Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (17,079)

Search Parameters:
Keywords = verifiability of data

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 2374 KB  
Perspective
Artificial Intelligence in Local Energy Systems: A Perspective on Emerging Trends and Sustainable Innovation
by Sára Ferenci, Florina-Ambrozia Coteț, Elena Simina Lakatos, Radu Adrian Munteanu and Loránd Szabó
Energies 2026, 19(2), 476; https://doi.org/10.3390/en19020476 (registering DOI) - 17 Jan 2026
Abstract
Local energy systems (LESs) are becoming larger and more heterogeneous as distributed energy resources, electrified loads, and active prosumers proliferate, increasing the need for reliable coordination of operation, markets, and community governance. This Perspective synthesizes recent literature to map how artificial intelligence (AI) [...] Read more.
Local energy systems (LESs) are becoming larger and more heterogeneous as distributed energy resources, electrified loads, and active prosumers proliferate, increasing the need for reliable coordination of operation, markets, and community governance. This Perspective synthesizes recent literature to map how artificial intelligence (AI) supports forecasting and situational awareness, optimization, and real-time control of distributed assets, and community-oriented markets and engagement, while arguing that adoption is limited by system-level credibility rather than model accuracy alone. The analysis highlights interlocking deployment barriers, such as governance-integrated explainability, distributional equity, privacy and data governance, robustness under non-stationarity, and the computational footprint of AI. Building on this diagnosis, the paper proposes principles-as-constraints for sustainable, trustworthy LES AI and a deployment-oriented validation and reporting framework. It recommends evaluating LES AI with deployment-ready evidence, including stress testing under shift and rare events, calibrated uncertainty, constraint-violation and safe-fallback behavior, distributional impact metrics, audit-ready documentation, edge feasibility, and transparent energy/carbon accounting. Progress should be judged by measurable system benefits delivered under verifiable safeguards. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
22 pages, 6241 KB  
Article
Using Large Language Models to Detect and Debunk Climate Change Misinformation
by Zeinab Shahbazi and Sara Behnamian
Big Data Cogn. Comput. 2026, 10(1), 34; https://doi.org/10.3390/bdcc10010034 (registering DOI) - 17 Jan 2026
Abstract
The rapid spread of climate change misinformation across digital platforms undermines scientific literacy, public trust, and evidence-based policy action. Advances in Natural Language Processing (NLP) and Large Language Models (LLMs) create new opportunities for automating the detection and correction of misleading climate-related narratives. [...] Read more.
The rapid spread of climate change misinformation across digital platforms undermines scientific literacy, public trust, and evidence-based policy action. Advances in Natural Language Processing (NLP) and Large Language Models (LLMs) create new opportunities for automating the detection and correction of misleading climate-related narratives. This study presents a multi-stage system that employs state-of-the-art large language models such as Generative Pre-trained Transformer 4 (GPT-4), Large Language Model Meta AI (LLaMA) version 3 (LLaMA-3), and RoBERTa-large (Robustly optimized BERT pretraining approach large) to identify, classify, and generate scientifically grounded corrections for climate misinformation. The system integrates several complementary techniques, including transformer-based text classification, semantic similarity scoring using Sentence-BERT, stance detection, and retrieval-augmented generation (RAG) for evidence-grounded debunking. Misinformation instances are detected through a fine-tuned RoBERTa–Multi-Genre Natural Language Inference (MNLI) classifier (RoBERTa-MNLI), grouped using BERTopic, and verified against curated climate-science knowledge sources using BM25 and dense retrieval via FAISS (Facebook AI Similarity Search). The debunking component employs RAG-enhanced GPT-4 to produce accurate and persuasive counter-messages aligned with authoritative scientific reports such as those from the Intergovernmental Panel on Climate Change (IPCC). A diverse dataset of climate misinformation categories covering denialism, cherry-picking of data, false causation narratives, and misleading comparisons is compiled for evaluation. Benchmarking experiments demonstrate that LLM-based models substantially outperform traditional machine-learning baselines such as Support Vector Machines, Logistic Regression, and Random Forests in precision, contextual understanding, and robustness to linguistic variation. Expert assessment further shows that generated debunking messages exhibit higher clarity, scientific accuracy, and persuasive effectiveness compared to conventional fact-checking text. These results highlight the potential of advanced LLM-driven pipelines to provide scalable, real-time mitigation of climate misinformation while offering guidelines for responsible deployment of AI-assisted debunking systems. Full article
(This article belongs to the Special Issue Natural Language Processing Applications in Big Data)
Show Figures

