Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (904)

Search Parameters:
Keywords = vegetal tissue

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1023 KiB  
Article
Using Saline Water for Sustainable Floriculture: Identifying Physiological Thresholds and Floral Performance in Eight Asteraceae Species
by María Rita Guzman, Xavier Rojas-Ruilova, Catarina Gomes-Domingues and Isabel Marques
Agronomy 2025, 15(8), 1802; https://doi.org/10.3390/agronomy15081802 - 25 Jul 2025
Viewed by 295
Abstract
Water scarcity challenges floriculture, which depends on quality irrigation for ornamental value. This study assessed short-term salinity tolerance in eight Asteraceae species by measuring physiological (proline levels, antioxidant enzyme activity) and morphological (plant height, flower number, and size) responses. Plants were irrigated with [...] Read more.
Water scarcity challenges floriculture, which depends on quality irrigation for ornamental value. This study assessed short-term salinity tolerance in eight Asteraceae species by measuring physiological (proline levels, antioxidant enzyme activity) and morphological (plant height, flower number, and size) responses. Plants were irrigated with 0, 50, 100, or 300 mM NaCl for 10 days. Salinity significantly enhanced proline content and the activity of key antioxidant enzymes (catalase, peroxidase, and ascorbate peroxidase), reflecting the activation of stress defense mechanisms. However, these defenses failed to fully protect reproductive organs. Flower number and size were consistently more sensitive to salinity than vegetative traits, with significant reductions observed even at 50 mM NaCl. Responses varied between species, with Zinnia elegans and Calendula officinalis exhibiting pronounced sensitivity to salinity, whereas Tagetes patula showed relative tolerance, particularly under moderate stress conditions. The results show that flower structures are more vulnerable to ionic and osmotic disturbances than vegetative tissues, likely due to their higher metabolic demands and developmental sensitivity. Their heightened vulnerability underscores the need to prioritize reproductive performance when evaluating stress tolerance. Incorporating these traits into breeding programs is essential for developing salt-tolerant floriculture species that maintain aesthetic quality under limited water availability. Full article
(This article belongs to the Special Issue Effect of Brackish and Marginal Water on Irrigated Agriculture)
Show Figures

Figure 1

22 pages, 17694 KiB  
Article
Studies on Host–Parasite Relationship Between Soybean Plants and Aphelenchoides besseyi
by Neveen Atta Elhamouly, Nehal Atta, Shiming Liu and Deliang Peng
Life 2025, 15(7), 1154; https://doi.org/10.3390/life15071154 - 21 Jul 2025
Viewed by 374
Abstract
Aphelenchoides besseyi is considered a highly prevalent facultative plant-parasitic nematode and has a significant impact on various economically important crops globally. Due to the lack of knowledge on the efficacy of various management techniques, A. besseyi is still challenging to control in the [...] Read more.
Aphelenchoides besseyi is considered a highly prevalent facultative plant-parasitic nematode and has a significant impact on various economically important crops globally. Due to the lack of knowledge on the efficacy of various management techniques, A. besseyi is still challenging to control in the open field. The present investigation successfully shed light on some significant new points, including the following: (1) A. besseyi was confirmed inside all soybean tissues—including roots, stems, leaves, and seeds—indicating its endoparasitic nature and its strong ability to reach the upper foliar system where it causes green stem and foliar retention syndrome (GSFR) symptoms; (2) inoculated plants exhibited reduced vegetative growth parameters, as non-inoculated control soybean plants showed higher values of plant height (PH), fresh root weight (FRW), and fresh shoot weight (FSW) compared to inoculated plants; (3) Yudou 29 was identified as highly resistant to A. besseyi, as results from the resistance screening assay among different Chinese soybean cultivars confirmed its strong resistance under natural field infestation conditions; and (4) soybean seeds may act as inoculum sources of A. besseyi, highlighting the need to develop more effective control measures to prevent or limit nematode dissemination through seed transmission. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

