Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (131)

Search Parameters:
Keywords = vehicle-to-infrastructure cooperation system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2125 KB  
Article
Obstacle Avoidance for Vehicle Platoons in I-VICS: A Safety-Centric Approach Using an Improved Potential Field Method
by Chigan Du, Jianbei Liu, Yang Zhao and Jianyou Zhao
World Electr. Veh. J. 2026, 17(1), 7; https://doi.org/10.3390/wevj17010007 (registering DOI) - 22 Dec 2025
Viewed by 92
Abstract
Based on an enhanced artificial potential field approach, this paper presents a control method for obstacle avoidance in vehicle platoons within Intelligent Vehicle-Infrastructure Cooperative Systems (I-VICS). To enhance safety during maneuvers, an inter-vehicle obstacle avoidance potential field model is established. By integrating virtual [...] Read more.
Based on an enhanced artificial potential field approach, this paper presents a control method for obstacle avoidance in vehicle platoons within Intelligent Vehicle-Infrastructure Cooperative Systems (I-VICS). To enhance safety during maneuvers, an inter-vehicle obstacle avoidance potential field model is established. By integrating virtual forces and a consistency control strategy into the control law, the proposed method effectively handles obstacle avoidance for vehicles operating at large inter-vehicle distances (80–110 m). Experimental validation using real-world trajectory data shows a 34% improvement in trajectory smoothness, as quantified by a proposed Vehicle Trajectory Stability (VTS) metric, leading to significantly safer avoidance maneuvers. A coordinated multi-vehicle obstacle avoidance strategy is further devised using a rotating potential field method, enabling collaborative and safe overall motion planning. Moreover, a path tracking strategy based on virtual force design is introduced to enhance platoon stability and reliability. Future work will focus on collision avoidance for vehicle platoons with varying inter-vehicle distances and will extend the consistency control and cooperative avoidance strategies to longer vehicle platoon to further improve overall traffic safety. Full article
(This article belongs to the Section Automated and Connected Vehicles)
Show Figures

Figure 1

34 pages, 8919 KB  
Article
Real-Flight-Path Tracking Control Design for Quadrotor UAVs: A Precision-Guided Approach
by Moataz Aly, Badar Ali, Fitsum Y. Mekonnen, Mohamed Elhesasy, Mingkai Wang, Mohamed M. Kamra and Tarek N. Dief
Automation 2025, 6(4), 93; https://doi.org/10.3390/automation6040093 - 12 Dec 2025
Viewed by 335
Abstract
This study presents the design and implementation of a real-time flight-path tracking control system for a quadrotor unmanned aerial vehicle (UAV) capable of accurately following a mobile ground target under dynamic and uncertain environmental conditions. The proposed framework integrates classical fixed-gain PID regulation [...] Read more.
This study presents the design and implementation of a real-time flight-path tracking control system for a quadrotor unmanned aerial vehicle (UAV) capable of accurately following a mobile ground target under dynamic and uncertain environmental conditions. The proposed framework integrates classical fixed-gain PID regulation executed on Pixhawk with its built-in adaptive mechanisms, namely autotuning, hover-throttle learning, and dynamic harmonic notch filtering, to enhance robustness under communication latency and disturbances. No machine learning PID tuning is used on Pixhawk; adaptive features are estimator based rather than ML based. The proposed system addresses critical challenges in trajectory tracking, including real-time delay compensation between the UAV and rover, external perturbations, and the requirement to maintain stable six-degree-of-freedom (DOF) control of altitude, yaw, pitch, and roll. A dynamic mathematical model, formulated using ordinary differential equations with embedded delay elements, is developed to emulate real-world flight behavior and validate control performance. Experimental evaluation demonstrates robust path-tracking accuracy, attitude stability, and responsiveness across diverse terrains and weather conditions, achieving a mean positional error below one meter and effective resilience against an 8.2 ms communication delay. Overall, this work establishes a scalable, computationally efficient, and high-precision control framework for UAV guidance and cooperative ground-target tracking, with potential applications in autonomous navigation, search-and-rescue operations, infrastructure inspection, and intelligent surveillance. The term “delay-aware” in this work refers to the explicit modeling of the measured 8.2 ms end-to-end delay and the use of Pixhawk’s estimator-based adaptive mechanisms, without any machine learning-based PID tuning. Full article
Show Figures