Figure 1

37 pages, 2701 KB  
Article
Application of Active Attitude Setting via Auto Disturbance Rejection Control in Ground-Based Full-Physical Space Docking Tests
by Xiao Zhang, Yonglin Tian, Zainan Jiang, Zhigang Xu, Mingyang Liu and Xinlin Bai
Symmetry 2026, 18(1), 174; https://doi.org/10.3390/sym18010174 (registering DOI) - 16 Jan 2026
Abstract
Ground-based full-physical experiments for space rendezvous and docking serve as a critical step in verifying the reliability of docking technology. The high-precision active attitude setting of spacecraft simulators represents a key technology for ground-based full-physical experiments. In order to satisfy the requirement for [...] Read more.
Ground-based full-physical experiments for space rendezvous and docking serve as a critical step in verifying the reliability of docking technology. The high-precision active attitude setting of spacecraft simulators represents a key technology for ground-based full-physical experiments. In order to satisfy the requirement for high-precision attitude control in these experiments, this paper proposes an enhanced method based on auto disturbance rejection control (ADRC). This paper addresses the limitations of traditional deadband–hysteresis relay controllers, which exhibit low steady-state accuracy and insufficient disturbance rejection capability. This approach employs a nonlinear extended state observer (NESO) to estimate and compensate for total system disturbances in real time. Concurrently, it incorporates an adaptive mechanism for deadband and hysteresis parameters, dynamically adjusting controller parameters based on disturbance estimates and attitude errors. This overcomes the trade-off between accuracy and power consumption that is inherent in fixed-parameter controllers. Furthermore, the method incorporates a nonlinear tracking differentiator (NTD) to schedule transitions, enabling rapid attitude settling without overshoot. The stability analysis demonstrates that the proposed controller achieves local asymptotic stability and global uniformly bounded convergence. The simulation results demonstrate that under three typical operating conditions (conventional attitude setting, pre-separation connector stabilisation, and docking initial condition establishment), the steady-state attitude error remains within ±0.01°, with convergence times under 3 s and no overshoot. These results closely match ground test data. This approach has been demonstrated to enhance the engineering applicability of the control system while ensuring high precision and robust performance. Full article
(This article belongs to the Section Physics)
25 pages, 1708 KB  
Article
Distribution Network Electrical Equipment Defect Identification Based on Multi-Modal Image Voiceprint Data Fusion and Channel Interleaving
by An Chen, Junle Liu, Wenhao Zhang, Jiaxuan Lu, Jiamu Yang and Bin Liao
Processes 2026, 14(2), 326; https://doi.org/10.3390/pr14020326 - 16 Jan 2026
Abstract
With the explosive growth in the quantity of electrical equipment in distribution networks, traditional manual inspection struggles to achieve comprehensive coverage due to limited manpower and low efficiency. This has led to frequent equipment failures including partial discharge, insulation aging, and poor contact. [...] Read more.
With the explosive growth in the quantity of electrical equipment in distribution networks, traditional manual inspection struggles to achieve comprehensive coverage due to limited manpower and low efficiency. This has led to frequent equipment failures including partial discharge, insulation aging, and poor contact. These issues seriously compromise the safe and stable operation of distribution networks. Real-time monitoring and defect identification of their operation status are critical to ensuring the safety and stability of power systems. Currently, commonly used methods for defect identification in distribution network electrical equipment mainly rely on single-image or voiceprint data features. These methods lack consideration of the complementarity and interleaved nature between image and voiceprint features, resulting in reduced identification accuracy and reliability. To address the limitations of existing methods, this paper proposes distribution network electrical equipment defect identification based on multi-modal image voiceprint data fusion and channel interleaving. First, image and voiceprint feature models are constructed using two-dimensional principal component analysis (2DPCA) and the Mel scale, respectively. Multi-modal feature fusion is achieved using an improved transformer model that integrates intra-domain self-attention units and an inter-domain cross-attention mechanism. Second, an image and voiceprint multi-channel interleaving model is applied. It combines channel adaptability and confidence to dynamically adjust weights and generates defect identification results using a weighting approach based on output probability information content. Finally, simulation results show that, under the dataset size of 3300 samples, the proposed algorithm achieves a 8.96–33.27% improvement in defect recognition accuracy compared with baseline algorithms, and maintains an accuracy of over 86.5% even under 20% random noise interference by using improved transformer and multi-channel interleaving mechanism, verifying its advantages in accuracy and noise robustness. Full article
29 pages, 13037 KB  
Article
Energy-Efficient Hierarchical Federated Learning in UAV Networks with Partial AI Model Upload Under Non-Convex Loss
by Hui Li, Shiyu Wang, Yu Du, Runlei Li, Xin Fan and Chuanwen Luo
Sensors 2026, 26(2), 619; https://doi.org/10.3390/s26020619 (registering DOI) - 16 Jan 2026
Abstract
Hierarchical Federated Learning (HFL) alleviates the trade-off between communication overhead and privacy protection in mobile scenarios via multi-level aggregation and mobility consideration. However, its idealized convex loss assumption and full-dimension parameter upload deviate from real-world non-convex tasks and edge channel constraints, causing excessive [...] Read more.
Hierarchical Federated Learning (HFL) alleviates the trade-off between communication overhead and privacy protection in mobile scenarios via multi-level aggregation and mobility consideration. However, its idealized convex loss assumption and full-dimension parameter upload deviate from real-world non-convex tasks and edge channel constraints, causing excessive energy consumption, high communication cost, and compromised convergence that hinder practical deployment. To address these issues in mobile/UAV networks, this paper proposes an energy-efficient optimization scheme for HFL under non-convex loss, integrating a dynamically adjustable partial-dimension model upload mechanism. By screening key update dimensions, the scheme reduces uploaded data volume. We construct a total energy minimization model that incorporates communication/computation energy formulas related to upload dimensions and introduces an attendance rate constraint to guarantee learning performance. Using Lyapunov optimization, the long-term optimization problem is transformed into single-round solvable subproblems, with a step-by-step strategy balancing minimal energy consumption and model accuracy. Simulation results show that compared with the original HFL algorithm, our proposed scheme achieves significant energy reduction while maintaining high test accuracy, verifying the positive impact of mobility on system performance. Full article
Show Figures