19 pages, 5629 KiB  
Article
Genome-Wide Identification of G3BP Family in U’s Triangle Brassica Species and Analysis of Its Expression in B. napus
by Alain Tseke Inkabanga, Qiheng Zhang, Shanshan Wang, Yanni Li, Jingyi Chen, Li Huang, Xiang Li, Zihan Deng, Xiao Yang, Mengxin Luo, Lingxia Peng, Keran Ren, Yourong Chai and Yufei Xue
Plants 2025, 14(14), 2247; https://doi.org/10.3390/plants14142247 - 21 Jul 2025
Viewed by 294
Abstract
The RasGAP SH3 domain binding protein (G3BP) is a highly conserved family of proteins in eukaryotic organisms that coordinates signal transduction and post-transcriptional gene regulation and functions in the formation of stress granules. G3BPs have important roles in abiotic/biotic stresses in mammals, and [...] Read more.
The RasGAP SH3 domain binding protein (G3BP) is a highly conserved family of proteins in eukaryotic organisms that coordinates signal transduction and post-transcriptional gene regulation and functions in the formation of stress granules. G3BPs have important roles in abiotic/biotic stresses in mammals, and recent research suggests that they have similar functions in higher plants. Brassica contains many important oilseeds, vegetables, and ornamental plants, but there are no reports on the G3BP family in Brassica species. In this study, we identified G3BP family genes from six species of the U’s triangle (B. rapa, B. oleracea, B. nigra, B. napus, B. juncea, and B. carinata) at the genome-wide level. We then analyzed their gene structure, protein motifs, gene duplication type, phylogeny, subcellular localization, SSR loci, and upstream miRNAs. Based on transcriptome data, we analyzed the expression patterns of B. napus G3BP (BnaG3BP) genes in various tissues/organs in response to Sclerotinia disease, blackleg disease, powdery mildew, dehydration, drought, heat, cold, and ABA treatments, and its involvement in seed traits including germination, α-linolenic acid content, oil content, and yellow seed. Several BnaG3BP DEGs might be regulated by BnaTT1. The qRT-PCR assay validated the inducibility of two cold-responsive BnaG3BP DEGs. This study will enrich the systematic understanding of Brassica G3BP family genes and lay a molecular basis for the application of BnaG3BP genes in stress tolerance, disease resistance, and quality improvement in rapeseed. Full article
(This article belongs to the Special Issue Plant Genetic Diversity and Molecular Evolution)
Show Figures

Figure 1

17 pages, 4532 KiB  
Article
Nitric Oxide Modulates Postharvest Physiology to Maintain Abelmoschus esculentus Quality Under Cold Storage
by Xianjun Chen, Fenghuang Mo, Ying Long, Xiaofeng Liu, Yao Jiang, Jianwei Zhang, Cheng Zhong, Qin Yang and Huiying Liu
Horticulturae 2025, 11(7), 857; https://doi.org/10.3390/horticulturae11070857 - 20 Jul 2025
Viewed by 279
Abstract
Cold storage is widely used for the postharvest preservation of fruits and vegetables; however, okra, as a tropical vegetable, is susceptible to chilling injury under low-temperature storage conditions, leading to quality deterioration, reduced nutritional value, and significant economic losses. Nitric oxide (NO), as [...] Read more.
Cold storage is widely used for the postharvest preservation of fruits and vegetables; however, okra, as a tropical vegetable, is susceptible to chilling injury under low-temperature storage conditions, leading to quality deterioration, reduced nutritional value, and significant economic losses. Nitric oxide (NO), as an important signaling molecule, plays a crucial role in the postharvest preservation of fruits and vegetables. To investigate the effects of different concentrations of nitric oxide on the postharvest quality of okra under cold storage, fresh okra pods were treated with sodium nitroprusside (SNP), a commonly used NO donor, at concentrations of 0 (control), 0.5 (T1), 1.0 (T2), 1.5 (T3), and 2.0 mmol·L−1 (T4). The results showed that low-concentration NO treatment (T1) significantly reduced weight loss, improved texture attributes including hardness, springiness, chewiness, resilience, and cohesiveness, and suppressed the increase in adhesiveness. T1 treatment also effectively inhibited excessive accumulation of cellulose and lignin, thereby maintaining tissue palatability and structural integrity. Additionally, T1 significantly delayed chlorophyll degradation, preserved higher levels of soluble sugars and proteins, and enhanced the activities of key antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), contributing to improved oxidative stress resistance and membrane stability. In contrast, high-concentration NO treatments (T3 and T4) led to pronounced quality deterioration, characterized by accelerated membrane lipid peroxidation as evidenced by increased malondialdehyde (MDA) content and relative conductivity, and impaired antioxidant defense, resulting in rapid texture degradation, chlorophyll loss, nutrient depletion, and oxidative damage. These findings provide theoretical insights and practical guidance for the precise application of NO in extending shelf life and maintaining the postharvest quality of okra fruits. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