Figure 1

28 pages, 8306 KB  
Article
Coordinated Voltage and Power Factor Optimization in EV- and DER-Integrated Distribution Systems Using an Adaptive Rolling Horizon Approach
by Wonjun Yun, Phi-Hai Trinh, Jhi-Young Joo and Il-Yop Chung
Energies 2025, 18(23), 6357; https://doi.org/10.3390/en18236357 - 4 Dec 2025
Viewed by 292
Abstract
The penetration of distributed energy resources (DERs), such as photovoltaic (PV) generation and electric vehicles (EVs), in distribution systems has been increasing rapidly. At the same time, load demand is rising due to the proliferation of data centers and the growing use of [...] Read more.
The penetration of distributed energy resources (DERs), such as photovoltaic (PV) generation and electric vehicles (EVs), in distribution systems has been increasing rapidly. At the same time, load demand is rising due to the proliferation of data centers and the growing use of artificial intelligence. These trends have introduced new operational challenges: reverse power flow from PV generation during the day and low-voltage conditions during periods of peak load or when PV output is unavailable. To address these issues, this paper proposes a two-stage adaptive rolling horizon (ARH)-based model predictive control (MPC) framework for coordinated voltage and power factor (PF) control in distribution systems. The proposed framework, designed from the perspective of a distributed energy resource management system (DERMS), integrates EV charging and discharging scheduling with PV- and EV-connected inverter control. In the first stage, the ARH method optimizes EV charging and discharging schedules to regulate voltage levels. In the second stage, optimal power flow analysis is employed to adjust the voltage of distribution lines and the power factor at the substation through reactive power compensation, using PV- and EV-connected inverters. The proposed algorithm aims to maintain stable operation of the distribution system while minimizing PV curtailment by computing optimal control commands based on predicted PV generation, load forecasts, and EV data provided by vehicle owners. Simulation results on the IEEE 37-bus test feeder demonstrate that, under predicted PV and load profiles, the system voltage can be maintained within the normal range of 0.95–1.05 per unit (p.u.), the power factor is improved, and the state-of-charge (SOC) requirements of EV owners are satisfied. These results confirm that the proposed framework enables stable and cooperative operation of the distribution system without the need for additional infrastructure expansion. Full article
Show Figures

Figure 1

19 pages, 2396 KB  
Article
A Multi-Objective Reinforcement Learning Framework for Energy-Efficient Electric Bus Operations
by Huan Liu, Hengyi Qiu, Wanming Lu and Xiaonian Shan
Sustainability 2025, 17(23), 10695; https://doi.org/10.3390/su172310695 - 28 Nov 2025
Viewed by 301
Abstract
In urban arterials, buses face dual constraints from signal-controlled intersections and bus stop dwell demands, and frequent start–stop cycles result in reduced operational efficiency and elevated energy consumption. To address this critical challenge, a sustainable eco-driving strategy integrating offline and online Reinforcement Learning [...] Read more.
In urban arterials, buses face dual constraints from signal-controlled intersections and bus stop dwell demands, and frequent start–stop cycles result in reduced operational efficiency and elevated energy consumption. To address this critical challenge, a sustainable eco-driving strategy integrating offline and online Reinforcement Learning (RL) is proposed in this study. Leveraging real-world trajectory data from a 15.47 km route with 31 stops, the energy consumption characteristics of electric buses under the combined effects of stops and intersections are systematically analyzed, and high energy consumption scenarios are precisely identified. An initial energy saving strategy is first trained using offline RL, and subsequently subjected to online optimization in a vehicle–infrastructure cooperative simulation environment that incorporates three typical stop configurations. The soft actor-critic algorithm is employed to reconcile the dual goals of energy efficiency and ride comfort. Simulation results reveal a significant improvement with the proposed strategy, achieving an 11.2% reduction in energy consumption and a 37.7% decrease in travel time compared to the Krauss benchmark model. This study confirms the effectiveness of RL in boosting the operational sustainability of public transport systems, offering a scalable technical framework to promote the development of green urban mobility. The research findings provide theoretical support and practical references for the large-scale promotion and engineering application of energy saving autonomous driving technology for electric buses. Full article
Show Figures