Figure 1

20 pages, 4847 KB  
Article
Numerical and Experimental Analysis of Composite Hydraulic Cylinder Components
by Michał Stosiak, Marek Lubecki and Mykola Karpenko
Actuators 2026, 15(1), 61; https://doi.org/10.3390/act15010061 - 16 Jan 2026
Abstract
Due to a number of advantages, such as the high power-to-weight ratio of the system, the possibility of easy control and the freedom of arrangement of the system components on the machine, hydrostatic drive is one of the most popular methods of machine [...] Read more.
Due to a number of advantages, such as the high power-to-weight ratio of the system, the possibility of easy control and the freedom of arrangement of the system components on the machine, hydrostatic drive is one of the most popular methods of machine drive. The actuators in such a system are hydraulic cylinders that convert fluid pressure energy into mechanical energy for reciprocating motion. One disadvantage of conventional actuators is their weight, so research is being conducted to make them as light as possible. Directions for this research include the use of modern engineering materials such as composites and plastics. This paper presents the possibility of using new lightweight yet strong materials for the design of a hydraulic cylinder. The base of the hydraulic cylinder were designed and subjected to FEM numerical analyses. The base was made of PET. In addition, a composite cylinder made of wound carbon fibre was subjected to numerical analyses and experimental validation. The numerical calculations were verified in experimental studies. To improve the reliability of the numerical calculations, the material parameters of the composite materials were determined experimentally instead of being taken from the manufacturer’s data sheets. The composite cylinder achieved a weight reduction of approximately 94.4% compared to a steel cylinder (95.5 g vs. 1704 g). Under an internal pressure of 20 MPa, the composite cylinder exhibited markedly higher circumferential strain (4329 μm/m) than the steel cylinder (339.6 μm/m), and axial strain was also greater (−1237 μm/m vs. −96.4 μm/m). Full article
(This article belongs to the Special Issue Advances in Fluid Power Systems and Actuators)
Show Figures

