Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = veratridine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3803 KiB  
Article
A High-Throughput Biosensing Approach for Rapid Screening of Compounds Targeting the hNav1.1 Channel: Marine Toxins as a Case Study
by Huijing Shen, Yuxia Cui, Shiyuan Liang, Shuang Zhou, Yingji Li, Yongning Wu and Junxian Song
Mar. Drugs 2025, 23(3), 119; https://doi.org/10.3390/md23030119 - 9 Mar 2025
Viewed by 1314
Abstract
Voltage-gated sodium (Nav) channels play a crucial role in initiating and propagating action potentials throughout the heart, muscles and nervous systems, making them targets for a number of drugs and toxins. While patch-clamp electrophysiology is considered the gold standard for measuring ion channel [...] Read more.
Voltage-gated sodium (Nav) channels play a crucial role in initiating and propagating action potentials throughout the heart, muscles and nervous systems, making them targets for a number of drugs and toxins. While patch-clamp electrophysiology is considered the gold standard for measuring ion channel activity, its labor-intensive and time-consuming nature highlights the need for fast screening strategies to facilitate a preliminary selection of potential drugs or hazards. In this study, a high-throughput and cost-effective biosensing method was developed to rapidly identify specific agonists and inhibitors targeting the human Nav1.1 (hNav1.1) channel. It combines a red fluorescent dye sensitive to transmembrane potentials with CHO cells stably expressing the hNav1.1 α-subunit (hNav1.1-CHO). In the initial screening mode, the tested compounds were mixed with pre-equilibrated hNav1.1-CHO cells and dye to detect potential agonist effects via fluorescence enhancement. In cases where no fluorescence enhancement was observed, the addition of a known agonist veratridine allowed the indication of inhibitor candidates by fluorescence reduction, relative to the veratridine control without test compounds. Potential agonists or inhibitors identified in the initial screening were further evaluated by measuring concentration–response curves to determine EC50/IC50 values, providing semi-quantitative estimates of their binding strength to hNav1.1. This robust, high-throughput biosensing assay was validated through comparisons with the patch-clamp results and tested with 12 marine toxins, yielding consistent results. It holds promise as a low-cost, rapid, and long-term stable approach for drug discovery and non-target screening of neurotoxins. Full article
(This article belongs to the Special Issue Toxins as Marine-Based Drug Discovery, 2nd Edition)
Show Figures

Figure 1

10 pages, 4242 KiB  
Article
Veratridine-Induced Oscillations in Nav 1.7 but Not Nav 1.5 Sodium Channels Are Revealed by Membrane Potential Sensitive Dye
by Sarah C. R. Lummis, Samantha C. Salvage, Christopher L.-H. Huang and Antony P. Jackson
Membranes 2025, 15(3), 80; https://doi.org/10.3390/membranes15030080 - 5 Mar 2025
Viewed by 1171
Abstract
Voltage-gated sodium channels (Navs) are critical for membrane potential depolarisation in cells, with especially important roles in neuronal and cardiomyocyte membranes. Their malfunction results in a range of disorders, and they are the target of many widely used drugs. A rapid yet accurate [...] Read more.
Voltage-gated sodium channels (Navs) are critical for membrane potential depolarisation in cells, with especially important roles in neuronal and cardiomyocyte membranes. Their malfunction results in a range of disorders, and they are the target of many widely used drugs. A rapid yet accurate functional assay is therefore desirable both to probe for novel active compounds and to better understand the many different Nav isoforms. Here, we use fluorescence to monitor Nav function: cells expressing either the cardiac Nav 1.5 or pain-associated Nav 1.7 were loaded with fluorescent membrane potential sensitive dye and then stimulated with veratridine. Cells expressing Nav 1.5 show a concentration-dependent slow rise and then a plateau in fluorescence. In contrast, cells expressing Nav 1.7 show a more rapid rise and then unexpected oscillatory behavior. Inhibition by flecainide and mexiletine demonstrates that these oscillations are Nav-dependent. Thus, we show that this fluorescent membrane potential dye can provide useful functional data and that we can readily distinguish between these two Nav isoforms because of the behavior of cells expressing them when activated by veratridine. We consider these distinct behaviors may be due to different interactions of veratridine with the different Nav isoforms, although more studies are needed to understand the mechanism underlying the oscillations. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Figure 1