Figure 1

20 pages, 3065 KB  
Article
Investigating the Impact of E-Mobility on Distribution Grids in Rural Communities: A Case Study
by Marcus Brennenstuhl, Pawan Kumar Elangovan, Dirk Pietruschka and Robert Otto
Energies 2025, 18(21), 5819; https://doi.org/10.3390/en18215819 - 4 Nov 2025
Viewed by 458
Abstract
Germany’s energy transition to a higher share of renewable energy sources (RESs) is characterized by decentralization, with citizens, cooperatives, SMEs, and municipalities playing a central role. As of early 2025, private individuals own a significant share of renewable energy installations, particularly PV panels, [...] Read more.
Germany’s energy transition to a higher share of renewable energy sources (RESs) is characterized by decentralization, with citizens, cooperatives, SMEs, and municipalities playing a central role. As of early 2025, private individuals own a significant share of renewable energy installations, particularly PV panels, which corresponds to approximately half of the total installed PV power. This trend is driven by physical, technological, and societal factors. Technological advances in battery storage and sector coupling are expected to further decentralize the energy system. Thereby, the electrification of mobility, particularly through electric vehicles (EVs), offers significant storage potential and grid-balancing capabilities via bidirectional charging, although it also introduces challenges, especially for distribution grids during peak loads. Within this work we present a detailed digital twin of the entire distribution grid of the rural German municipality of Wüstenrot. Using grid operator data and transformer measurements, we evaluate strategic expansion scenarios for electromobility, PV and heat pumps based on existing infrastructure and predicted growth in both public and private sectors. A core focus is the intelligent integration of EV charging infrastructure to avoid local overloads and to optimise grid utilisation. Thereby municipally planned and privately driven expansion scenarios are compared, and grid bottlenecks are identified, proposing solutions through charge load management and targeted infrastructure upgrades. This study of Wüstenrot’s low-voltage grid reveals substantial capacity reserves for future integration of heat pumps, electric vehicles (EVs), and photovoltaic systems, supporting the shift to a sustainable energy system. While full-scale expansion would require significant infrastructure investment, mainly due to widespread EV adoption, simple measures like temporary charge load reduction could cut grid stress by up to 51%. Additionally, it is shown that bidirectional charging offers further relief and potential income for EV owners. Full article
Show Figures

Figure 1

35 pages, 2596 KB  
Article
Integrated Evaluation of C-ITS Services: Synergistic Effects of GLOSA and CACC on Traffic Efficiency and Sustainability
by Manuel Walch and Matthias Neubauer
Sustainability 2025, 17(19), 8855; https://doi.org/10.3390/su17198855 - 3 Oct 2025
Viewed by 644
Abstract
Cooperative Intelligent Transport Systems (C-ITS) have emerged as a key enabler of more efficient, safer, and environmentally sustainable road traffic by allowing vehicles and infrastructure to exchange information and coordinate behavior. To evaluate their benefits, impact assessment studies are essential. However, most existing [...] Read more.
Cooperative Intelligent Transport Systems (C-ITS) have emerged as a key enabler of more efficient, safer, and environmentally sustainable road traffic by allowing vehicles and infrastructure to exchange information and coordinate behavior. To evaluate their benefits, impact assessment studies are essential. However, most existing studies focus on individual C-ITS services in isolation, overlooking how combined deployments influence outcomes. This study addresses this gap by presenting the first systematic evaluation of individual and joint deployments of Cooperative Adaptive Cruise Control (CACC) and Green Light Optimal Speed Advisory (GLOSA) under diverse conditions. A dual-model simulation framework is applied, combining controlled artificial networks with calibrated real-world corridors in Upper Austria. This allows both statistical testing and validation of plausibility in real-world contexts. Key performance indicators include travel time and CO2 emissions, evaluated across varying lane configurations, numbers of traffic lights, demand levels, and equipment rates. The results demonstrate that C-ITS effectiveness is strongly context-dependent: while CACC generally provides larger efficiency gains, GLOSA yields consistent emission reductions, and the combined deployment offers conditional synergies but may also diminish benefits at high demand. The study contributes a guideline for selecting service configurations based on site conditions, thereby providing practical recommendations for future C-ITS rollouts. Full article
(This article belongs to the Special Issue Sustainable Traffic Flow Management and Smart Transportation)
Show Figures