Figure 1

34 pages, 1395 KB  
Article
Neuro-Symbolic Verification for Preventing LLM Hallucinations in Process Control
by Boris Galitsky and Alexander Rybalov
Processes 2026, 14(2), 322; https://doi.org/10.3390/pr14020322 - 16 Jan 2026
Abstract
Large Language Models (LLMs) are increasingly used in industrial monitoring and decision support, yet they remain prone to process-control hallucinations—diagnoses and explanations that sound plausible but conflict with physical constraints, sensor data, or plant dynamics. This paper investigates hallucination as a failure of [...] Read more.
Large Language Models (LLMs) are increasingly used in industrial monitoring and decision support, yet they remain prone to process-control hallucinations—diagnoses and explanations that sound plausible but conflict with physical constraints, sensor data, or plant dynamics. This paper investigates hallucination as a failure of abductive reasoning, where missing premises, weak mechanistic support, or counter-evidence lead an LLM to propose incorrect causal narratives for faults such as pump restriction, valve stiction, fouling, or reactor runaway. We develop a neuro-symbolic framework in which Abductive Logic Programming (ALP) evaluates the coherence of model-generated explanations, counter-abduction generates rival hypotheses that test whether the explanation can be defeated, and Discourse-weighted ALP (D-ALP) incorporates nucleus–satellite structure from operator notes and alarm logs to weight competing explanations. Using our 500-scenario Process-Control Hallucination Dataset, we assess LLM reasoning across mechanistic, evidential, and contrastive dimensions. Results show that abductive and counter-abductive operators substantially reduce explanation-level hallucinations and improve alignment with physical process behavior, particularly in “easy-but-wrong’’ cases where a superficially attractive explanation contradicts historian trends or counter-evidence. These findings demonstrate that abductive reasoning provides a practical and verifiable foundation for improving LLM reliability in safety-critical process-control environments. Full article
19 pages, 1973 KB  
Article
Continuous Smartphone Authentication via Multimodal Biometrics and Optimized Ensemble Learning
by Chia-Sheng Cheng, Ko-Chien Chang, Hsing-Chung Chen and Chao-Lung Chou
Mathematics 2026, 14(2), 311; https://doi.org/10.3390/math14020311 - 15 Jan 2026
Abstract
The ubiquity of smartphones has transformed them into primary repositories of sensitive data; however, traditional one-time authentication mechanisms create a critical trust gap by failing to verify identity post-unlock. Our aim is to mitigate these vulnerabilities and align with the Zero Trust Architecture [...] Read more.
The ubiquity of smartphones has transformed them into primary repositories of sensitive data; however, traditional one-time authentication mechanisms create a critical trust gap by failing to verify identity post-unlock. Our aim is to mitigate these vulnerabilities and align with the Zero Trust Architecture (ZTA) framework and philosophy of “never trust, always verify,” as formally defined by the National Institute of Standards and Technology (NIST) in Special Publication 800-207. This study introduces a robust continuous authentication (CA) framework leveraging multimodal behavioral biometrics. A dedicated application was developed to synchronously capture touch, sliding, and inertial sensor telemetry. For feature modeling, a heterogeneous deep learning pipeline was employed to capture modality-specific characteristics, utilizing Convolutional Neural Networks (CNNs) for sensor data, Long Short-Term Memory (LSTM) networks for curvilinear sliding, and Gated Recurrent Units (GRUs) for discrete touch. To resolve performance degradation caused by class imbalance in Zero Trust environments, a Grid Search Optimization (GSO) strategy was applied to optimize a weighted voting ensemble, identifying the global optimum for decision thresholds and modality weights. Empirical validation on a dataset of 35,519 samples from 15 subjects demonstrates that the optimized ensemble achieves a peak accuracy of 99.23%. Sensor kinematics emerged as the primary biometric signature, followed by touch and sliding features. This framework enables high-precision, non-intrusive continuous verification, bridging the critical security gap in contemporary mobile architectures. Full article
Show Figures

