Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = vector-plant-pathogen interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1121 KiB  
Review
Molecular Mechanisms of Potato Plant–Virus–Vector Interactions
by Roza Kenzhebekova, Alexandr Pozharskiy, Kamila Adilbayeva and Dilyara Gritsenko
Plants 2025, 14(15), 2282; https://doi.org/10.3390/plants14152282 - 24 Jul 2025
Viewed by 499
Abstract
Viral infections and their vector dynamics pose a major threat to potatoes (Solanum tuberosum L.) worldwide, urgently needing an integrated understanding of the molecular and ecological interactions in this tripartite system. This review describes the major potato viruses, namely potato virus Y [...] Read more.
Viral infections and their vector dynamics pose a major threat to potatoes (Solanum tuberosum L.) worldwide, urgently needing an integrated understanding of the molecular and ecological interactions in this tripartite system. This review describes the major potato viruses, namely potato virus Y (PVY), the potato leafroll virus (PLRV), and potato virus X (PVX), with an emphasis on their infection and replication strategies in plants, as well as their movement within them. It also discusses plant responses to these viruses by uncovering RNA silencing, resistance (R) genes, and hormonal signaling. The complex dynamics of virus–vector interactions are discussed, considering the modes of transmission-persistent, non-persistent and semi-persistent—the role of viral proteins such as HC-Pro in determining vector specificity and adaptations in vectors that facilitate virus dissemination. This article discusses how vectors select potato plants, with an emphasis on the role played by plant-excreted volatiles and vector-applied saliva in plant defense. It also discusses host genes that contribute to vector resistance. This review provides an overview of the interactions between potato plants, viruses, and vectors and shows how viruses influence plant–vector interactions, the molecular pathways shared, and the altered gene expression profiles due to these interactions. The review offers an integrated perspective essential for developing sustainable and precise control strategies against potato viral pathogens under changing climatic conditions. Full article
(This article belongs to the Special Issue Plant–Microbe Interaction)
Show Figures

Figure 1

21 pages, 831 KiB  
Review
Beyond Single-Pathogen Models: Understanding Mixed Infections Involving Phytoplasmas and Other Plant Pathogens
by Shao-Shuai Yu and Wei Wei
Plants 2025, 14(13), 2049; https://doi.org/10.3390/plants14132049 - 4 Jul 2025
Viewed by 548
Abstract
Phytoplasmas are wall-less, phloem-restricted bacteria responsible for numerous significant plant diseases worldwide. An increasing body of evidence indicates that phytoplasmas can coexist with other pathogens in mixed infections, including various 16Sr group phytoplasmas, ‘Candidatus Liberibacter’ species, viruses, spiroplasmas, fungi, and other difficult-to-culture phloem-limited [...] Read more.
Phytoplasmas are wall-less, phloem-restricted bacteria responsible for numerous significant plant diseases worldwide. An increasing body of evidence indicates that phytoplasmas can coexist with other pathogens in mixed infections, including various 16Sr group phytoplasmas, ‘Candidatus Liberibacter’ species, viruses, spiroplasmas, fungi, and other difficult-to-culture phloem-limited bacteria. These interactions challenge established views regarding the causes, detection, and management of plant diseases. This review consolidates existing knowledge on the diversity and epidemiology of phytoplasma-related mixed infections, with a particular emphasis on documented co-infections across various host plants and regions, especially in tropical and subtropical areas. Mixed infections affect disease severity, symptom expression, vector behavior, and pathogen dissemination, highlighting the limitations of pathogen-specific diagnostic and control strategies. The necessity for tools to detect multiple pathogens, enhanced understanding of pathogen–pathogen and host–pathogen interactions, and comprehensive surveillance systems is emphasized. Ultimately, breeding for resistance must consider the complexities of natural co-infections to ensure effective protection of crops. Addressing the challenges presented by phytoplasma-related mixed infections is crucial for developing resilient and sustainable plant health strategies in the face of increasing ecological and agricultural pressures. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

