deswelling. Moreover, the T-response rate could be widely tuned by the degree of heterogeneity during synthesis. The fastest-responsive among our hydrogels could be of practical interest as soft actuators with very good mechanical properties (soft robotics), while the slower ones offer applications in drug delivery systems (as tested on the example of Theophylline), or in related biomedical engineering applications. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Hydrogels (2nd Edition))
Show Figures

Graphical abstract

Back to TopTop