Figure 1

24 pages, 4850 KB  
Article
Multi-Dimensional Monitoring of Agricultural Drought at the Field Scale
by Yehao Wu, Liming Zhu, Maohua Ding and Lijie Shi
Agriculture 2026, 16(2), 227; https://doi.org/10.3390/agriculture16020227 - 15 Jan 2026
Viewed by 22
Abstract
The causes of agricultural drought are complex, and its actual occurrence process is often characterized by rapid onset in terms of time and small scale in terms of space. Monitoring agricultural drought using satellite remote sensing with low spatial resolution makes it difficult [...] Read more.
The causes of agricultural drought are complex, and its actual occurrence process is often characterized by rapid onset in terms of time and small scale in terms of space. Monitoring agricultural drought using satellite remote sensing with low spatial resolution makes it difficult to accurately capture the details of small-scale drought events. High-resolution satellite remote sensing has relatively long revisit cycles, making it difficult to capture the rapid evolution of drought conditions. Furthermore, the occurrence of agricultural drought is linked to multiple factors including precipitation, evapotranspiration, soil properties, and crop physiological characteristics. Consequently, relying on a single variable or indicator is insufficient for multidimensional monitoring of agricultural drought. This study takes Hebi City, Henan Province as the research area. It uses Sentinel-1 satellite data (HV, VV), Sentinel-2 data (NDVI, B2, B11), elevation, slope, aspect, and GPM precipitation data from 2019 to 2024 as independent variables. Three machine learning algorithms—Random Forest (RF), Random Forest-Recursive Feature Elimination (RF-RFE), and eXtreme Gradient Boosting (XGBoost)—were employed to construct a multi-dimensional agricultural drought monitoring model at the field scale. Additionally, the study verified the sensitivity of different environmental variables to agricultural drought monitoring and analyzed the accuracy performance of different machine learning algorithms in agricultural drought monitoring. The research results indicate that under the condition of full-factor input, all three models exhibit the optimal predictive performance. Among them, the XGBoost model performs the best, with the smallest Relative Root Mean Square Error (RRMSE) of 0.45 and the highest Correlation Coefficient (R) of 0.79. The absence of Digital Elevation Model (DEM) data impairs the models’ ability to capture the patterns of key features, which in turn leads to a reduction in predictive accuracy. Meanwhile, there is a significant correlation between model performance and sample size. Ultimately, the constructed XGBoost model takes the lead with an accuracy of 89%, while the accuracies of Random Forest (RF) and Random Forest-Recursive Feature Elimination (RF-RFE) are 88% and 86%, respectively. Based on these three drought monitoring models, this study further monitored a drought event that occurred in Hebi City in 2023, presented the spatiotemporal distribution of agricultural drought in Hebi City, and applied the Mann–Kendall test for time series analysis, aiming to identify the abrupt change process of agricultural drought. Meanwhile, on the basis of the research results, the feasibility of verifying drought occurrence using irrigation signals was discussed, and the potential reasons for the significantly lower drought occurrence probability in the western mountainous areas of the study region were analyzed. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