24 pages, 3411 KiB  
Article
Virus–Host Interactions and Genetic Exchange in Mixed Infections of Tomato Yellow Leaf Curl Virus (TYLCV), Tomato Leaf Curl New Delhi Virus (ToLCNDV), and Tomato Chlorosis Virus (ToCV)
by Isabel M. Fortes, Luis Díaz-Martínez, Enrique Moriones and Ana Grande-Pérez
Agronomy 2025, 15(5), 1006; https://doi.org/10.3390/agronomy15051006 - 22 Apr 2025
Viewed by 973
Abstract
Tomato yellow leaf curl virus (TYLCV), tomato leaf curl New Delhi virus (ToLCNDV), and tomato chlorosis virus (ToCV) are emerging viruses that cause significant damage to tomato (Solanum lycopersicum). TYLCV and ToLCNDV are single-stranded DNA viruses from the genus Begomovirus, [...] Read more.
Tomato yellow leaf curl virus (TYLCV), tomato leaf curl New Delhi virus (ToLCNDV), and tomato chlorosis virus (ToCV) are emerging viruses that cause significant damage to tomato (Solanum lycopersicum). TYLCV and ToLCNDV are single-stranded DNA viruses from the genus Begomovirus, family Geminiviridae, while ToCV is an RNA virus from the genus Crinivirus (family Closteroviridae). These viruses share overlapping geographic ranges, vectors (the whitefly Bemisia tabaci), and host plants, making mixed infections common. This study investigated interactions between TYLCV and ToLCNDV and between ToLCNDV and ToCV in mixed infections of susceptible and TYLCV-resistant tomato genotypes. We evaluated infection, disease development, trans-replication of genome components, and genetic exchange. Our results showed no significant synergistic or antagonistic interactions, complementation, or interference between the viruses. TYLCV resistance in tomato genotypes remained stable. The DNA-B component of ToLCNDV exhibited impaired functionality and was not complemented by TYLCV. No evidence was found that the crinivirus tomato chlorosis virus (ToCV) enhances ToLCNDV infection, suggesting limited interactions despite shared vectors. Genetic exchange was detected in defective DNA (def-DNA) molecules using high-throughput sequencing (HTS), indicating potential genetic interactions between these viruses. These findings suggest that mixed infections do not pose immediate concerns for increased pathogenicity but highlight the ecological implications of genetic exchange, warranting further study of the evolutionary consequences of such interactions in mixed-virus environments. Full article
(This article belongs to the Special Issue Role of RNA and ssDNA Viruses in Plant–Virus/Viroid Interactions)
Show Figures

Figure 1

33 pages, 2644 KiB  
Review
Bioaerosols in Agriculture: A Comprehensive Approach for Sustainable Crop Health and Environmental Balance
by Njomza Gashi, Zsombor Szőke, Péter Fauszt, Péter Dávid, Maja Mikolás, Ferenc Gál, László Stündl, Judit Remenyik and Melinda Paholcsek
Agronomy 2025, 15(5), 1003; https://doi.org/10.3390/agronomy15051003 - 22 Apr 2025
Cited by 2 | Viewed by 986
Abstract
Bioaerosols have risen as pivotal constituents of airborne particles. Closely intertwined with the agricultural domain, these particles exert a significant influence on crops through the dissemination of various microorganisms that modulate crop growth dynamics, adaptive responses to environmental stimuli, and the nutritional profile [...] Read more.
Bioaerosols have risen as pivotal constituents of airborne particles. Closely intertwined with the agricultural domain, these particles exert a significant influence on crops through the dissemination of various microorganisms that modulate crop growth dynamics, adaptive responses to environmental stimuli, and the nutritional profile of agricultural products. As the main vector, airborne particles are at the forefront in the transmission of plant pathogens. Therefore, this review explains the main factors influencing their composition in agricultural settings and their spreading. Furthermore, it elucidates the complex bioaerosol-based communication networks, including bacteria–bacteria, bacteria–plant, and plant–plant interactions, mediated by specialized volatile organic compounds (VOCs) released by plants and bacterial volatile compounds (BVCs) produced by bacteria. These compounds play a crucial role in synchronizing stress responses and facilitating adaptive processes. They serve as a pathway for influencing and regulating the behavior of both plants and microorganisms. Delving into their origin and dispersion, we assess the key methods for their collection and analysis while also comparing the strengths and weaknesses of various sampling techniques. The discussion also extends to delineating the roles of such particles in the formation of biodiversity. Central to this discourse is an in-depth exploration of their role in the agricultural context, particularly focusing on their potential utility in forecasting pathogen transmission and subsequent plant diseases. This review also highlights the importance of applying bioaerosol-based strategies in the promotion of sustainable agricultural practices, thus contributing to the advancement of ecological balance and food security, which remains a neglected area in scientific research. Full article
Show Figures