13 pages, 4531 KiB  
Article
Deciphering the Neurotoxic Effects of Karenia selliformis
by Ambbar Aballay-González, Jessica Panes-Fernández, Catharina Alves-de-Souza, Bernd Krock, Juan José Gallardo-Rodríguez, Nicole Espinoza-Rubilar, Jorge Fuentealba and Allisson Astuya-Villalón
Toxins 2025, 17(2), 92; https://doi.org/10.3390/toxins17020092 - 15 Feb 2025
Viewed by 1063
Abstract
Karenia selliformis is a globally recognized dinoflagellate associated with harmful algal blooms and massive fish kills along southern Chilean coasts. Its toxicity varies with environmental factors and genetic diversity. While K. selliformis is traditionally linked to neurotoxins like gymnodimines (GYMs), analysis of the [...] Read more.
Karenia selliformis is a globally recognized dinoflagellate associated with harmful algal blooms and massive fish kills along southern Chilean coasts. Its toxicity varies with environmental factors and genetic diversity. While K. selliformis is traditionally linked to neurotoxins like gymnodimines (GYMs), analysis of the strain CREAN-KS02 from Chile’s Aysén Region (43° S) revealed no presence of toxins associated with this genus, such as gymnodimines, brevetoxins, or brevenal. Given the high toxicity and impact on marine life, our study aimed to functionally characterize the neurotoxic metabolites in the exudate of K. selliformis cultures. Cytotoxicity was evaluated using a Neuro-2a cell-based assay (CBA), determining an IC50 of 2.41 ± 0.02 μg mL−1. The incubation of Neuro-2a cells with the bioactive lipophilic extract obtained from the exudate of K. selliformis and the ouabain/veratridine couple showed activation of voltage-gated ion channels. Electrophysiological recordings on cultured mouse hippocampal neurons showed that the extract increased cell excitability in a dose-dependent manner, modulating action potential firing and exhibiting an opposed effect to tetrodotoxin. These findings indicate the presence of excitatory neurotoxic compounds affecting mammalian cells. This study provides the first mechanistic evidence of K. selliformis toxicity and highlights potential risks associated with its proliferation in marine environments. Full article
Show Figures

Figure 1

20 pages, 3411 KiB  
Article
Veratridine Induces Vasorelaxation in Mouse Cecocolic Mesenteric Arteries
by Joohee Park, Christina Sahyoun, Jacinthe Frangieh, Léa Réthoré, Coralyne Proux, Linda Grimaud, Emilie Vessières, Jennifer Bourreau, César Mattei, Daniel Henrion, Céline Marionneau, Ziad Fajloun, Claire Legendre and Christian Legros
Toxins 2024, 16(12), 533; https://doi.org/10.3390/toxins16120533 - 10 Dec 2024
Viewed by 1590
Abstract
The vegetal alkaloid toxin veratridine (VTD) is a selective voltage-gated Na+ (NaV) channel activator, widely used as a pharmacological tool in vascular physiology. We have previously shown that NaV channels, expressed in arteries, contribute to vascular tone in mouse [...] Read more.
The vegetal alkaloid toxin veratridine (VTD) is a selective voltage-gated Na+ (NaV) channel activator, widely used as a pharmacological tool in vascular physiology. We have previously shown that NaV channels, expressed in arteries, contribute to vascular tone in mouse mesenteric arteries (MAs). Here, we aimed to better characterize the mechanisms of action of VTD using mouse cecocolic arteries (CAs), a model of resistance artery. Using wire myography, we found that VTD induced vasorelaxation in mouse CAs. This VTD-induced relaxation was insensitive to prazosin, an α1-adrenergic receptor antagonist, but abolished by atropine, a muscarinic receptor antagonist. Indeed, VTD–vasorelaxant effect was totally inhibited by the NaV channel blocker tetrodotoxin (0.3 µM), the NO synthase inhibitor L-NNA (20 µM), and low extracellular Na+ concentration (14.9 mM) and was partially blocked by the NCX1 antagonist SEA0400 (45.4% at 1 µM). Thus, we assumed that the VTD-induced vasorelaxation in CAs was due to acetylcholine release by parasympathetic neurons, which induced NO synthase activation mediated by the NCX1-Ca2+ entry mode in endothelial cells (ECs). We demonstrated NCX1 expression in ECs by RT-qPCR and immunohisto- and western immunolabelling. VTD did not induce an increase in intracellular Ca2+ ([Ca2+]i), while SEA0400 partially blocked acetylcholine-triggered [Ca2+]i elevations in Mile Sven 1 ECs. Altogether, these results illustrate that VTD activates NaV channels in parasympathetic neurons and then vasorelaxation in resistance arteries, which could explain arterial hypotension after VTD intoxication. Full article
(This article belongs to the Special Issue Toxins: From the Wild to the Lab)
Show Figures