15 pages, 1784 KB  
Article
Deep Neural Network-Based Inversion Method for Electron Density Profiles in Ionograms
by Longlong Niu, Chen Zhou, Na Wei, Guosheng Han, ZhongXin Deng and Wen Liu
Atmosphere 2026, 17(1), 88; https://doi.org/10.3390/atmos17010088 - 15 Jan 2026
Viewed by 40
Abstract
Accurate inversion of ionograms of the ionosonde is of great significance for studying ionospheric structure and radio wave propagation. Traditional inversion methods usually describe the electron density profile based on preset polynomial functions, but such functions are difficult to fully match the complex [...] Read more.
Accurate inversion of ionograms of the ionosonde is of great significance for studying ionospheric structure and radio wave propagation. Traditional inversion methods usually describe the electron density profile based on preset polynomial functions, but such functions are difficult to fully match the complex dynamic distribution characteristics of the ionosphere, especially in accurately representing special positions such as the F2 layer peak. To this end, this paper proposes an inversion model based on a Variational Autoencoder, named VSII-VAE, which realizes the mapping from ionograms to electron density profiles through an encoder–decoder structure. To enable the model to learn inversion patterns with physical significance, we introduced physical constraints into the latent variable space and the decoder, constructing a neural network inversion model that integrates data-driven approaches with physical mechanisms. Using multi-class ionograms as input and the electron density measured by Incoherent Scatter Radar as the training target, experimental results show that the electron density profiles retrieved by VSII-VAE are highly consistent with ISR observations, with errors between synthetic virtual heights and measured virtual heights generally below 5 km. On the independent test set, the model evaluation metrics reached R2 = 0.82, RMSE = 0.14 MHz, rp = 0.94, outperforming the ARTIST method and verifying the effectiveness and superiority of the model inversion. Full article
(This article belongs to the Special Issue Research and Space-Based Exploration on Space Plasma)
Show Figures

Figure 1

18 pages, 604 KB  
Article
Making Chaos Out of COVID-19 Testing
by Bo Deng, Jorge Duarte, Cristina Januário and Chayu Yang
Mathematics 2026, 14(2), 306; https://doi.org/10.3390/math14020306 - 15 Jan 2026
Viewed by 27
Abstract
Mathematical models for infectious diseases, particularly autonomous ODE models, are generally known to possess simple dynamics, often converging to stable disease-free or endemic equilibria. This paper investigates the dynamic consequences of a crucial, yet often overlooked, component of pandemic response: the saturation of [...] Read more.
Mathematical models for infectious diseases, particularly autonomous ODE models, are generally known to possess simple dynamics, often converging to stable disease-free or endemic equilibria. This paper investigates the dynamic consequences of a crucial, yet often overlooked, component of pandemic response: the saturation of public health testing. We extend the standard SIR model to include compartments for ‘Confirmed’ (C) and ‘Monitored’ (M) individuals, resulting in a new SICMR model. By fitting the model to U.S. COVID-19 pandemic data (specifically the Omicron wave of late 2021), we demonstrate that capacity constraints in testing destabilize the testing-free endemic equilibrium (E1). This equilibrium becomes an unstable saddle-focus. The instability is driven by a sociological feedback loop, where the rise in confirmed cases drive testing effort, modeled by a nonlinear Holling Type II functional response. We explicitly verify that the eigenvalues for the best-fit model satisfy the Shilnikov condition (λu>λs), demonstrating the system possesses the necessary ingredients for complex, chaotic-like dynamics. Furthermore, we employ Stochastic Differential Equations (SDEs) to show that intrinsic noise interacts with this instability to generate ’noise-induced bursting,’ replicating the complex wave-like patterns observed in empirical data. Our results suggest that public health interventions, such as testing, are not merely passive controls but active dynamical variables that can fundamentally alter the qualitative stability of an epidemic. Full article
Show Figures