Graphical abstract

14 pages, 1411 KiB  
Article
Transient Overexpression of the Pepper WRKY2 Gene in Nicotiana benthamiana Markedly Delays the Systemic Necrosis Caused by Tobacco Mosaic Virus
by Csilla Juhász, Ágnes Szatmári, Zoltán Bozsó, Balazs Barna and Gábor Gullner
Life 2025, 15(4), 669; https://doi.org/10.3390/life15040669 - 17 Apr 2025
Viewed by 371
Abstract
The role of WRKY transcription factor proteins in plant defense reactions against fungal and bacterial pathogens is well studied, but less information is available about plant–virus interactions. We observed the rapid and strong activation of the transcription factor gene, CaWRKY2, in pepper [...] Read more.
The role of WRKY transcription factor proteins in plant defense reactions against fungal and bacterial pathogens is well studied, but less information is available about plant–virus interactions. We observed the rapid and strong activation of the transcription factor gene, CaWRKY2, in pepper leaves following inoculation with Obuda pepper virus (ObPV). In contrast, CaWRKY2 was only weakly induced by pepper mild mottle virus (PMMoV) inoculation. To carry out a functional analysis of CaWRKY2, the gene was transiently overexpressed in Nicotiana benthamiana leaves by agroinfiltration. Four days later, CaWRKY2-overexpressing and empty vector control leaves were inoculated with tobacco mosaic virus (TMV). Transiently overexpressing CaWRKY2 did not affect the replication rate of TMV in the inoculated leaves. However, TMV inoculation up-regulated the expression of a pathogenesis-related gene (NbPR-1b) and a lipoxygenase (NbLOX1) gene significantly more strongly in N. benthamiana leaves overexpressing CaWRKY2 than in empty vector control leaves. Intriguingly, CaWRKY2 overexpression delayed (by 3 days) the development of systemic necrosis and plant death caused by TMV in N. benthamiana. These results suggest that CaWRKY2 is able to hinder the spread of TMV from inoculated leaves towards vascular tissues and systemic leaves in N. benthamiana. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

17 pages, 3351 KiB  
Article
Fungal Warriors: Effects of Beauveria bassiana and Purpureocillium lilacinum on CCYV-Carrying Whiteflies
by Dan Zhai, Hang Lu, Suyao Liu, Jialei Liu, Wanyu Zhang, Jingjing Wu, Jingjing Li, Rune Bai, Fengming Yan and Chenchen Zhao
Biomolecules 2025, 15(4), 593; https://doi.org/10.3390/biom15040593 - 16 Apr 2025
Cited by 1 | Viewed by 679
Abstract
Bemisia tabaci is a major agricultural pest that affects both greenhouse and field crops by feeding on plant sap, which impairs plant growth, and by secreting honeydew, promotes sooty mold growth that further reduces photosynthesis. Additionally, these insects are vectors for viruses such [...] Read more.
Bemisia tabaci is a major agricultural pest that affects both greenhouse and field crops by feeding on plant sap, which impairs plant growth, and by secreting honeydew, promotes sooty mold growth that further reduces photosynthesis. Additionally, these insects are vectors for viruses such as the cucurbit chlorotic yellows virus (CCYV), which causes significant damage to cucurbit crops. Traditional chemical pesticide treatments have limitations, including the development of resistance, harm to non-target organisms, and environmental contamination. Traditional chemical pesticides have limitations when it comes to controlling plants infested by CCYV and whitefly. However, the underlying reasons for these limitations remain unclear, as does the impact of entomopathogenic fungi on whitefly responses. This study explores the potential of using biological control agents, specifically Beauveria bassiana and Purpureocillium lilacinum, to manage whitefly populations and control CCYV transmission. Laboratory experiments were conducted to evaluate the pathogenicity of these fungi on non/viruliferous whitefly. The results indicated that both fungi effectively reduced whitefly populations, with B. bassiana showing particularly strong adverse effects. Whiteflies infected with CCYV exhibited a higher LC50 to B. bassiana and P. lilacinum. Furthermore, bio-pesticides significantly altered the bacterial microbiome dynamics of the whitefly. Interestingly, CCYV increased the susceptibility of whiteflies to entomopathogenic fungus. The findings suggest that these biocontrol agents offer a sustainable alternative to chemical pesticides. Our study unraveled a new horizon for the multiple interaction theories among bio-pesticides–insects–symbionts–viruses. Full article
(This article belongs to the Special Issue Microbial Biocontrol and Plant-Microbe Interactions)
Show Figures