Graphical abstract

12 pages, 1875 KiB  
Article
Sensitive Detection of Ciguatoxins Using a Neuroblastoma Cell-Based Assay with Voltage-Gated Potassium Channel Inhibitors
by Toshiaki Yokozeki, Madoka Kawabata, Kazuhiro Fujita, Masahiro Hirama and Takeshi Tsumuraya
Toxins 2024, 16(3), 118; https://doi.org/10.3390/toxins16030118 - 29 Feb 2024
Cited by 4 | Viewed by 2293
Abstract
Ciguatoxins (CTXs) are neurotoxins responsible for ciguatera poisoning (CP), which affects more than 50,000 people worldwide annually. The development of analytical methods to prevent CP is a pressing global issue, and the N2a assay is one of the most promising methods for detecting [...] Read more.
Ciguatoxins (CTXs) are neurotoxins responsible for ciguatera poisoning (CP), which affects more than 50,000 people worldwide annually. The development of analytical methods to prevent CP is a pressing global issue, and the N2a assay is one of the most promising methods for detecting CTXs. CTXs are highly toxic, and an action level of 0.01 μg CTX1B equivalent (eq)/kg in fish has been proposed. It is desirable to further increase the detection sensitivity of CTXs in the N2a assay to detect such low concentrations reliably. The opening of voltage-gated sodium channels (NaV channels) and blocking of voltage-gated potassium channels (KV channels) are thought to be involved in the toxicity of CTXs. Therefore, in this study, we developed an assay that could detect CTXs with higher sensitivity than conventional N2a assays, using KV channel inhibitors as sensitizing reagents for N2a cells. The addition of the KV channel inhibitors 4-aminopyridine and tetraethylammonium chloride to N2a cells, in addition to the traditional sensitizing reagents ouabain and veratridine, increased the sensitivity of N2a cells to CTXs by up to approximately 4-fold. This is also the first study to demonstrate the influence of KV channels on the toxicity of CTXs in a cell-based assay. Full article
(This article belongs to the Topic Marine Biotoxins and Bioactive Marine Natural Products)
Show Figures

Figure 1

21 pages, 3879 KiB  
Article
Mouse N2a Neuroblastoma Assay: Uncertainties and Comparison with Alternative Cell-Based Assays for Ciguatoxin Detection
by Sandra Raposo-Garcia, Alejandro Cao, Celia Costas, M. Carmen Louzao, Natalia Vilariño, Carmen Vale and Luis M. Botana
Mar. Drugs 2023, 21(11), 590; https://doi.org/10.3390/md21110590 - 13 Nov 2023
Cited by 5 | Viewed by 3627
Abstract
The growing concern about ciguatera fish poisoning (CF) due to the expansion of the microorganisms producing ciguatoxins (CTXs) increased the need to develop a reliable and fast method for ciguatoxin detection to guarantee food safety. Cytotoxicity assay on the N2a cells sensitized with [...] Read more.
The growing concern about ciguatera fish poisoning (CF) due to the expansion of the microorganisms producing ciguatoxins (CTXs) increased the need to develop a reliable and fast method for ciguatoxin detection to guarantee food safety. Cytotoxicity assay on the N2a cells sensitized with ouabain (O) and veratridine (V) is routinely used in ciguatoxin detection; however, this method has not been standardized yet. This study demonstrated the low availability of sodium channels in the N2a cells, the great O/V damage to the cells and the cell detachment when the cell viability is evaluated by the classical cytotoxicity assay and confirmed the absence of toxic effects caused by CTXs alone when using the methods that do not require medium removal such as lactate dehydrogenase (LDH) and Alamar blue assays. Different cell lines were evaluated as alternatives, such as human neuroblastoma, which was not suitable for the CTX detection due to the greater sensitivity to O/V and low availability of sodium channels. However, the HEK293 Nav cell line expressing the α1.6 subunit of sodium channels was sensitive to the ciguatoxin without the sensitization with O/V due to its expression of sodium channels. In the case of sensitizing the cells with O/V, it was possible to detect the presence of the ciguatoxin by the classical cytotoxicity MTT method at concentrations as low as 0.0001 nM CTX3C, providing an alternative cell line for the detection of compounds that act on the sodium channels. Full article
(This article belongs to the Section Marine Toxins)
Show Figures