Figure 1

21 pages, 5194 KB  
Article
A Typhoon Clustering Model for the Western Pacific Coast Based on Interpretable Machine Learning
by Yanhe Wang, Yinzhen Lv, Lei Zhang, Tianrun Gao, Ruiqi Feng, Yihan Zhou and Wei Zhang
Electronics 2026, 15(2), 379; https://doi.org/10.3390/electronics15020379 - 15 Jan 2026
Viewed by 42
Abstract
As a complex and destructive natural disaster, the characteristics of typhoons are closely related to human activities, and their accurate categorization is of vital significance for improving disaster warning and management capabilities. This study highlights the key role of typhoon clustering in analyzing [...] Read more.
As a complex and destructive natural disaster, the characteristics of typhoons are closely related to human activities, and their accurate categorization is of vital significance for improving disaster warning and management capabilities. This study highlights the key role of typhoon clustering in analyzing typhoon behaviors, aiming to provide reliable support for disaster prevention and control. Based on the NOAA meteorological dataset from 2003 to 2024, this study firstly adopts the K-means clustering algorithm to classify typhoons into seven categories and then utilizes eight machine learning models to train and validate the classification results, and introduces the Shapley’s additive interpretation (SHAP) algorithm to enhance the interpretability of the models. The study data covers a variety of features such as air temperature, wind speed, atmospheric pressure, and weather station observations, etc. After a systematic preprocessing process, a feature matrix containing key variables such as typhoon intensity and moving speed is constructed. The results show that the XGBoost model outperforms others across multiple evaluation metrics (Accuracy: 0.992, Precision: 0.989, Recall: 0.992, F1.5 Score: 0.990), highlighting its exceptional capability in managing complex weather classification tasks. The seven categories of typhoon types classified by K-means exhibit different feature patterns, while the SHAP analysis further reveals the effects of each feature on the classification and its potential interactions. This study not only verifies the effectiveness of K-means combined with machine learning in typhoon classification but also lays a solid scientific foundation for accurate prediction, risk assessment and optimization of management strategies for typhoon disasters through the in-depth analysis of feature impacts. Full article
(This article belongs to the Special Issue AI-Driven Data Analytics and Mining)
Show Figures

Figure 1

9 pages, 484 KB  
Review
Analysis of Factors Associated with Active and Sedentary Behaviors of Children and Adolescents Considering Bronfenbrenner’s Bioecological Theory: A Scoping Review Protocol
by Vinícius Tenório Moraes da Silva, Rafael dos Santos Henrique, José Ywgne, Francisco Salviano Sales Nobre, Paulo Henrique Guerra and Leonardo Gomes de Oliveira Luz
Adolescents 2026, 6(1), 9; https://doi.org/10.3390/adolescents6010009 - 14 Jan 2026
Viewed by 85
Abstract
The present study proposes to identify information from health, educational and sports science studies that used Bronfenbrenner’s theory of human development to verify the complex relationship between factors associated with physical activity (PA) and sedentary behavior (SB) in children and adolescents. The scoping [...] Read more.
The present study proposes to identify information from health, educational and sports science studies that used Bronfenbrenner’s theory of human development to verify the complex relationship between factors associated with physical activity (PA) and sedentary behavior (SB) in children and adolescents. The scoping review will be developed across seven databases (PubMed, Scopus, SPORTDiscus, Web of Science, PsycINFO, ERIC, and Scielo). The inclusion criteria were formulated based on the PCC (Population, Concept, Context) framework: (a) children and adolescents (5–17 years); (b) studies on PA and/or SB that used Bronfenbrenner’s theory; (c) any context. Only peer-reviewed journal articles published in English, Spanish, or Portuguese will be included; grey literature will not be included. Finally, two reviewers will screen studies using Rayyan. A standardized charting form will be used to extract data on study characteristics and the factors mapped considering Bronfenbrenner’s theory components. This study is expected to show how Bronfenbrenner’s theory has been applied to explain PA and SB in children and adolescents, as well as to map the methodological tools used in this area, identifying gaps and providing a clear framework for future research on the complex and multilevel determinants of PA and SB in children and adolescents. Full article
(This article belongs to the Section Adolescent Health Behaviors)
24 pages, 3471 KB  
Article
Transformable Quadruped Wheelchair: Unified Walking and Wheeled Locomotion via Mode-Conditioned Policy Distillation
by Atsuki Akamisaka and Katashi Nagao
Sensors 2026, 26(2), 566; https://doi.org/10.3390/s26020566 - 14 Jan 2026
Viewed by 193
Abstract
In recent years, while progress has been made in barrier-free design, the complete elimination of physical barriers such as uneven road surfaces and stairs remains difficult, and wheelchair passengers continue to face significant mobility constraints. This study aims to verify the effectiveness of [...] Read more.
In recent years, while progress has been made in barrier-free design, the complete elimination of physical barriers such as uneven road surfaces and stairs remains difficult, and wheelchair passengers continue to face significant mobility constraints. This study aims to verify the effectiveness of a transformable quadruped wheelchair that can switch between two modes of movement: walking and wheeled travel. Specifically, reinforcement learning using Proximal Policy Optimization (PPO) was used to acquire walking strategies for uneven terrain and wheeled travel strategies for flat terrain. NVIDIA Isaac Sim was used for simulation. To evaluate the stability of both modes, we performed a frequency analysis of the passenger’s acceleration data. As a result, we observed periodic vibrations around 2 Hz in the vertical direction in walking mode, while in wheeled mode, we confirmed extremely small vibrations and stable running. Furthermore, we distilled these two strategies into a single mode-conditional strategy and conducted long-distance running experiments involving mode transformation. The results demonstrated that by adaptively switching between walking and wheeled modes depending on the terrain, mobility efficiency was significantly improved compared to continuous operation in a single mode. This study demonstrates the effectiveness of an approach that involves learning multiple specialized strategies and switching between them as needed to efficiently traverse diverse environments using a transformable robot. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