Figure 1

22 pages, 944 KiB  
Review
Seed-Borne Endophytes and Their Host Effects
by Hongyan Hu, Shucun Geng, Youyong Zhu, Xiahong He, Xiaoxia Pan and Mingzhi Yang
Microorganisms 2025, 13(4), 842; https://doi.org/10.3390/microorganisms13040842 - 7 Apr 2025
Viewed by 857
Abstract
In the process of long-term co-evolution, endophytes and host plants benefit from and interact with each other, resulting in positive effects such as promoting plant growth, enhancing resistance, producing beneficial secondary metabolites, and negative effects such as carrying pathogens and producing toxins. In [...] Read more.
In the process of long-term co-evolution, endophytes and host plants benefit from and interact with each other, resulting in positive effects such as promoting plant growth, enhancing resistance, producing beneficial secondary metabolites, and negative effects such as carrying pathogens and producing toxins. In addition to the vegetative organs, plant seeds are also colonized by diverse endophytes and serve as vectors for the transmission of endophytes across plant generations. Seed endophytes, termed seed-borne endophytes (SBEs), have attracted much attention because these endophytes are involved in the assembly of the plant association microbiome and exert effects on progeny plants through vertical transfer. However, the importance of SBEs may still be underestimated. The present paper reviews the diversity, origin, and vertical transmission of seed endophytes, as well as their interaction and function with hosts, so as to provide a reference for future research and application of seed endophytes. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

21 pages, 980 KiB  
Review
Diffusible Signal Factors and Xylella fastidiosa: A Crucial Mechanism Yet to Be Revealed
by Letizia Portaccio, Marzia Vergine, Mariarosaria De Pascali, Luigi De Bellis and Andrea Luvisi
Biology 2025, 14(3), 303; https://doi.org/10.3390/biology14030303 - 17 Mar 2025
Viewed by 1100
Abstract
Xylella fastidiosa (Xf) is a xylem-limited Gram-negative phytopathogen responsible for severe plant diseases globally. Colonization and dissemination on host plants are regulated primarily by diffusible signal factors (DSFs) and quorum sensing (QS) molecules regulating biofilm formation, motility, and virulence factor synthesis. [...] Read more.
Xylella fastidiosa (Xf) is a xylem-limited Gram-negative phytopathogen responsible for severe plant diseases globally. Colonization and dissemination on host plants are regulated primarily by diffusible signal factors (DSFs) and quorum sensing (QS) molecules regulating biofilm formation, motility, and virulence factor synthesis. DSFs play a critical role in the transition of bacteria from adhesion to dispersal phases, influencing plant infection and transmission by vector. Because of Xf’s host range (over 550 plant species), effective containment strategies are highly demanded. In this review, we discuss the molecular mechanism of DSF-mediated signalling in Xf, especially concerning its role in pathogenicity and adaptation. Moreover, we shed light on innovative approaches to manage Xf, including quorum-quenching (QQ) strategies and transgenic plants targeted to disrupt QS pathways. Improved knowledge of DSF interactions with host plants and bacterial communities could provide an entry point for novel, sustainable disease control strategies to decrease Xf’s agricultural and ecological impact. Full article
(This article belongs to the Special Issue Biological Control and Molecular Biology of Bacterial Plant Diseases)
Show Figures