Figure 1

31 pages, 1841 KB  
Article
Joint Scheduling and Placement for Vehicular Intelligent Applications Under QoS Constraints: A PPO-Based Precedence-Preserving Approach
by Wei Shi and Bo Chen
Mathematics 2025, 13(19), 3130; https://doi.org/10.3390/math13193130 - 30 Sep 2025
Viewed by 554
Abstract
The increasing demand for low-latency, computationally intensive vehicular applications, such as autonomous navigation and real-time perception, has led to the adoption of cloud–edge–vehicle infrastructures. These applications are often modeled as Directed Acyclic Graphs (DAGs) with interdependent subtasks, where precedence constraints enforce causal ordering [...] Read more.
The increasing demand for low-latency, computationally intensive vehicular applications, such as autonomous navigation and real-time perception, has led to the adoption of cloud–edge–vehicle infrastructures. These applications are often modeled as Directed Acyclic Graphs (DAGs) with interdependent subtasks, where precedence constraints enforce causal ordering while allowing concurrency. We propose a task offloading framework that decomposes applications into precedence-constrained subtasks and formulates the joint scheduling and offloading problem as a Markov Decision Process (MDP) to capture the latency–energy trade-off. The system state incorporates vehicle positions, wireless link quality, server load, and task-buffer status. To address the high dimensionality and sequential nature of scheduling, we introduce DepSchedPPO, a dependency-aware sequence-to-sequence policy that processes subtasks in topological order and generates placement decisions using action masking to ensure partial-order feasibility. This policy is trained using Proximal Policy Optimization (PPO) with clipped surrogates, ensuring stable and sample-efficient learning under dynamic task dependencies. Extensive simulations show that our approach consistently reduces task latency, energy consumption and QOS compared to conventional heuristic and DRL-based methods. The proposed solution demonstrates strong applicability to real-time vehicular scenarios such as autonomous navigation, cooperative sensing, and edge-based perception. Full article
Show Figures

Figure 1

23 pages, 5880 KB  
Article
Offline Knowledge Base and Attention-Driven Semantic Communication for Image-Based Applications in ITS Scenarios
by Yan Xiao, Xiumei Fan, Zhixin Xie and Yuanbo Lu
Big Data Cogn. Comput. 2025, 9(9), 240; https://doi.org/10.3390/bdcc9090240 - 18 Sep 2025
Viewed by 932
Abstract
Communications in intelligent transportation systems (ITS) face explosive data growth from applications such as autonomous driving, remote diagnostics, and real-time monitoring, imposing severe challenges on limited spectrum, bandwidth, and latency. Reliable semantic image reconstruction under noisy channel conditions is critical for ITS perception [...] Read more.
Communications in intelligent transportation systems (ITS) face explosive data growth from applications such as autonomous driving, remote diagnostics, and real-time monitoring, imposing severe challenges on limited spectrum, bandwidth, and latency. Reliable semantic image reconstruction under noisy channel conditions is critical for ITS perception tasks, since noise directly impacts the recognition of both static infrastructure and dynamic obstacles. Unlike traditional approaches that aim to transmit all image data with equal fidelity, effective ITS communication requires prioritizing task-relevant dynamic elements such as vehicles and pedestrians while filtering out largely static background features such as buildings, road signs, and vegetation. To address this, we propose an Offline Knowledge Base and Attention-Driven Semantic Communication (OKBASC) framework for image-based applications in ITS scenarios. The proposed framework performs offline semantic segmentation to build a compact knowledge base of semantic masks, focusing on dynamic task-relevant regions such as vehicles, pedestrians, and traffic signals. At runtime, precomputed masks are adaptively fused with input images via sparse attention to generate semantic-aware representations that selectively preserve essential information while suppressing redundant background. Moreover, we introduce a further Bi-Level Routing Attention (BRA) module that hierarchically refines semantic features through global channel selection and local spatial attention, resulting in improved discriminability and compression efficiency. Experiments on the VOC2012 and nuPlan datasets under varying SNR levels show that OKBASC achieves higher semantic reconstruction quality than baseline methods, both quantitatively via the Structural Similarity Index Metric (SSIM) and qualitatively via visual comparisons. These results highlight the value of OKBASC as a communication-layer enabler that provides reliable perceptual inputs for downstream ITS applications, including cooperative perception, real-time traffic safety, and incident detection. Full article
Show Figures