23 pages, 5209 KB  
Article
Genome-Wide Identification and Expression Analysis of the Hsp70 Gene Family in Hylocereus undatus Seedlings Under Heat Shock Stress
by Youjie Liu, Ke Wen, Hanyao Zhang, Xiuqing Wei, Liang Li, Ping Zhou, Yajun Tang, Dong Yu, Yueming Xiong and Jiahui Xu
Int. J. Mol. Sci. 2026, 27(2), 816; https://doi.org/10.3390/ijms27020816 - 14 Jan 2026
Viewed by 76
Abstract
Hylocereus undatus growth is limited by long-term heat stress, and heat shock protein 70 (Hsp70) is crucial in the plant’s heat stress (HS) response. In a previous study, transcriptomic data revealed that Hsp70 family members in pitaya seedlings respond to temperature changes. This [...] Read more.
Hylocereus undatus growth is limited by long-term heat stress, and heat shock protein 70 (Hsp70) is crucial in the plant’s heat stress (HS) response. In a previous study, transcriptomic data revealed that Hsp70 family members in pitaya seedlings respond to temperature changes. This study identified 27 HuHsp70 genes in pitaya, analyzed their physicochemical properties (such as molecular weight and isoelectric point), and divided them into five subfamilies with conserved gene structures, motifs (short conserved sequence patterns), and cis-acting elements (regulatory DNA sequences). The Ks value (synonymous substitution rate) ranged from 0.93~3.54, and gene duplication events occurred between 71.17 and 272.19 million years ago (Mya). Under HS, eight and nine differentially expressed genes (DEGs) were detected at 24 h and 48 h, respectively. Quantitative real-time PCR (qRT-PCR, a method for measuring gene expression) verified the expression trends, with HuHsp70-11 expression increasing with heat shock duration, indicating that HuHsp70-11 is a key candidate. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that HuHsp70s, especially HuHsp70-11, play key roles in responding to high temperatures (HT) in H. undatus seedlings. A potential model by which HuHsp70-11 removes excess reactive oxygen species (ROS) and enhances cell membrane permeability was constructed. These results provide new perspectives for exploring the HS response mechanisms and adaptability of H. undatus plants to heat stress. Full article
Show Figures

Figure 1

Back to TopTop