Figure 1

19 pages, 1369 KiB  
Review
Mixed Plant Viral Infections: Complementation, Interference and Their Effects, a Review
by Monica R. Sánchez-Tovar, Rafael F. Rivera-Bustamante, Diana L. Saavedra-Trejo, Ramón Gerardo Guevara-González and Irineo Torres-Pacheco
Agronomy 2025, 15(3), 620; https://doi.org/10.3390/agronomy15030620 - 28 Feb 2025
Cited by 5 | Viewed by 1471
Abstract
Viral diseases are a frequent problem in the agricultural sector, causing significant economic losses, so their management is a constant challenge for producers and researchers. One of the factors that often complicates the control of viral diseases in plants is mixed infections, which [...] Read more.
Viral diseases are a frequent problem in the agricultural sector, causing significant economic losses, so their management is a constant challenge for producers and researchers. One of the factors that often complicates the control of viral diseases in plants is mixed infections, which occur when two or more viruses are present in a plant, generating a complex expression of symptoms. During a mixed infection, the following types of interactions basically occur: complementation and interference, the effect of which produces synergism, antagonism, or no effect. However, there are also subcategories of effects. This makes early detection difficult, and this infection can also give a competitive advantage to the pathogens involved. This review presents updated information on mixed viral infections in plants, the interaction categories, the severity of symptoms, and the impact on plants and vectors. The intention is to share information to better understand the etiology of the diseases. Full article
Show Figures

Figure 1

22 pages, 27465 KiB  
Article
Inferring Tripartite Associations of Vector-Borne Plant Pathogens Using a Next-Generation Sequencing Approach
by Ava M. Gabrys, Christopher H. Dietrich and Valeria Trivellone
Pathogens 2025, 14(1), 74; https://doi.org/10.3390/pathogens14010074 - 14 Jan 2025
Viewed by 1232
Abstract
Phytoplasmas are a group of plant-pathogenic, cell-wall-less bacteria vectored primarily by leafhoppers (Hemiptera Cicadellidae), one of the most diverse families of insects. Despite the importance of documenting associations between phytoplasmas, their insect vectors, and plant hosts to prevent disease outbreaks, such knowledge is [...] Read more.
Phytoplasmas are a group of plant-pathogenic, cell-wall-less bacteria vectored primarily by leafhoppers (Hemiptera Cicadellidae), one of the most diverse families of insects. Despite the importance of documenting associations between phytoplasmas, their insect vectors, and plant hosts to prevent disease outbreaks, such knowledge is currently highly incomplete and largely neglects the diversity of the system in natural areas. Here, we used anchored hybrid enrichment (AHE) to recover the DNA of five plant genes (rbcL, matK, ITS1, ITS2, and trnH-psbA) in 58 phloem-feeding leafhoppers from around the world that had previously tested positive for phytoplasma infection. Using BLASTn and a strict filtering approach, we assigned taxonomic classifications to the plant sequences and tested for cophylogenetic signals between potential Deltocephalinae leafhopper vectors and their associated plants. We observed incongruence between plant and insect phylogenies. Many leafhopper species, including presumed grass specialists, fed on distantly related plant lineages; 66% of sampled leafhoppers fed on plants from at least two different orders. By disentangling phytoplasma–leafhopper–plant interactions, we identify locations at risk of phytoplasma disease outbreaks. Furthermore, the observed wide diet breadth raises questions about how phytoplasma infection may manipulate the feeding preference of their insect host and helps fill the gaps in understanding the ecology and diversification of the tripartite association. Full article
Show Figures