Graphical abstract

22 pages, 896 KB  
Article
Enhancing Sustainable Mobility: A Comparative Analysis of C-ITS and Fundamental Diagram-Based Traffic Jam Detection
by Angelo Coppola, Luca Di Costanzo and Andrea Marchetta
Sustainability 2025, 17(18), 8217; https://doi.org/10.3390/su17188217 - 12 Sep 2025
Viewed by 758
Abstract
Traffic congestion is a primary obstacle to sustainable mobility, leading to increased fuel consumption, harmful emissions, and significant economic losses. Effective and timely congestion detection is therefore a critical enabler for proactive traffic management strategies that can mitigate these negative impacts. This study [...] Read more.
Traffic congestion is a primary obstacle to sustainable mobility, leading to increased fuel consumption, harmful emissions, and significant economic losses. Effective and timely congestion detection is therefore a critical enabler for proactive traffic management strategies that can mitigate these negative impacts. This study contributes to this goal by conducting a rigorous comparative analysis of two key detection paradigms: a modern, vehicle-centric approach using a Cooperative Intelligent Transportation Systems (C-ITS) service, and a traditional, infrastructure-based method relying on the fundamental diagram (FD). Using a comprehensive simulation campaign on a bottleneck scenario, we evaluate the performance of both methods under various conditions. The results demonstrate that while the FD-based method can offer faster detection under optimal sensor placement for severe events, the C-ITS approach provides fundamentally greater spatial flexibility and reliability across a wider range of congestion severities. Our techno-economic analysis further reveals that the paradigms rely on distinct investment models, with C-ITS offering superior scalability and a promising path toward network-wide coverage. This highlights the complementary nature of the two approaches and underscores the potential of C-ITS as a key technology to support dynamic, efficient, and sustainable transportation networks. Full article
(This article belongs to the Special Issue Smart Mobility for Sustainable Future Transportation)
Show Figures

Figure 1

31 pages, 5528 KB  
Article
Gradient-Based Time-Extended Potential Field Method for Real-Time Path Planning in Infrastructure-Based Cooperative Driving Systems
by Jakyung Ko and Inchul Yang
Sensors 2025, 25(17), 5601; https://doi.org/10.3390/s25175601 - 8 Sep 2025
Viewed by 910
Abstract
This study proposes a real-time path generation method called the Gradient-based Time-extended Potential Field (GT-PF) for cooperative autonomous driving environments. The proposed approach models the road environment and dynamic obstacles as a time-variant potential field and generates safe and feasible paths by tracing [...] Read more.
This study proposes a real-time path generation method called the Gradient-based Time-extended Potential Field (GT-PF) for cooperative autonomous driving environments. The proposed approach models the road environment and dynamic obstacles as a time-variant potential field and generates safe and feasible paths by tracing the negative gradient of the field, which corresponds to the direction of steepest descent. In contrast to conventional sampling-based or optimization-based methods, the proposed PF framework enables lightweight computation and continuous trajectory generation in spatiotemporal domains. Furthermore, a velocity-oriented bias is introduced in the PF formulation to ensure that the generated paths satisfy the vehicle’s kinematic constraints and desired cruising behavior. The effectiveness of the proposed method is verified through comparative simulations against a sampling-based Rapidly exploring Random Tree (RRT) planner. Results demonstrate that the GT-PF approach exhibits superior performance in terms of runtime efficiency and safety. The system is particularly suitable for RSU (Roadside Unit)-based infrastructure control in real-time traffic environments. Future work includes the extension to complex urban scenarios, integration with multi-agent planning frameworks, and deployment in sensor-fused cooperative perception systems. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

22 pages, 3839 KB  
Article
A Co-Operative Perception System for Collision Avoidance Using C-V2X and Client–Server-Based Object Detection
by Jungme Park, Vaibhavi Kavathekar, Shubhang Bhuduri, Mohammad Hasan Amin and Sriram Sanjeev Devaraj
Sensors 2025, 25(17), 5544; https://doi.org/10.3390/s25175544 - 5 Sep 2025
Cited by 1 | Viewed by 2775
Abstract
With the recent 5G communication technology deployment, Cellular Vehicle-to-Everything (C-V2X) significantly enhances road safety by enabling real-time exchange of critical traffic information among vehicles, pedestrians, infrastructure, and networks. However, further research is required to address real-time application latency and communication reliability challenges. This [...] Read more.
With the recent 5G communication technology deployment, Cellular Vehicle-to-Everything (C-V2X) significantly enhances road safety by enabling real-time exchange of critical traffic information among vehicles, pedestrians, infrastructure, and networks. However, further research is required to address real-time application latency and communication reliability challenges. This paper explores integrating cutting-edge C-V2X technology with environmental perception systems to enhance safety at intersections and crosswalks. We propose a multi-module architecture combining C-V2X with state-of-the-art perception technologies, GPS mapping methods, and the client–server module to develop a co-operative perception system for collision avoidance. The proposed system includes the following: (1) a hardware setup for C-V2X communication; (2) an advanced object detection module leveraging Deep Neural Networks (DNNs); (3) a client–server-based co-operative object detection framework to overcome computational limitations of edge computing devices; and (4) a module for mapping GPS coordinates of detected objects, enabling accurate and actionable GPS data for collision avoidance—even for detected objects not equipped with C-V2X devices. The proposed system was evaluated through real-time experiments at the GMMRC testing track at Kettering University. Results demonstrate that the proposed system enhances safety by broadcasting critical obstacle information with an average latency of 9.24 milliseconds, allowing for rapid situational awareness. Furthermore, the proposed system accurately provides GPS coordinates for detected obstacles, which is essential for effective collision avoidance. The technology integration in the proposed system offers high data rates, low latency, and reliable communication, which are key features that make it highly suitable for C-V2X-based applications. Full article
Show Figures