24 pages, 3485 KiB  
Article
Effect of Natural Edible Oil Coatings and Storage Conditions on the Postharvest Quality of Bananas
by Laila Al-Yahyai, Rashid Al-Yahyai, Rhonda Janke, Mai Al-Dairi and Pankaj B. Pathare
AgriEngineering 2025, 7(7), 234; https://doi.org/10.3390/agriengineering7070234 - 12 Jul 2025
Viewed by 723
Abstract
Increasing the shelf-life of fruits and vegetables using edible natural substances after harvest is economically important and can be useful for human health. Postharvest techniques help maintain the quality of edible tissues resulting in extended marketing periods and reduced food waste. The edible [...] Read more.
Increasing the shelf-life of fruits and vegetables using edible natural substances after harvest is economically important and can be useful for human health. Postharvest techniques help maintain the quality of edible tissues resulting in extended marketing periods and reduced food waste. The edible coating on perishable commodities is a common technique used by the food industry during the postharvest supply chain. The objective of this research was to study the effect of edible oil to minimize the loss of postharvest physio-chemical and nutritional attributes of bananas. The study selected two banana cultivars (Musa, ‘Cavendish’ and ‘Milk’) to conduct this experiment, and two edible oils (olive oil (Olea europaea) and moringa oil (Moringa peregrina)) were applied as an edible coating under two different storage conditions (15 and 25 °C). The fruit’s physio-chemical properties including weight loss, firmness, color, total soluble solids (TSS), pH, titratable acidity (TA), TSS: TA ratio, and mineral content were assessed. The experiment lasted for 12 days. The physicochemical properties of the banana coated with olive and moringa oils were more controlled than the non-coated (control) banana under both storage temperatures (15 °C and 25 °C). Coated bananas with olive and moringa oils stored at 15 °C resulted in further inhibition in the ripening process. There was a decrease in weight loss, retained color, and firmness, and the changes in chemical parameters were slower in banana fruits during storage in the olive and moringa oil-coated bananas. Minerals were highly retained in coated Cavendish bananas. Overall, the coated samples visually maintained acceptable quality until the final day of storage. Our results indicated that olive and moringa oils in this study have the potential to extend the shelf-life and improve the physico-chemical quality of banana fruits. Full article
(This article belongs to the Special Issue Latest Research on Post-Harvest Technology to Reduce Food Loss)
Show Figures