Figure 1

13 pages, 3307 KiB  
Article
Generation and Assessment of Soybean (Glycine max (L.) Merr.) Hybrids for High-Efficiency Agrobacterium-Mediated Transformation
by Muhammad Waqar Khan, Aaqib Shaheen, Xuebin Zhang, Junli Zhang, Yaser Hassan Dewir and Katalin Magyar-Tábori
Life 2024, 14(12), 1649; https://doi.org/10.3390/life14121649 - 12 Dec 2024
Viewed by 1191
Abstract
The Agrobacterium-mediated technique is widely employed for soybean transformation, but the efficiency of this method is still relatively modest, in which multiple factors are involved. Numerous chemical and physiological cues from host plants are needed for A. tumefaciens attraction and subsequent T-DNA [...] Read more.
The Agrobacterium-mediated technique is widely employed for soybean transformation, but the efficiency of this method is still relatively modest, in which multiple factors are involved. Numerous chemical and physiological cues from host plants are needed for A. tumefaciens attraction and subsequent T-DNA integration into the plant genome. Susceptible genotypes may permit this attachment and integration, and the agronomically superior genotypes with susceptibility to A. tumefaciens would play an important role in increasing transformation efficiency. In this study, we aimed to elevate the Agrobacterium-mediated transformation efficiency of soybean by integrating susceptibility alleles from William82 and flavonoids accumulating alleles from LX genotypes in the same soybean line. The crossing was made between LX () and William82 () soybean by hand pollination. Expectedly, the resulting hybrid soybean progenies inherited susceptibility traits and high flavonoid contents (i.e., genistein, genistin, apigenin, naringenin, quercetin, and cinnamic acid) essential for potential plant–pathogen interaction. Furthermore, the progenies and susceptible William82 soybean were subjected to transformation using A. tumefaciens (GV3101) harboring the GmUbi-3XFlag-35S-GFP and reassembled GmUbi3XFlag-35S-GFP: GUS vectors during separate events. Important transformation-related traits like shoot induction and shoot regeneration ability were also significantly improved in progenies. The progenies designated as ZX-3 exhibited superiority over the William82 parental line in all three traits, i.e., shoot induction, regeneration, and Agrobacterium-mediated transformation. The transient transformation efficiency of the ZX-16 line was remarkably higher when half-cotyledon explants were wounded and transformed with A. tumefaciens harboring GUS assembly vector and then co-cultivated on MS medium supplemented with 2 mg/L spermidine, 0.3 g/L GA3, 0.3 mg/L kinetin, and 1.3 mg/L 6-benzylaminopurine. In addition, the shoot elongation was also higher than that of William82 after two weeks of culture on the shoot induction medium. The newly generated soybeans have the potential to serve as a valuable source for high transgene production and represent a promising avenue for future soybean varietal development. Full article
(This article belongs to the Special Issue Recent Advances in Crop Genetics and Breeding)
Show Figures

Figure 1

29 pages, 4408 KiB  
Article
Deep Sequencing Analysis of Virome Components, Viral Gene Expression and Antiviral RNAi Responses in Myzus persicae Aphids
by Natalia Sukhikh, Victor Golyaev, Nathalie Laboureau, Gabriel Clavijo, Camille Rustenholz, Aurelie Marmonier, Quentin Chesnais, Mylène Ogliastro, Martin Drucker, Veronique Brault and Mikhail M. Pooggin
Int. J. Mol. Sci. 2024, 25(23), 13199; https://doi.org/10.3390/ijms252313199 - 8 Dec 2024
Cited by 1 | Viewed by 1504
Abstract
The green peach aphid (Myzus persicae) is a generalist pest damaging crops and transmitting viral pathogens. Using Illumina sequencing of small (s)RNAs and poly(A)-enriched long RNAs, we analyzed aphid virome components, viral gene expression and antiviral RNA interference (RNAi) responses. Myzus [...] Read more.
The green peach aphid (Myzus persicae) is a generalist pest damaging crops and transmitting viral pathogens. Using Illumina sequencing of small (s)RNAs and poly(A)-enriched long RNAs, we analyzed aphid virome components, viral gene expression and antiviral RNA interference (RNAi) responses. Myzus persicae densovirus (family Parvoviridae), a single-stranded (ss)DNA virus persisting in the aphid population, produced 22 nucleotide sRNAs from both strands of the entire genome, including 5′- and 3′-inverted terminal repeats. These sRNAs likely represent Dicer-dependent small interfering (si)RNAs, whose double-stranded RNA precursors are produced by readthrough transcription beyond poly(A) signals of the converging leftward and rightward transcription units, mapped here with Illumina reads. Additionally, the densovirus produced 26–28 nucleotide sRNAs, comprising those enriched in 5′-terminal uridine and mostly derived from readthrough transcripts and those enriched in adenosine at position 10 from their 5′-end and mostly derived from viral mRNAs. These sRNAs likely represent PIWI-interacting RNAs generated by a ping-pong mechanism. A novel ssRNA virus, reconstructed from sRNAs and classified into the family Flaviviridae, co-persisted with the densovirus and produced 22 nucleotide siRNAs from the entire genome. Aphids fed on plants versus artificial diets exhibited distinct RNAi responses affecting densovirus transcription and flavivirus subgenomic RNA production. In aphids vectoring turnip yellows virus (family Solemoviridae), a complete virus genome was reconstituted from 21, 22 and 24 nucleotide viral siRNAs likely acquired with plant phloem sap. Collectively, deep-sequencing analysis allowed for the identification and de novo reconstruction of M. persicae virome components and uncovered RNAi mechanisms regulating viral gene expression and replication. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