Graphical abstract

24 pages, 7907 KiB  
Article
Calcium Signaling during Cortical Apical Dendrite Initiation: A Role for Cajal-Retzius Neurons
by Joshua R. Enck and Eric C. Olson
Int. J. Mol. Sci. 2023, 24(16), 12965; https://doi.org/10.3390/ijms241612965 - 19 Aug 2023
Cited by 2 | Viewed by 2133
Abstract
The apical dendrite of a cortical projection neuron (CPN) is generated from the leading process of the migrating neuron as the neuron completes migration. This transformation occurs in the cortical marginal zone (MZ), a layer that contains the Cajal-Retzius neurons and their axonal [...] Read more.
The apical dendrite of a cortical projection neuron (CPN) is generated from the leading process of the migrating neuron as the neuron completes migration. This transformation occurs in the cortical marginal zone (MZ), a layer that contains the Cajal-Retzius neurons and their axonal projections. Cajal-Retzius neurons (CRNs) are well known for their critical role in secreting Reelin, a glycoprotein that controls dendritogenesis and cell positioning in many regions of the developing brain. In this study, we examine the possibility that CRNs in the MZ may provide additional signals to arriving CPNs, that may promote the maturation of CPNs and thus shape the development of the cortex. We use whole embryonic hemisphere explants and multiphoton microscopy to confirm that CRNs display intracellular calcium transients of <1-min duration and high amplitude during early corticogenesis. In contrast, developing CPNs do not show high-amplitude calcium transients, but instead show a steady increase in intracellular calcium that begins at the time of dendritic initiation, when the leading process of the migrating CPN is encountering the MZ. The possible existence of CRN to CPN communication was revealed by the application of veratridine, a sodium channel activator, which has been shown to preferentially stimulate more mature cells in the MZ at an early developmental time. Surprisingly, veratridine application also triggers large calcium transients in CPNs, which can be partially blocked by a cocktail of antagonists that block glutamate and glycine receptor activation. These findings outline a model in which CRN spontaneous activity triggers the release of glutamate and glycine, neurotransmitters that can trigger intracellular calcium elevations in CPNs. These elevations begin as CPNs initiate dendritogenesis and continue as waves in the post-migratory cells. Moreover, we show that the pharmacological blockade of glutamatergic signaling disrupts migration, while forced expression of a bacterial voltage-gated calcium channel (CavMr) in the migrating neurons promotes dendritic growth and migration arrest. The identification of CRN to CPN signaling during early development provides insight into the observation that many autism-linked genes encode synaptic proteins that, paradoxically, are expressed in the developing cortex well before the appearance of synapses and the establishment of functional circuits. Full article
(This article belongs to the Special Issue Responsible Factors for Neuromorphogenesis in the Brain)
Show Figures

Figure 1

16 pages, 1993 KiB  
Article
Tetrodotoxin Decreases the Contractility of Mesenteric Arteries, Revealing the Contribution of Voltage-Gated Na+ Channels in Vascular Tone Regulation
by Joohee Park, Coralyne Proux, William Ehanno, Léa Réthoré, Emilie Vessières, Jennifer Bourreau, Julie Favre, Gilles Kauffenstein, César Mattei, Hélène Tricoire-Leignel, Daniel Henrion, Claire Legendre and Christian Legros
Mar. Drugs 2023, 21(3), 196; https://doi.org/10.3390/md21030196 - 22 Mar 2023
Cited by 5 | Viewed by 2580
Abstract
Tetrodotoxin (TTX) poisoning through the consumption of contaminated fish leads to lethal symptoms, including severe hypotension. This TTX-induced hypotension is likely due to the downfall of peripheral arterial resistance through direct or indirect effects on adrenergic signaling. TTX is a high-affinity blocker of [...] Read more.
Tetrodotoxin (TTX) poisoning through the consumption of contaminated fish leads to lethal symptoms, including severe hypotension. This TTX-induced hypotension is likely due to the downfall of peripheral arterial resistance through direct or indirect effects on adrenergic signaling. TTX is a high-affinity blocker of voltage-gated Na+ (NaV) channels. In arteries, NaV channels are expressed in sympathetic nerve endings, both in the intima and media. In this present work, we aimed to decipher the role of NaV channels in vascular tone using TTX. We first characterized the expression of NaV channels in the aorta, a model of conduction arteries, and in mesenteric arteries (MA), a model of resistance arteries, in C57Bl/6J mice, by Western blot, immunochemistry, and absolute RT-qPCR. Our data showed that these channels are expressed in both endothelium and media of aorta and MA, in which scn2a and scn1b were the most abundant transcripts, suggesting that murine vascular NaV channels consist of NaV1.2 channel subtype with NaVβ1 auxiliary subunit. Using myography, we showed that TTX (1 µM) induced complete vasorelaxation in MA in the presence of veratridine and cocktails of antagonists (prazosin and atropine with or without suramin) that suppressed the effects of neurotransmitter release. In addition, TTX (1 µM) strongly potentiated the flow-mediated dilation response of isolated MA. Altogether, our data showed that TTX blocks NaV channels in resistance arteries and consecutively decreases vascular tone. This could explain the drop in total peripheral resistance observed during mammal tetrodotoxications. Full article
(This article belongs to the Special Issue Tetrodotoxins: Detection, Biosynthesis and Biological Effects)
Show Figures

Graphical abstract

18 pages, 3464 KiB  
Article
Reversal of Peripheral Neuropathic Pain by the Small-Molecule Natural Product Narirutin via Block of Nav1.7 Voltage-Gated Sodium Channel
by Haoyi Yang, Zhiming Shan, Weijie Guo, Yuwei Wang, Shuxian Cai, Fuyi Li, Qiaojie Huang, Jessica Aijia Liu, Chi Wai Cheung and Song Cai
Int. J. Mol. Sci. 2022, 23(23), 14842; https://doi.org/10.3390/ijms232314842 - 27 Nov 2022
Cited by 8 | Viewed by 4049
Abstract
Neuropathic pain is a refractory chronic disease affecting millions of people worldwide. Given that present painkillers have poor efficacy or severe side effects, developing novel analgesics is badly needed. The multiplex structure of active ingredients isolated from natural products provides a new source [...] Read more.
Neuropathic pain is a refractory chronic disease affecting millions of people worldwide. Given that present painkillers have poor efficacy or severe side effects, developing novel analgesics is badly needed. The multiplex structure of active ingredients isolated from natural products provides a new source for phytochemical compound synthesis. Here, we identified a natural product, Narirutin, a flavonoid compound isolated from the Citrus unshiu, showing antinociceptive effects in rodent models of neuropathic pain. Using calcium imaging, whole-cell electrophysiology, western blotting, and immunofluorescence, we uncovered a molecular target for Narirutin’s antinociceptive actions. We found that Narirutin (i) inhibits Veratridine-triggered nociceptor activities in L4-L6 rat dorsal root ganglion (DRG) neurons, (ii) blocks voltage-gated sodium (NaV) channels subtype 1.7 in both small-diameter DRG nociceptive neurons and human embryonic kidney (HEK) 293 cell line, (iii) does not affect tetrodotoxin-resistant (TTX-R) NaV channels, and (iv) blunts the upregulation of Nav1.7 in calcitonin gene-related peptide (CGRP)-labeled DRG sensory neurons after spared nerve injury (SNI) surgery. Identifying Nav1.7 as a molecular target of Narirutin may further clarify the analgesic mechanism of natural flavonoid compounds and provide an optimal idea to produce novel selective and efficient analgesic drugs. Full article
(This article belongs to the Special Issue Recent Advances in Ion Channels and Ion Channelopathies)
Show Figures