Figure 1

31 pages, 3723 KiB  
Review
Chemical Profiling and Quality Assessment of Food Products Employing Magnetic Resonance Technologies
by Chandra Prakash and Rohit Mahar
Foods 2025, 14(14), 2417; https://doi.org/10.3390/foods14142417 - 9 Jul 2025
Viewed by 638
Abstract
Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) are powerful techniques that have been employed to analyze foodstuffs comprehensively. These techniques offer in-depth information about the chemical composition, structure, and spatial distribution of components in a variety of food products. Quantitative NMR [...] Read more.
Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) are powerful techniques that have been employed to analyze foodstuffs comprehensively. These techniques offer in-depth information about the chemical composition, structure, and spatial distribution of components in a variety of food products. Quantitative NMR is widely applied for precise quantification of metabolites, authentication of food products, and monitoring of food quality. Low-field 1H-NMR relaxometry is an important technique for investigating the most abundant components of intact foodstuffs based on relaxation times and amplitude of the NMR signals. In particular, information on water compartments, diffusion, and movement can be obtained by detecting proton signals because of H2O in foodstuffs. Saffron adulterations with calendula, safflower, turmeric, sandalwood, and tartrazine have been analyzed using benchtop NMR, an alternative to the high-field NMR approach. The fraudulent addition of Robusta to Arabica coffee was investigated by 1H-NMR Spectroscopy and the marker of Robusta coffee can be detected in the 1H-NMR spectrum. MRI images can be a reliable tool for appreciating morphological differences in vegetables and fruits. In kiwifruit, the effects of water loss and the states of water were investigated using MRI. It provides informative images regarding the spin density distribution of water molecules and the relationship between water and cellular tissues. 1H-NMR spectra of aqueous extract of kiwifruits affected by elephantiasis show a higher number of small oligosaccharides than healthy fruits do. One of the frauds that has been detected in the olive oil sector reflects the addition of hazelnut oils to olive oils. However, using the NMR methodology, it is possible to distinguish the two types of oils, since, in hazelnut oils, linolenic fatty chains and squalene are absent, which is also indicated by the 1H-NMR spectrum. NMR has been applied to detect milk adulterations, such as bovine milk being spiked with known levels of whey, urea, synthetic urine, and synthetic milk. In particular, T2 relaxation time has been found to be significantly affected by adulteration as it increases with adulterant percentage. The 1H spectrum of honey samples from two botanical species shows the presence of signals due to the specific markers of two botanical species. NMR generates large datasets due to the complexity of food matrices and, to deal with this, chemometrics (multivariate analysis) can be applied to monitor the changes in the constituents of foodstuffs, assess the self-life, and determine the effects of storage conditions. Multivariate analysis could help in managing and interpreting complex NMR data by reducing dimensionality and identifying patterns. NMR spectroscopy followed by multivariate analysis can be channelized for evaluating the nutritional profile of food products by quantifying vitamins, sugars, fatty acids, amino acids, and other nutrients. In this review, we summarize the importance of NMR spectroscopy in chemical profiling and quality assessment of food products employing magnetic resonance technologies and multivariate statistical analysis. Full article
(This article belongs to the Special Issue Quantitative NMR and MRI Methods Applied for Foodstuffs)
Show Figures

Figure 1

20 pages, 994 KiB  
Article
Impact of Different Thermal Processing Techniques on the Phytochemical Composition, Antioxidant Capacity, and DNA-Protective Properties of Broccoli
by Karlo Miškec, Marta Frlin and Ivana Šola
Appl. Sci. 2025, 15(13), 7469; https://doi.org/10.3390/app15137469 - 3 Jul 2025
Viewed by 428
Abstract
Vegetables are usually thermally processed before consumption to improve their flavor and safety. In this work, the effect of boiling (BO), blanching (BL), steaming (ST), air-frying (AF), and pan-frying (PF)on the nutritional value and bioactivity of broccoli (Brassica oleracea var. italica) [...] Read more.
Vegetables are usually thermally processed before consumption to improve their flavor and safety. In this work, the effect of boiling (BO), blanching (BL), steaming (ST), air-frying (AF), and pan-frying (PF)on the nutritional value and bioactivity of broccoli (Brassica oleracea var. italica) heads was investigated, including a comparative analysis of the tissue and the cooking water remaining after the treatments. Using spectrophotometric methods, AF broccoli was found to have the highest levels (p ≤ 0.05) of hydroxycinnamic acids (1.58 ± 0.71 mg CAE/g fw), total glucosinolates (3.76 ± 2.09 mg SinE/g fw), carotenoids (6.73 ± 2.89 mg/kg fw), and lycopene (0.91 ± 0.19 mg/kg fw). Steamed and AF broccoli had the highest total phenolics (0.72 ± 0.12 mg GAE/g fw and 0.65 ± 0.15 mg GAE/g fw, respectively; p ≤ 0.05). ST broccoli also had the highest levels of soluble sugars (11.04 ± 2.45 mg SucE/g fw) and total tannins (0.46 ± 0.19 mg GAE/g fw). The water remaining after cooking broccoli (BOW) had the highest total flavonoids (2.72 ± 0.59 mg QE/g fw) and antioxidant capacity (ABTS and FRAP, 57.57 ± 18.22% and 79.34 ± 3.28%, respectively; p ≤ 0.05). The DPPH assay showed that AF (36.12 ± 15.71%) and ST (35.48 ± 2.28%) had the strongest antioxidant potential. DNA nicking assay showed that BOW and BLW were the most effective in preserving plasmid DNA supercoiled form (99.51% and 94.81%, respectively; p ≤ 0.05). These results demonstrate that thermal processing significantly affects the phytochemical composition and functional properties of broccoli, with steaming and air-frying generally preserving the highest nutritional quality. Additionally, cooking water, often discarded, retains high levels of bioactive compounds and exhibits strong antioxidant and DNA-protective effects. To the best of our knowledge, this is the first study to investigate how different thermal processing techniques of vegetables influence their ability to protect plasmid DNA structure. Furthermore, this is the first study to compare the DNA-protective effects of broccoli tissue extracts and the water remaining after cooking broccoli. Full article
(This article belongs to the Special Issue New Trends in the Structure Characterization of Food)
Show Figures