24 pages, 3842 KiB  
Review
Unravelling the Current Status of Rice Stripe Mosaic Virus: Its Geographical Spread, Biology, Epidemiology, and Management
by Md. Atik Mas-ud, Md. Rayhan Chowdhury, Sadiya Arefin Juthee, Muhammad Fazle Rabbee, Mohammad Nurul Matin and Sang Gu Kang
Agronomy 2024, 14(10), 2442; https://doi.org/10.3390/agronomy14102442 - 21 Oct 2024
Cited by 1 | Viewed by 2586
Abstract
Rice stripe mosaic virus (RSMV) belongs to the Cytorhabdovirus species in the Rhabdoviridae family. Recently, RSMV was widely spread in East Asia and caused severe yield losses. RSMV is transmitted by the planthopper vectors, Recilia dorsalis, Nephotettix virescens, and Nilaparvata lugens [...] Read more.
Rice stripe mosaic virus (RSMV) belongs to the Cytorhabdovirus species in the Rhabdoviridae family. Recently, RSMV was widely spread in East Asia and caused severe yield losses. RSMV is transmitted by the planthopper vectors, Recilia dorsalis, Nephotettix virescens, and Nilaparvata lugens, that mostly affect rice. The adult vectors can hibernate, transmit the virus, lay eggs on rice plants, and, finally, multiply in subsequent generations, resulting in new infection outbreaks. RSMV-infected rice varieties display striped mosaicism, mild dwarfism, stiff and twisted leaves, delayed heading, short panicles with large unfilled grains, and yield reduction. In nature, the infection of multiple pathogens in the same host is widespread, which is defined as co-infection. It can be antagonistic or synergistic. Pathological synergistic effects between RSMV and other viruses can generate strains with new genetic characteristics, leading to unpredictable epidemiological consequences. After the first identification of RSMV in 2015, significant advancements in understanding the disease’s characteristics, symptoms, cycles, geographic distribution, potential vectors, and synergistic interaction, as well as its management strategies, were developed. To reduce the damage due to RSMV infection, many scientists have recommended pest control techniques to target adult vectors. It is also essential to confirm the actual time of monitoring, development of resistant varieties, and changes in cultivation systems. Due to the limitations of the conventional plant disease control technologies, improvements in efficiency and safety are in high demand. Therefore, to find efficient and environmentally safe controls to mitigate these challenges, reviews of research are the foremost step. In this review, we summarize the basic epidemiological information about the origin of RSMV and its infection symptoms in the field, synergistic interaction with viruses during co-transmission, yield losses, formulation of the disease cycle, and control strategies from several case studies. Finally, we recommend the formulation of the disease cycle and management strategies of RSMV infection. Full article
Show Figures