Figure 1

17 pages, 3848 KiB  
Article
Effective Modulation by Lacosamide on Cumulative Inhibition of INa during High-Frequency Stimulation and Recovery of INa Block during Conditioning Pulse Train
by Po-Ming Wu, Yu-Ching Lin, Chi-Wu Chiang, Hsin-Yen Cho, Tzu-Hsien Chuang, Meng-Cheng Yu, Sheng-Nan Wu and Yi-Fang Tu
Int. J. Mol. Sci. 2022, 23(19), 11966; https://doi.org/10.3390/ijms231911966 - 8 Oct 2022
Cited by 4 | Viewed by 2094
Abstract
The effects of lacosamide (LCS, Vimpat®), an anti-convulsant and analgesic, on voltage-gated Na+ current (INa) were investigated. LCS suppressed both the peak (transient, INa(T)) and sustained (late, INa(L)) components of INa with [...] Read more.
The effects of lacosamide (LCS, Vimpat®), an anti-convulsant and analgesic, on voltage-gated Na+ current (INa) were investigated. LCS suppressed both the peak (transient, INa(T)) and sustained (late, INa(L)) components of INa with the IC50 values of 78 and 34 μM found in GH3 cells and of 112 and 26 μM in Neuro-2a cells, respectively. In GH3 cells, the voltage-dependent hysteresis of persistent INa (INa(P)) during the triangular ramp pulse was strikingly attenuated, and the decaying time constant (τ) of INa(T) or INa(L) during a train of depolarizing pulses was further shortened by LCS. The recovery time course from the INa block elicited by the preceding conditioning train can be fitted by two exponential processes, while the single exponential increase in current recovery without a conditioning train was adequately fitted. The fast and slow τ’s of recovery from the INa block by the same conditioning protocol arose in the presence of LCS. In Neuro-2a cells, the strength of the instantaneous window INa (INa(W)) during the rapid ramp pulse was reduced by LCS. This reduction could be reversed by tefluthrin. Moreover, LCS accelerated the inactivation time course of INa activated by pulse train stimulation, and veratridine reversed its decrease in the decaying τ value in current inactivation. The docking results predicted the capability of LCS binding to some amino-acid residues in sodium channels owing to the occurrence of hydrophobic contact. Overall, our findings unveiled that LCS can interact with the sodium channels to alter the magnitude, gating, voltage-dependent hysteresis behavior, and use dependence of INa in excitable cells. Full article
(This article belongs to the Special Issue Ion Channels as a Potential Target in Pharmaceutical Designs)
Show Figures

Figure 1

14 pages, 2175 KiB  
Review
Veratrum parviflorum: An Underexplored Source for Bioactive Steroidal Alkaloids
by Jared T. Seale and Owen M. McDougal
Molecules 2022, 27(16), 5349; https://doi.org/10.3390/molecules27165349 - 22 Aug 2022
Cited by 12 | Viewed by 3942
Abstract
Plants of the Veratrum genus have been used throughout history for their emetic properties, rheumatism, and for the treatment of high blood pressure. However, inadvertent consumption of these plants, which resemble wild ramps, induces life-threatening side effects attributable to an abundance of steroidal [...] Read more.
Plants of the Veratrum genus have been used throughout history for their emetic properties, rheumatism, and for the treatment of high blood pressure. However, inadvertent consumption of these plants, which resemble wild ramps, induces life-threatening side effects attributable to an abundance of steroidal alkaloids. Several of the steroidal alkaloids from Veratrum spp. have been investigated for their ability to antagonize the Hedgehog (Hh) signaling pathway, a key pathway for embryonic development and cell proliferation. Uncontrolled activation of this pathway is linked to the development of various cancers; most notably, basal cell carcinoma and acute myeloid leukemia. Additional investigation of Veratrum spp. may lead to the identification of novel alkaloids with the potential to serve as chemotherapeutics. V. parviflorum is a relatively uncommon species of Veratrum that resides in the southeastern regions of North America. The phytochemical profile of this plant remains largely unexplored; however, bioactive steroidal alkaloids, including cyclopamine, veratramine, veratridine, and verazine were identified in its extract. The structural elucidation and bioactivity assessment of steroidal alkaloids in lesser abundance within the extract of V. parviflorum may yield potent Hh pathway inhibitors. This review seeks to consolidate the botanical and phytochemical information regarding V. parviflorum. Full article
Show Figures

Graphical abstract

11 pages, 1000 KiB  
Article
Nurr1 Is Not an Essential Regulator of BDNF in Mouse Cortical Neurons
by Mona Abdollahi and Margaret Fahnestock
Int. J. Mol. Sci. 2022, 23(12), 6853; https://doi.org/10.3390/ijms23126853 - 20 Jun 2022
Cited by 7 | Viewed by 2523
Abstract
Nurr1 and brain-derived neurotrophic factor (BDNF) play major roles in cognition. Nurr1 regulates BDNF in midbrain dopaminergic neurons and cerebellar granule cells. Nurr1 and BDNF are also highly expressed in the cerebral cortex, a brain area important in cognition. Due to Nurr1 and [...] Read more.
Nurr1 and brain-derived neurotrophic factor (BDNF) play major roles in cognition. Nurr1 regulates BDNF in midbrain dopaminergic neurons and cerebellar granule cells. Nurr1 and BDNF are also highly expressed in the cerebral cortex, a brain area important in cognition. Due to Nurr1 and BDNF tissue specificity, the regulatory effect of Nurr1 on BDNF in different brain areas cannot be generalized. The relationship between Nurr1 and BDNF in the cortex has not been investigated previously. Therefore, we examined Nurr1-mediated BDNF regulation in cortical neurons in activity-dependent and activity-independent states. Mouse primary cortical neurons were treated with the Nurr1 agonist, amodiaquine (AQ). Membrane depolarization was induced by KCl or veratridine and reversed by nimodipine. AQ and membrane depolarization significantly increased Nurr1 (p < 0.001) and BDNF (pAQ < 0.001, pKCl < 0.01) as assessed by real-time qRT-PCR. However, Nurr1 knockdown did not affect BDNF gene expression in resting or depolarized neurons. Accordingly, the positive correlation between Nurr1 and BDNF expression in AQ and membrane depolarization experiments does not imply co-regulation because Nurr1 knockdown did not affect BDNF gene expression in resting or depolarized cortical neurons. Therefore, in contrast to midbrain dopaminergic neurons and cerebellar granule cells, Nurr1 does not regulate BDNF in cortical neurons. Full article
(This article belongs to the Special Issue Molecules Affecting Brain Development and Nervous System)
Show Figures

Figure 1

17 pages, 32974 KiB  
Article
Supramolecular Complexes of Plant Neurotoxin Veratridine with Cyclodextrins and Their Antidote-like Effect on Neuro-2a Cell Viability
by Laura A. Uribe, Sandra Leonardo, Thorbjørn Terndrup Nielsen, Casper Steinmann, Mònica Campàs and Alex Fragoso
Pharmaceutics 2022, 14(3), 598; https://doi.org/10.3390/pharmaceutics14030598 - 9 Mar 2022
Cited by 8 | Viewed by 3866
Abstract
Veratridine (VTD) is a plant neurotoxin that acts by blocking the voltage-gated sodium channels (VGSC) of cell membranes. Symptoms of VTD intoxication include intense nausea, hypotension, arrhythmia, and loss of consciousness. The treatment for the intoxication is mainly focused on treating the symptoms, [...] Read more.
Veratridine (VTD) is a plant neurotoxin that acts by blocking the voltage-gated sodium channels (VGSC) of cell membranes. Symptoms of VTD intoxication include intense nausea, hypotension, arrhythmia, and loss of consciousness. The treatment for the intoxication is mainly focused on treating the symptoms, meaning there is no specific antidote against VTD. In this pursuit, we were interested in studying the molecular interactions of VTD with cyclodextrins (CDs). CDs are supramolecular macrocycles with the ability to form host–guest inclusion complexes (ICs) inside their hydrophobic cavity. Since VTD is a lipid-soluble alkaloid, we hypothesized that it could form stable inclusion complexes with different types of CDs, resulting in changes to its physicochemical properties. In this investigation, we studied the interaction of VTD with β-CD, γ-CD and sulfobutyl ether β-CD (SBCD) by isothermal titration calorimetry (ITC) and nuclear magnetic resonance (NMR) spectroscopy. Docking and molecular dynamics studies confirmed the most stable configuration for the inclusion complexes. Finally, with an interest in understanding the effects of the VTD/CD molecular interactions, we performed cell-based assays (CBAs) on Neuro-2a cells. Our findings reveal that the use of different amounts of CDs has an antidote-like concentration-dependent effect on the cells, significantly increasing cell viability and thus opening opportunities for novel research on applications of CDs and VTD. Full article
(This article belongs to the Special Issue Novel Cyclodextrin Based Systems for Drug Delivery and Related Issues)
Show Figures