Figure 1

22 pages, 2503 KiB  
Article
Spatiotemporal Profiling of the Pathogen Complex Causing Common Bean Root Rot in China
by Li Yang, Xiao-Hong Lu, Bo-Ming Wu, Zeng-Ming Zhong and Shi-Dong Li
Agriculture 2025, 15(13), 1426; https://doi.org/10.3390/agriculture15131426 - 2 Jul 2025
Viewed by 287
Abstract
Root rot, a globally devastating disease of common bean (Phaseolus vulgaris L.), remains a major constraint on bean production across China. Despite its agricultural impact, the pathogen complex associated with this disease has been poorly characterized in most provinces. To address this [...] Read more.
Root rot, a globally devastating disease of common bean (Phaseolus vulgaris L.), remains a major constraint on bean production across China. Despite its agricultural impact, the pathogen complex associated with this disease has been poorly characterized in most provinces. To address this critical knowledge gap, we conducted nationwide surveys during 2016–2018, systematically sampling 1–10 symptomatic plants from each of 121 (2016) and 170 (2018) field sites across 17 provinces in China’s major vegetable production regions. Isolates obtained from symptomatic root tissues underwent morphological screening, followed by molecular identification using partial sequences of EF1-α for Fusarium species and ITS regions for other genera. Pathogenicity of representative isolates was subsequently confirmed through controlled greenhouse assays. This integrated approach revealed fourteen fungal and oomycete genera, with Fusarium (predominantly F. oxysporum and F. solani) and Rhizoctonia (R. solani) emerging as the most prevalent pathogens. Notably, pathogen composition exhibited significant regional variation and underwent temporal shifts across developmental stages. Additionally, F. oxysporum, F. solani, and R. solani demonstrated significant interspecies associations with frequent co-occurrence in bean root rot systems. Collectively, this first comprehensive characterization of China’s common bean root rot complex not only clarifies spatial–temporal pathogen dynamics but also provides actionable insights for developing region- and growth stage-specific management strategies, particularly through targeted control of dominant pathogens during key infection windows. Full article
Show Figures

Figure 1

12 pages, 692 KiB  
Review
Current Progress on Passiflora caerulea L. In Vitro Culturing
by Pervin Halkoglu-Hristova, Alexandra Garmidolova, Teodora Yaneva and Vasil Georgiev
Sci 2025, 7(3), 90; https://doi.org/10.3390/sci7030090 - 1 Jul 2025
Viewed by 343
Abstract
Passiflora caerulea L., commonly known as the blue passionflower, is traditionally grown as an ornamental plant, but has a diverse chemical composition resulting in a wide range of biological activities that determine its pharmacological properties and use in medicine. Traditional propagation methods, including [...] Read more.
Passiflora caerulea L., commonly known as the blue passionflower, is traditionally grown as an ornamental plant, but has a diverse chemical composition resulting in a wide range of biological activities that determine its pharmacological properties and use in medicine. Traditional propagation methods, including seed germination and vegetative cuttings, are often inefficient due to low germination rates, susceptibility to pathogens, and slow growth. In particular, P. caerulea presents significant challenges in germination due to its slow development. In this context, in vitro cultivation is used to enable rapid, large-scale plant production while maintaining genetic fidelity. The study of Passiflora tissue cultures began in 1966 and has since attracted increasing attention from researchers around the world. However, despite growing interest, studies specifically focused on the in vitro propagation of P. caerulea remain limited. This review aims to summarize existing knowledge on the main techniques used for in vitro culturing and propagation of P. caerulea, including organogenesis, somatic embryogenesis, and callogenesis. Particular attention is paid to the key factors that influence the initiation, growth, and regeneration of cultures, including the type of explant, the composition of the media, and the environmental conditions. Advances in the in vitro cultivation of P. caerulea have greatly improved the understanding and propagation of this species. Although in vitro cultivation offers several advantages, it is crucial to conduct thorough research on the selection of explants, their age, and the appropriate culture media to ensure optimal growth and development. Full article
(This article belongs to the Section Biology Research and Life Sciences)
Show Figures