Figure 1

30 pages, 22956 KB  
Article
Optimizing Urban Traffic Efficiency and Safety via V2X: A Simulation Study Using the MOSAIC Platform
by Sebastian-Ioan Alupoaei and Constantin-Florin Caruntu
Sensors 2025, 25(17), 5418; https://doi.org/10.3390/s25175418 - 2 Sep 2025
Viewed by 1720
Abstract
Urban growth and rising vehicle usage have intensified congestion, accidents, and environmental impact, exposing the limitations of traditional traffic management systems. This study introduces a dual-incident simulation framework to investigate the potential of Vehicle-to-Everything (V2X) technologies in enhancing urban mobility. Using the Eclipse [...] Read more.
Urban growth and rising vehicle usage have intensified congestion, accidents, and environmental impact, exposing the limitations of traditional traffic management systems. This study introduces a dual-incident simulation framework to investigate the potential of Vehicle-to-Everything (V2X) technologies in enhancing urban mobility. Using the Eclipse MOSAIC platform integrated with SUMO, a realistic network in Iași, Romania, was modeled under single- and dual-incident scenarios with three V2X penetration levels: 0%, 50%, and 100%. Unlike prior works that focus on single-incident cases or assume full penetration, our approach evaluates cascading disruptions under partial adoption, providing a more realistic transition path for mid-sized European cities. Key performance indicators, i.e., average speed, vehicle density, time loss, and waiting time, were calculated using mathematically defined formulas and validated across multiple simulation runs. Results demonstrate that full V2X deployment reduces average time loss by 18% and peak density by more than 70% compared to baseline conditions, while partial adoption delivers measurable yet limited benefits. The dual-incident scenario shows that V2X-enabled rerouting significantly mitigates cascading congestion effects. These contributions advance the state of the art by bridging microscopic vehicle dynamics with network-level communication modeling, offering quantitative insights for phased V2X implementation and the design of resilient, sustainable intelligent transportation systems. Full article
Show Figures

Figure 1

23 pages, 26515 KB  
Article
LEO Navigation Augmentation Signal-Based Passive Radar: System Model and Performance Analysis
by Mingxu Zhang, Bin Sun and Qilei Zhang
Remote Sens. 2025, 17(17), 3021; https://doi.org/10.3390/rs17173021 - 31 Aug 2025
Viewed by 1721
Abstract
As the next generation of time–space infrastructure, low-earth-orbit navigation augmentation (LEO-NA) technology has become a hot research topic, since it can overcome the vulnerabilities and limitations of global navigation satellite systems (GNSSs). Meanwhile, a LEO-NA signal can serve as a better cooperative illuminator [...] Read more.
As the next generation of time–space infrastructure, low-earth-orbit navigation augmentation (LEO-NA) technology has become a hot research topic, since it can overcome the vulnerabilities and limitations of global navigation satellite systems (GNSSs). Meanwhile, a LEO-NA signal can serve as a better cooperative illuminator to build more powerful passive radar (PR). This paper proposes and investigates a new and promising PR system, LEO-NA signal-based PR (LNAS-PR), which utilizes LEO-NA signals as the illuminator and utilizes an unmanned aerial vehicle (UAV) to carry the receiver. Taking advantage of higher landing power and global coverage, LNAS-PR can be used to detect maritime targets with benefits of low cost and high efficiency. However, new technical challenges of information capture and processing need to be dealt with. Therefore, this paper presents the system model, signal model, and performance analyses within a maritime monitoring scenario, providing a foundation for future in-depth research. Full article
Show Figures