Graphical abstract

13 pages, 2177 KiB  
Article
Veratridine Can Bind to a Site at the Mouth of the Channel Pore at Human Cardiac Sodium Channel NaV1.5
by Alican Gulsevin, Andrew M. Glazer, Tiffany Shields, Brett M. Kroncke, Dan M. Roden and Jens Meiler
Int. J. Mol. Sci. 2022, 23(4), 2225; https://doi.org/10.3390/ijms23042225 - 17 Feb 2022
Cited by 6 | Viewed by 3606
Abstract
The cardiac sodium ion channel (NaV1.5) is a protein with four domains (DI-DIV), each with six transmembrane segments. Its opening and subsequent inactivation results in the brief rapid influx of Na+ ions resulting in the depolarization of cardiomyocytes. The neurotoxin [...] Read more.
The cardiac sodium ion channel (NaV1.5) is a protein with four domains (DI-DIV), each with six transmembrane segments. Its opening and subsequent inactivation results in the brief rapid influx of Na+ ions resulting in the depolarization of cardiomyocytes. The neurotoxin veratridine (VTD) inhibits NaV1.5 inactivation resulting in longer channel opening times, and potentially fatal action potential prolongation. VTD is predicted to bind at the channel pore, but alternative binding sites have not been ruled out. To determine the binding site of VTD on NaV1.5, we perform docking calculations and high-throughput electrophysiology experiments in the present study. The docking calculations identified two distinct binding regions. The first site was in the pore, close to the binding site of NaV1.4 and NaV1.5 blocking drugs in experimental structures. The second site was at the “mouth” of the pore at the cytosolic side, partly solvent-exposed. Mutations at this site (L409, E417, and I1466) had large effects on VTD binding, while residues deeper in the pore had no effect, consistent with VTD binding at the mouth site. Overall, our results suggest a VTD binding site close to the cytoplasmic mouth of the channel pore. Binding at this alternative site might indicate an allosteric inactivation mechanism for VTD at NaV1.5. Full article
(This article belongs to the Special Issue New Insights into Cardiac Ion Channel Regulation 2.0)
Show Figures

Figure 1

20 pages, 5171 KiB  
Article
Pharmacological Dissection of the Crosstalk between NaV and CaV Channels in GH3b6 Cells
by Léa Réthoré, Joohee Park, Jérôme Montnach, Sébastien Nicolas, Joseph Khoury, Elodie Le Seac’h, Kamel Mabrouk, Harold De Pomyers, Hélène Tricoire-Leignel, César Mattei, Daniel Henrion, Ziad Fajloun, Michel De Waard, Claire Legendre and Christian Legros
Int. J. Mol. Sci. 2022, 23(2), 827; https://doi.org/10.3390/ijms23020827 - 13 Jan 2022
Cited by 5 | Viewed by 3565
Abstract
Thanks to the crosstalk between Na+ and Ca2+ channels, Na+ and Ca2+ homeostasis interplay in so-called excitable cells enables the generation of action potential in response to electrical stimulation. Here, we investigated the impact of persistent activation of voltage-gated [...] Read more.
Thanks to the crosstalk between Na+ and Ca2+ channels, Na+ and Ca2+ homeostasis interplay in so-called excitable cells enables the generation of action potential in response to electrical stimulation. Here, we investigated the impact of persistent activation of voltage-gated Na+ (NaV) channels by neurotoxins, such as veratridine (VTD), on intracellular Ca2+ concentration ([Ca2+]i) in a model of excitable cells, the rat pituitary GH3b6 cells, in order to identify the molecular actors involved in Na+-Ca2+ homeostasis crosstalk. By combining RT-qPCR, immunoblotting, immunocytochemistry, and patch-clamp techniques, we showed that GH3b6 cells predominantly express the NaV1.3 channel subtype, which likely endorses their voltage-activated Na+ currents. Notably, these Na+ currents were blocked by ICA-121431 and activated by the β-scorpion toxin Tf2, two selective NaV1.3 channel ligands. Using Fura-2, we showed that VTD induced a [Ca2+]i increase. This effect was suppressed by the selective NaV channel blocker tetrodotoxin, as well by the selective L-type CaV channel (LTCC) blocker nifedipine. We also evidenced that crobenetine, a NaV channel blocker, abolished VTD-induced [Ca2+]i elevation, while it had no effects on LTCC. Altogether, our findings highlight a crosstalk between NaV and LTCC in GH3b6 cells, providing a new insight into the mode of action of neurotoxins. Full article
(This article belongs to the Collection Feature Papers in Molecular Toxicology)
Show Figures

Figure 1

Back to TopTop