Figure 1

11 pages, 3387 KiB  
Article
Imprint Desorption Electrospray Ionization Mass Spectrometry Imaging (IDESI-MSI) Reveals Absorption of Triclopyr-Based Herbicide in Plants and Mouse Organs
by Hanzhi Liu, Yunshuo Tian, Ruolun Wei, Yifan Meng and Richard N. Zare
Metabolites 2025, 15(7), 437; https://doi.org/10.3390/metabo15070437 - 30 Jun 2025
Viewed by 369
Abstract
Background: Understanding the absorption and distribution of herbicides in plants and animal tissues is essential for assessing their potential risks to human health. Method: In this study, we employed imprint desorption electrospray ionization mass spectrometry imaging (IDESI-MSI) to visualize in both vegetable and [...] Read more.
Background: Understanding the absorption and distribution of herbicides in plants and animal tissues is essential for assessing their potential risks to human health. Method: In this study, we employed imprint desorption electrospray ionization mass spectrometry imaging (IDESI-MSI) to visualize in both vegetable and animal tissues the absorption of Roundup which is a widely used herbicide. Results: Using IDESI-MSI with a pixel size of 150 µm, we detected the herbicide alongside several endogenous metabolites on oil-absorbing films applied to carrot sections. Time-course experiments revealed progressive herbicide penetration into carrot tissue, with penetration depth increasing linearly over time at a rate of approximately 0.25 mm/h. In contrast, green pepper samples showed minimal herbicide infiltration, likely owing to their hydrophobic cuticle barrier. Additionally, mice fed with herbicide-treated carrots exhibited detectable levels of herbicide in liver and kidney tissues. Conclusions: These findings highlight the utility of IDESI-MSI as a powerful analytical platform for the rapid evaluation of chemical migration and absorption in food and biological systems, with important implications for food safety and toxicological research. Full article
(This article belongs to the Special Issue Mass Spectrometry Imaging and Spatial Metabolomics)
Show Figures

Figure 1

12 pages, 2314 KiB  
Article
Production of Alternative Fat from Adipose-Derived Stem Cell from Bovine in 3D Culture
by Ildoo Jeong, Seyoung Hong, Do Young Kim, Yeon Ju Song, Bong Jong Seo, Heeyoun Hwang, Hyun Sook Hong and Ki Hyun Yoo
Appl. Sci. 2025, 15(13), 7333; https://doi.org/10.3390/app15137333 - 30 Jun 2025
Viewed by 362
Abstract
Cultivated meat, developed through cell culture technology, is emerging as a promising solution that closely mimics both the flavor and nutrient profiles of conventional meat. One key component that contributes to the flavor of meat is fat content. In this study, bovine adipose-derived [...] Read more.
Cultivated meat, developed through cell culture technology, is emerging as a promising solution that closely mimics both the flavor and nutrient profiles of conventional meat. One key component that contributes to the flavor of meat is fat content. In this study, bovine adipose-derived stem cells (bADSCs) were cultured for the production of alternative fat in vitro. The expression of mesenchymal stem cell (MSC) markers (CD29, CD73, and CD105) and colony forming efficiency were assessed to characterize bADSCs. bADSCs were differentiated into adipocytes to produce cultivated fat in 2D or 3D culture. The cultivated fat was analyzed by gas chromatography to verify the similarity of the fatty acids of animal-derived fat. Our results show that bADSCs have characteristics of MSC and could differentiate into adipocyte. The ratio of unsaturated fatty acids and saturated fatty acids in cultivated fat and adipose tissue was similar. Adipogenic differentiation of ADSCs using a textured vegetable protein (TVP) scaffold could form the lipid droplets in the TVP. This study demonstrated the establishment of a culture system for the fat production from bADSCs in vitro. The fat produced through bADSCs shows the potential to be used in the composition of hybrid-cultivated meat. Full article
Show Figures

Figure 1

14 pages, 3171 KiB  
Article
Genome-Wide Identification and Functional Analysis of the PEBP Gene Family in Begonia semperflorens ‘Super Olympia’ Reveal Its Potential Role in Regulating Flowering
by Congcong Fu, Mengru Zhao, Huiting Xia, Puyu Ren, Weichao Liu, Qirui Wang and Kaiming Zhang
Int. J. Mol. Sci. 2025, 26(13), 6291; https://doi.org/10.3390/ijms26136291 - 29 Jun 2025
Viewed by 391
Abstract
The phosphatidylethanolamine-binding protein (PEBP) gene family, known for its pivotal role in controlling floral transition, regulates flowering time, and, thus, shapes the continuous-flowering trait in ornamental plants. In this study, we conducted the first genome-wide identification and bioinformatics analysis of the PEBP gene [...] Read more.
The phosphatidylethanolamine-binding protein (PEBP) gene family, known for its pivotal role in controlling floral transition, regulates flowering time, and, thus, shapes the continuous-flowering trait in ornamental plants. In this study, we conducted the first genome-wide identification and bioinformatics analysis of the PEBP gene family in Begonia semperflorens ‘Super Olympia’, a variety that exhibits year-round flowering. Via phylogenetic analysis, a total of 10 BsPEBP genes were identified and categorized into four subfamilies: the FT-like (two members), TFL1-like (three members), PEBP-like (three members), and MFT-like (two members) subfamilies. Gene structure analysis revealed highly conserved motif compositions among family members, and protein tertiary structure prediction indicated the dominance of random coils in their structures. Promoter cis-acting element analysis revealed light-responsive, hormone-responsive (ABA, GA, and JA), and abiotic stress-responsive elements in the BsPEBP genes, suggesting their potential integration into multiple regulatory pathways. The tissue-specific expression profiles revealed that BsPEBP6 was significantly upregulated in floral organs, whereas TFL1-like subfamily members were predominantly expressed in vegetative tissues. These findings imply that the FT-like and TFL1-like genes antagonistically regulate the continuous-flowering trait of B. semperflorens ‘Super Olympia’ through their respective roles in promoting and repressing flowering. Our findings provide a preliminary theoretical foundation for elucidating the molecular mechanisms by which the PEBP gene family regulates flowering time in ornamental plants and offer valuable insights for developing breeding strategies aimed at flowering time modulation. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

27 pages, 2951 KiB  
Article
The Influence of Cynips quercusfolii on the Content of Biofunctional Plant Metabolites in Various Morphological Parts of Quercus robur
by Anna Przybylska-Balcerek and Kinga Stuper-Szablewska
Molecules 2025, 30(13), 2687; https://doi.org/10.3390/molecules30132687 - 21 Jun 2025
Viewed by 387
Abstract
English oak (Quercus robur) hosts over 200 species of galls formed by insect larvae, most notably the oak gall wasp (Cynips quercusfolii). These galls result from the abnormal growth of plant tissue in response to oviposition, acting as a [...] Read more.
English oak (Quercus robur) hosts over 200 species of galls formed by insect larvae, most notably the oak gall wasp (Cynips quercusfolii). These galls result from the abnormal growth of plant tissue in response to oviposition, acting as a shelter and nutrient source for the larvae. In addition, the galls trigger oxidative stress in the host plant, resulting in the increased production of reactive oxygen species (ROS). This stress response promotes the biosynthesis of antioxidant compounds, including phenolic acids, flavonoids, and tannins. To our knowledge, this is the first study to monitor seasonal changes in phenolic acids, flavonoids, and tannins in relation to C. quercusfolii infestation over a complete vegetation cycle using integrated UPLC profiling and statistical modeling PCA. For the first time, the contents of phenolic acids, flavonoids, and tannins were assessed throughout the vegetation cycle—from flowering to acorn fall. Results showed that galls affect the biochemical profile of the whole plant, suggesting a systemic response to local infection. The results provide new insights into oak defense responses and suggest that gall formation may be associated with systemic metabolic shifts potentially involved in stress mitigation. Furthermore, the study supports the further investigation of oak galls as a valuable source of polyphenols for pharmacological and industrial applications. Full article
(This article belongs to the Special Issue Metabolites of Biofunctional Interest from Plant Sources)
Show Figures

Figure 1

20 pages, 2681 KiB  
Article
Molecular Characterization of CnHd3a and Spatial Expression of Its Alternative Splicing Forms Associated with Flowering Transition and Flower Development in Coconut Palm (Cocos nucifera L.)
by Pariya Maneeprasert, Siriwan Thaisakun, Theerachai Thanananta, Narumol Thanananta, Noppamart Lokkamlue and Chareerat Mongkolsiriwatana
Genes 2025, 16(6), 718; https://doi.org/10.3390/genes16060718 - 18 Jun 2025
Viewed by 604
Abstract
Background: The flowering transition is a critical process determining the onset of reproductive development and fruit production. The molecular mechanisms underlying this process in coconuts are poorly understood; however, recent studies have identified CnHd3a as a potential regulator of the floral transition in [...] Read more.
Background: The flowering transition is a critical process determining the onset of reproductive development and fruit production. The molecular mechanisms underlying this process in coconuts are poorly understood; however, recent studies have identified CnHd3a as a potential regulator of the floral transition in coconuts. Methods: In this study, we characterized the molecular structure of CnHd3a and analyzed its alternative splicing forms in tall and dwarf varieties of coconut palms during the flowering transition. We used qRT-PCR to measure the expression levels of CnHd3a at different developmental stages. Results: CnHd3a was expressed in leaves and the shoot apical meristem (SAM) during the flowering transition in both coconut varieties and flower tissues during flower development. Interestingly, the expression levels of complex isoforms of CnHd3a were higher in the leaves of dwarf coconuts than in those of tall coconuts, suggesting their involvement in shortening the vegetative growth phase of dwarf coconuts. The gene structure of CnHd3a was found to be conserved across different plant species, indicating the evolutionary conservation of the floral transition process. Conclusions: Our findings provide insight into the molecular mechanisms underlying the floral transition and flower development processes in coconut palm. The tissue-specific expression patterns of CnHd3a isoforms show their potential roles in growth and development. Further investigations focusing on the functional characterization of CnHd3a isoforms will have practical implications for coconut breeding and cultivation strategies. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Graphical abstract

16 pages, 1145 KiB  
Article
Tissue-Specific Metabolic Changes During Postharvest Storage of Friariello Napoletano
by Giovanna Marta Fusco, Maria Grazia Annunziata, Laura Alberico, Rosalinda Nicastro, Pasqualina Woodrow and Petronia Carillo
Horticulturae 2025, 11(6), 673; https://doi.org/10.3390/horticulturae11060673 - 12 Jun 2025
Viewed by 353
Abstract
Brassica rapa L. subsp. sylvestris L. Janch. var. esculenta Hort., commonly known as Friariello Napoletano, is a traditional Italian landrace valued for its distinctive flavor, nutritional richness, and cultural relevance in Mediterranean cuisine. The present study investigates the biochemical changes during postharvest [...] Read more.
Brassica rapa L. subsp. sylvestris L. Janch. var. esculenta Hort., commonly known as Friariello Napoletano, is a traditional Italian landrace valued for its distinctive flavor, nutritional richness, and cultural relevance in Mediterranean cuisine. The present study investigates the biochemical changes during postharvest storage at two temperatures (4 °C and 10 °C) for 2 and 20 days in its inflorescences and leaves. The experiment aimed to evaluate the evolution of primary and secondary metabolites, with a focus on pigments, amino acids, antioxidants, and glucosinolates. Significant degradation of chlorophylls was observed, particularly in leaves, with reductions of over 90% after 20 days at both temperatures. Conversely, α-tocopherol content increased significantly, especially in inflorescences, indicating an antioxidant response to storage stress. Amino acid analysis revealed a sharp decline in glutamate (up to 79%) and glutamine (up to 83%) in leaves, while proline levels increased across both tissues, reflecting an osmoprotective response. Essential amino acids (EAAs) showed variable responses, with certain EAAs, such as histidine and phenylalanine, accumulating under specific storage conditions. Soluble sugars, starch, and glucosinolates also decreased significantly, with soluble sugars dropping by 87% in inflorescences and 90% in leaves after 20 days at 10 °C. Pathway analysis revealed distinct tissue-specific metabolic responses, with inflorescences exhibiting more stable antioxidant levels and greater resilience to oxidative stress compared to leaves. These findings provide insights into the metabolic adjustments during postharvest senescence and may support future strategies aimed at preserving shelf life and nutritional quality of this traditional Mediterranean vegetable. Full article
Show Figures

Graphical abstract

Back to TopTop