Figure 1

20 pages, 4061 KiB  
Article
Transcriptomic Profiling of Sugarcane White Leaf (SCWL) Canes during Maturation Phase
by Karan Lohmaneeratana, Kantinan Leetanasaksakul and Arinthip Thamchaipenet
Plants 2024, 13(11), 1551; https://doi.org/10.3390/plants13111551 - 4 Jun 2024
Cited by 4 | Viewed by 1703
Abstract
Sugarcane white leaf (SCWL) disease, caused by Candidatus Phytoplasma sacchari, results in the most damage to sugarcane plantations. Some SCWL canes can grow unnoticed through the maturation phase, subsequently resulting in an overall low sugar yield, or they can be used accidentally as [...] Read more.
Sugarcane white leaf (SCWL) disease, caused by Candidatus Phytoplasma sacchari, results in the most damage to sugarcane plantations. Some SCWL canes can grow unnoticed through the maturation phase, subsequently resulting in an overall low sugar yield, or they can be used accidentally as seed canes. In this work, 12-month-old SCWL and asymptomatic canes growing in the same field were investigated. An abundance of phytoplasma in SCWL canes affected growth and sugar content as well as alterations of transcriptomic profiles corresponding to several pathways that responded to the infection. Suppression of photosynthesis, porphyrin and chlorophyll metabolism, coupled with an increase in the expression of chlorophyllase, contributed to the reduction in chlorophyll levels and photosynthesis. Blockage of sucrose transport plausibly occurred due to the expression of sugar transporters in leaves but suppression in stalks, resulting in low sugar content in canes. Increased expression of genes associated with MAPK cascades, plant hormone signaling transduction, callose plug formation, the phenylpropanoid pathway, and calcium cascades positively promoted defense mechanisms against phytoplasma colonization by an accumulation of lignin and calcium in response to plant immunity. Significant downregulation of CPK plausibly results in a reduction in antioxidant enzymes and likely facilitates pathogen invasion, while expression of sesquiterpene biosynthesis possibly attracts the insect vectors for transmission, thereby enabling the spread of phytoplasma. Moreover, downregulation of flavonoid biosynthesis potentially intensifies the symptoms of SCWL upon challenge by phytoplasma. These SCWL sugarcane transcriptomic profiles describe the first comprehensive sugarcane–phytoplasma interaction during the harvesting stage. Understanding molecular mechanisms will allow for sustainable management and the prevention of SCWL disease—a crucial benefit to the sugar industry. Full article
Show Figures

Figure 1

25 pages, 2653 KiB  
Review
Deciphering the Role of Virus Receptors in Plant–Virus–Vector Interactions
by Sumit Jangra, Senthilraja Chinnaiah, Sneha Rashtrapal Patil, Bhavya Shukla, Ragunathan Devendran and Manish Kumar
Receptors 2024, 3(2), 255-279; https://doi.org/10.3390/receptors3020013 - 3 Jun 2024
Cited by 4 | Viewed by 3096
Abstract
Insect-transmitted plant viruses are a major threat to global agricultural crop production. Receptors play a prominent role in the interplay between host-pathogen and vector interaction. The virus–vector relationship involves both viral and vector receptors. Receptors-like kinases (RLKs) and receptor-like proteins play a crucial [...] Read more.
Insect-transmitted plant viruses are a major threat to global agricultural crop production. Receptors play a prominent role in the interplay between host-pathogen and vector interaction. The virus–vector relationship involves both viral and vector receptors. Receptors-like kinases (RLKs) and receptor-like proteins play a crucial role in plant immunity, which acts as a basal defense. Pathogens can evade or block host recognition by their effector proteins to inhibit pathogen recognition receptor (PRR)-mediated signaling. Intriguingly, RLKs are also known to interact with viral proteins and impact plant susceptibility against viruses, while the endocytic receptors in vectors assist in the binding of the virus to the vectors. Unlike other receptors of fungi and bacteria which have three different domains located from extracellular or intracellular to perceive a multitude of molecular patterns, the characterization of viral receptors is quite complex and limited since the virus is directly injected into plant cells by insect vectors. Little is known about these receptors. Unraveling the receptors involved in virus entry and transmission within the vector will provide vital information in virus–vector interactions. This review focuses on efforts undertaken in the identification and characterization of receptors of plant viruses within the host and vector. This will lead to a better understanding of the cellular mechanism of virus transmission and spread, and further suggests new alternative tools for researchers to develop an integrated approach for the management of viral diseases and associated vectors. Full article
Show Figures

Figure 1

Back to TopTop