Figure 1

22 pages, 8341 KB  
Article
Performance Evaluation of a Sustainable Glulam Timber Rubrail and Noise Wall System Under MASH TL-3 Crash Conditions
by Tewodros Y. Yosef, Ronald K. Faller, Qusai A. Alomari, Jennifer D. Schmidt and Mojtaba Atash Bahar
Infrastructures 2025, 10(9), 226; https://doi.org/10.3390/infrastructures10090226 - 26 Aug 2025
Viewed by 926
Abstract
Noise barriers are commonly used to reduce the adverse effects of traffic noise in both urban and suburban settings. While conventional systems constructed from concrete and steel provide reliable acoustic and structural performance, they raise sustainability concerns due to high embodied energy and [...] Read more.
Noise barriers are commonly used to reduce the adverse effects of traffic noise in both urban and suburban settings. While conventional systems constructed from concrete and steel provide reliable acoustic and structural performance, they raise sustainability concerns due to high embodied energy and carbon emissions. Glued-laminated (glulam) timber has emerged as a sustainable alternative, offering a reduced carbon footprint, aesthetic appeal, and effective acoustic performance. However, the crashworthiness of timber-based noise wall systems remains under investigated, particularly with respect to the safety criteria established in the 2016 edition of the American Association of State Highway and Transportation Officials (AASHTO) Manual for Assessing Safety Hardware (MASH). This study presents the full-scale crash testing and evaluation of glulam rubrail and noise wall systems under MASH Test Level 3 (TL-3) impact conditions. Building on a previously tested system compliant with National Cooperative Highway Research Program (NCHRP) Report 350, modifications were made to increase rubrail dimensions to meet higher lateral design loads. Three full-scale vehicle crash tests were conducted using 1100C and 2270P vehicles at 100 km/h and 25 degrees, covering both front- and back-mounted wall configurations. All tested systems demonstrated acceptable structural performance, effective vehicle redirection, and compliance with MASH 2016 occupant risk criteria. There was no penetration or potential for debris intrusion into the occupant compartment, and all measured occupant risk values remained well below allowable thresholds. Minimal damage to structural components was observed. The results confirm that the modified glulam noise wall system meets current impact safety standards and is suitable for use along high-speed roadways. This work supports the integration of sustainable materials into roadside safety infrastructure without compromising crash performance. Full article
Show Figures

Figure 1

23 pages, 10936 KB  
Article
Towards Autonomous Coordination of Two I-AUVs in Submarine Pipeline Assembly
by Salvador López-Barajas, Alejandro Solis, Raúl Marín-Prades and Pedro J. Sanz
J. Mar. Sci. Eng. 2025, 13(8), 1490; https://doi.org/10.3390/jmse13081490 - 1 Aug 2025
Viewed by 1293
Abstract
Inspection, maintenance, and repair (IMR) operations on underwater infrastructure remain costly and time-intensive because fully teleoperated remote operated vehicle s(ROVs) lack the range and dexterity necessary for precise cooperative underwater manipulation, and the alternative of using professional divers is ruled out due to [...] Read more.
Inspection, maintenance, and repair (IMR) operations on underwater infrastructure remain costly and time-intensive because fully teleoperated remote operated vehicle s(ROVs) lack the range and dexterity necessary for precise cooperative underwater manipulation, and the alternative of using professional divers is ruled out due to the risk involved. This work presents and experimentally validates an autonomous, dual-I-AUV (Intervention–Autonomous Underwater Vehicle) system capable of assembling rigid pipeline segments through coordinated actions in a confined underwater workspace. The first I-AUV is a Girona 500 (4-DoF vehicle motion, pitch and roll stable) fitted with multiple payload cameras and a 6-DoF Reach Bravo 7 arm, giving the vehicle 10 total DoF. The second I-AUV is a BlueROV2 Heavy equipped with a Reach Alpha 5 arm, likewise yielding 10 DoF. The workflow comprises (i) detection and grasping of a coupler pipe section, (ii) synchronized teleoperation to an assembly start pose, and (iii) assembly using a kinematic controller that exploits the Girona 500’s full 10 DoF, while the BlueROV2 holds position and orientation to stabilize the workspace. Validation took place in a 12 m × 8 m × 5 m water tank. Results show that the paired I-AUVs can autonomously perform precision pipeline assembly in real water conditions, representing a significant step toward fully automated subsea construction and maintenance. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop