Beyond Single-Pathogen Models: Understanding Mixed Infections Involving Phytoplasmas and Other Plant Pathogens
Abstract
1. Introduction
2. Mixed Infections of Phytoplasmas from Distinct 16Sr Groups
2.1. Case Studies in Jujube and Elaeocarpus spp.
Phytoplasmas/16Sr Groups | Phytoplasmas Involving Mixed Infections | Hosts | Symptoms | Locations | References |
---|---|---|---|---|---|
16SrI | 16SrV | Jujube | witches’ broom | Korea | [25] |
16SrI | 16SrV | Jujube | witches’ broom | Henan, China | [26] |
16SrI | 16SrXXXII | Elaeocarpus sylvestris | decline | Jeju Island, Korea | [36] |
16SrI-B | 16SrII-D | Rose | phyllody, flower malformation, little leaf, flat stem | Delhi, Manipur, Uttar Pradesh, and Maharashtra in India | [53] |
16SrI-X | 16SrII-N | Papaya | bunchy top | Cuba | [27] |
16SrI-B | 16SrI-G, 16SrV | Grapevine | flavescence dorée | Piemonte, Italy | [54] |
16SrI-B | 16SrI-C, 16SrVII-A, 16SrXII-A | Grapevine | yellows | Chile | [55] |
16SrX-B | 16SrXII-A | Grapevine | yellows | Serbia | [56] |
16SrI ‘Ca. Phytoplasma asteris’ | 16SrVII ‘Ca. Phytoplasma fraxini’ | Potato | foliage yellowing, curling on upper leaf side, purple margins | Cundinamarca, Colombia | [57] |
16SrI-B | 16SrXII-A | Lily | chlorosis, leaf necrosis, malformation | Poland | [58] |
16SrI-C | 16SrIII-B | Clover | phyllody, dwarf | Lithuania | [59] |
16SrII-D ‘Ca. Phytoplasma australasiae’ | 16SrXXIX ‘Ca. Phytoplasma omanense’ | Diospyros kaki | yellowing, reddening, die-back | Mehriz (Yazd province), Iran | [60] |
16SrI-B | 16SrI-X | Melia dubia | mosaic, leaf curl, stunted growth | India | [38] |
2.2. Host and Vector Ecology in Facilitating Mixed Infections
2.3. Implications for Disease Expression, Detection, and Evolution
3. Mixed Infections of Phytoplasmas and ‘Candidatus Liberibacter’ Species
3.1. Co-Infection of Citrus Plants with Phytoplasmas and ‘Ca. L. asiaticus’
Phytoplasma/16Sr Groups | ‘Ca. Liberibacter’ spp. Involving Mixed Infections | Hosts | Symptoms | Locations | References |
---|---|---|---|---|---|
16SrII-V | ‘Ca. Liberibacter asiaticus’ | Citrus maxima | Huanglongbing, including yellowing, crinkled leaves, mottled leaves | Hainan, China | [33] |
16SrII | ‘Ca. Liberibacter asiaticus’ | Citrus sinensis | Huanglongbing | Iran | [68] |
16SrI | ‘Ca. Liberibacter asiaticus’ | Citrus plants | Huanglongbing | Guangdong, China | [24] |
16SrI | ‘Ca. Liberibacter asiaticus’ | Citrus plants | Huanglongbing | Mexico | [28] |
16SrIX | ‘Ca. Liberibacter asiaticus’ | Citrus plants | Huanglongbing | Brazil | [23] |
16SrI, 16SrII, 16SrIV, 16SrV, 16SrVII, 16SrX, 16SrXI, 16SrXII | ‘Ca. Liberibacter asiaticus’ | Citrus latifolia, Citrus paradisi, Citrus sinensis, Citrus reticulata × C. sinensis | Huanglongbing | Caribbean | [31] |
16SrI | ‘Ca. Liberibacter solanacearum’ | Carrot | Leaf curling with yellow, twisting of petioles, stunted growth of shoots and roots | Spain | [47] |
3.2. Mixed Infections in Non-Citrus Hosts: ‘Ca. L. solanacearum’ and Phytoplasmas
4. Mixed Infections of Phytoplasmas and Plant Viruses
Phytoplasma/16Sr Groups | Virus Involving Mixed Infections | Hosts | Symptoms | Locations | References |
---|---|---|---|---|---|
16SrII | Cucumber mosaic virus | Solanum melongena | mosaic, mottling, and small leaves | India | [77] |
16SrVI | Potato virus X, potato virus Y | Solanum melongena | small leaves, leaf chlorosis, and malformations with mosaic mottling | India | [78] |
16SrI-D | Banana bunchy top virus, banana streak MY virus | Banana plants | bunchy top, small leaves, leaf chlorosis, necrosis, and stunted growth | India | [84] |
16SrXI | Sugarcane yellow leaf virus | Sugarcane | yellow and grassy shoot | India | [82] |
16SrI | Sugarcane yellow leaf virus | Sugarcane | yellowing | Egypt | [81] |
16SrI-A | Sugarcane yellow leaf virus | Sugarcane | yellow discoloration of the midrib | Cuba | [80] |
16SrII | Papaya ringspot virus | Carica papaya | mosaic, yellowing, and crinkling | Cuba | [83] |
16SrVI | Begomovirus | Solanum melongena | mosaic, small leaves | India | [79] |
16SrVI | Tomato leaf curl virus | eggplant | little leaf, leaf curl | India | [86] |
16SrI-B | Begomovirus | Zinnia elegans | leaf curling, and witches’ broom | India | [29] |
16SrI-B | Ageratum enation virus | Capsicum annum | yellow, leaf curling, and small leaves | India | [49] |
16SrVI-D | Tomato leaf curl virus | Withania somnifera | yellow and yellow-type little leaves | India | [49] |
16SrIII | Begomovirus | Pepper | Mexico | [85] |
5. Mixed Infections of Phytoplasmas with Spiroplasmas
Phytoplasmas/16Sr Groups | Pathogens Involving Mixed Infections | Hosts | Symptoms | Locations | References | |
---|---|---|---|---|---|---|
Kinds | Names | |||||
Phytoplasma | Spiroplasma | Spiroplasma | Dalbulus maidis | ND | Brazil | [87] |
16SrIV | Spiroplasma | Palm species | yellowing | Mexico | [88] | |
Phytoplasma | Spiroplasma | Corn | stunting | Brazil | [30] | |
16SrII-C, 16SrII-D, 16SrVI-A, 16SrIX-C | Spiroplasma citri | Sesame | phyllody | Iran | [32] | |
Stolbur phytoplasma | ‘Ca. Phloemobacter’ species | ‘Ca. Phloemobacter fragariae’ | Sugar beet | ‘basses richesses’ syndrome | Europe | [89] |
Stolbur phytoplasma | ‘Ca. Phloemobacter fragariae’ | Strawberry | marginal chlorosis | France | [90] | |
‘Ca. Phytoplasma solani’ | ‘Ca. Arsenophonus’ species | ‘Ca. Arsenophonus phytopathogenicus’ | Sugar beet | ‘basses richesses’ syndrome | Germany | [35] |
‘Ca. Phytoplasma solani’ | ‘Ca. Arsenophonus phytopathogenicus’ | Beet, potato plants | ‘basses richesses’ syndrome | Germany | [34] | |
‘Ca. Phytoplasma solani’ | ‘Ca. Arsenophonus phytopathogenicus’ | Pentastiridius leporinus | ND | Germany | [34] | |
16SrI-X, 16SrII-N | Rickettsia | Rickettsia | Papaya | bunchy top | Cuba | [27] |
‘Ca. Phytoplasma solani’ | Fungus | Macrophomina phaseolina | Sugar beet | rubbery taproot, charcoal root rot | Central Europe | [35] |
6. Mixed Infections of Phytoplasmas with Other Unculturable Plant Pathogens
7. Mixed Infections of Phytoplasmas with Fungal Pathogens
8. Diversity of Phytoplasmas and Other Pathogens and Their Influence on Mixed Infections
8.1. Geographic Hotspots and the Ecological Basis of Mixed Infections
8.2. Pathogen Diversity Across Regions and Its Role in Disease Expression
8.3. Reservoir Hosts and Their Role in Pathogen Spread
8.4. Regional Expansion of 16SrXXXII Phytoplasmas and Co-Infection Risk
8.5. Implications for Quarantine, Surveillance, and Disease Prevention
9. Prospects for Monitoring and Managing Phytoplasma-Associated Mixed Infections
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tollenaere, C.; Susi, H.; Laine, A.L. Evolutionary and epidemiological implications of multiple infection in plants. Trends Plant Sci. 2016, 21, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Bass, D.; Stentiford, G.D.; Wang, H.C.; Koskella, B.; Tyler, C.R. The pathobiome in animal and plant diseases. Trends Ecol. Evol. 2019, 34, 996–1008. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Ghanim, M.; Liu, Y. Editorial: Mixed infections of plant viruses in nature and the impact on agriculture. Front. Microbiol. 2022, 13, 922607. [Google Scholar] [CrossRef] [PubMed]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The impact of climate change on agricultural insect pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef]
- Kaur, S.; Bedi, M.; Singh, S.; Kour, N.; Bhatti, S.S.; Bhatia, A.; Kumar, M.; Kumar, R. Monoculture of crops: A challenge in attaining food security. Adv. Food Secur. Sustain. 2024, 9, 197–213. [Google Scholar]
- MacLeod, A.; Pautasso, M.; Jeger, M.J.; Haines-Young, R. Evolution of the international regulation of plant pests and challenges for future plant health. Food Secur. 2010, 2, 49–70. [Google Scholar] [CrossRef]
- Reynolds, D.R.; Chapman, J.W.; Harrington, R. The migration of insect vectors of plant and animal viruses. Adv. Virus Res. 2006, 67, 453–517. [Google Scholar]
- Wei, W.; Zhao, Y. Phytoplasma taxonomy: Nomenclature, classification, and identification. Biology 2022, 11, 1119. [Google Scholar] [CrossRef]
- Dickinson, M.; Hodgetts, J. Phytoplasma: Methods and Protocols; Humana Press: Totowa, NJ, USA, 2013. [Google Scholar]
- Yu, S.S.; Xu, Q.C.; Lin, C.L.; Wang, S.J.; Tian, G.Z. Genetic diversity of phytoplasmas: Research status and prospects. Biodivers. Sci. 2016, 24, 205–215. [Google Scholar] [CrossRef]
- Hemmati, C.; Nikooei, M.; Al-Subhi, A.M.; Al-Sadi, A.M. History and current status of phytoplasma diseases in the middle east. Biology 2021, 10, 226. [Google Scholar] [CrossRef]
- Doi, Y.; Teranaka, M.; Yora, K.; Asuyama, H. Mycoplasma-or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows, or paulownia witches’-broom. Ann. Phytopathol. Soc. Jpn. 1967, 33, 259–266. [Google Scholar] [CrossRef]
- Sugio, A.; Maclean, A.M.; Kingdom, H.N.; Grieve, V.M.; Manimekalai, R.; Hogenhout, S.A. Diverse targets of phytoplasma effectors: From plant development to defense against insects. Annu. Rev. Phytopathol. 2011, 49, 175–195. [Google Scholar] [CrossRef] [PubMed]
- Bertaccini, A.; Duduk, B.; Paltrinieri, S.; Contaldo, N. Phytoplasmas and phytoplasma diseases: A severe threat to agriculture. Am. J. Plant Sci. 2014, 5, 1763–1788. [Google Scholar] [CrossRef]
- Mori, N.; Cargnus, E.; Martini, M.; Pavan, F. Relationships between Hyalesthes obsoletus, its herbaceous hosts and Bois Noir epidemiology in northern Italian Vineyards. Insects 2020, 11, 606. [Google Scholar] [CrossRef]
- Ramos, A.; Esteves, M.B.; Cortes, M.T.B.; Lopes, J.R.S. Maize bushy stunt phytoplasma favors its spread by changing host preference of the insect vector. Insects 2020, 11, 600. [Google Scholar] [CrossRef]
- Wei, W.; Trivellone, V.; Dietrich, C.H.; Zhao, Y.; Bottner-Parker, K.D.; Ivanauskas, A. Identification of phytoplasmas representing multiple new genetic lineages from phloem-feeding leafhoppers highlights the diversity of phytoplasmas and their potential vectors. Pathogens 2021, 10, 352. [Google Scholar] [CrossRef]
- Wei, W.; Shao, J.; Zhao, Y.; Inaba, J.; Ivanauskas, A.; Bottner-Parker, K.D.; Costanzo, S.; Kim, B.M.; Flowers, K.; Escobar, J. iPhyDSDB: Phytoplasma Disease and Symptom Database. Biology 2024, 13, 657. [Google Scholar] [CrossRef]
- IRPCM. ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int. J. Syst. Evol. Microbiol. 2004, 54, 1243–1255. [Google Scholar] [CrossRef]
- Bertaccini, A.; Arocha-Rosete, Y.; Contaldo, N.; Duduk, B.; Fiore, N.; Montano, H.G.; Kube, M.; Kuo, C.H.; Martini, M.; Oshima, K.; et al. Revision of the ‘Candidatus Phytoplasma’ species description guidelines. Int. J. Syst. Evol. Microbiol. 2022, 72, 005353. [Google Scholar] [CrossRef]
- Ahmed, E.A.; Farrag, A.A.; Kheder, A.A.; Shaaban, A. Effect of phytoplasma associated with sesame phyllody on ultrastructural modification, physio-biochemical traits, productivity and oil quality. Plants 2022, 11, 477. [Google Scholar] [CrossRef]
- Wei, W.; Inaba, J.; Zhao, Y.; Mowery, J.D.; Hammond, R. Phytoplasma infection blocks starch breakdown and triggers chloroplast degradation, leading to premature leaf senescence, sucrose reallocation, and spatiotemporal redistribution of phytohormones. Int. J. Mol. Sci. 2022, 23, 1810. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, D.D.C.; Wulff, N.A.; Martins, E.; Elliot, K.; Bassanezi, R.B.; Ayres, A.J.; Eveillard, S.; Saillard, C.; Bové, J. A phytoplasma closely related to the pigeon pea witches’-broom phytoplasma (16SrIX) is associated with citrus Huanglongbing symptoms in the State of São Paulo State, Brazil. Phytopathology 2008, 98, 977–984. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Pu, X.; Deng, X.; Liu, S.; Li, H.; Civerolo, E. A phytoplasma related to ‘Candidatus Phytoplasma asteri’ detected in citrus showing Huanglongbing (yellow shoot disease) symptoms in Guangdong, P.R. China. Phytopathology 2009, 99, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Han, S.; Cha, B. Mixed infection of 16S rDNA I and V groups of phytoplasma in a single jujube tree. Plant Pathol. J. 2009, 25, 21–25. [Google Scholar] [CrossRef]
- Sun, X.C.; Mou, H.Q.; Li, T.T.; Tian, Q.; Zhao, W.J. Mixed infection of two groups (16SrI & V) of phytoplasmas in a single jujube tree in China. J. Phytopathol. 2013, 161, 661–665. [Google Scholar]
- Acosta, K.; Zamora, L.; Piñol, B.; Fernández, A.; Chávez, A.; Flores, G.; Méndez, J.; Santos, M.E.; Leyva, N.E.; Arocha, Y. Identification and molecular characterization of phytoplasmas and rickettsia pathogens associated with ‘Bunchy Top Symptom’ (BTS) and ‘Papaya Bunchy Top’ (PBT) of papaya in Cuba. Crop Prot. 2013, 45, 49–56. [Google Scholar] [CrossRef]
- Arratia-Castro, A.A.; Santos-Cervantes, M.E.; Fernández-Herrera, E.; Chávez-Medina, J.A.; Flores-Zamora, G.L.; Camacho-Beltrán, E.; Méndez-Lozano, J.; Leyva-López, N.E. Occurrence of ‘Candidatus Phytoplasma asteris’ in citrus showing Huanglongbing symptoms in Mexico. Crop Prot. 2014, 62, 144–151. [Google Scholar] [CrossRef]
- Rihne, T.; Mitra, S.; Bahadur, A.; Panda, P.; Banyal, N.; Rao, G.P. Mixed infection of phytoplasma and begomovirus associated with leaf curling and witches’ broom disease of Zinnia elegans in India. Indian Phytopathol. 2020, 73, 527–532. [Google Scholar] [CrossRef]
- Galvão, S.R.; Sabato, E.O.; Bedendo, I.P. Occurrence and distribution of single or mixed infection of phytoplasma and spiroplasma causing corn stunting in Brazil. Trop. Plant Pathol. 2021, 46, 152–155. [Google Scholar] [CrossRef]
- Luis-Pantoja, M.; Paredes-Tomás, C.; Uneau, Y.; Myrie, W.; Morillon, R.; Satta, E.; Contaldo, N.; Pacini, F.; Bertaccini, A. Identification of ‘Candidatus Phytoplasma’ species in “huanglongbing” infected citrus orchards in the Caribbean. Eur. J. Plant Pathol. 2021, 160, 185–198. [Google Scholar] [CrossRef]
- Salehi, M.; Faghihi, M.M.; Salehi, E.; Bertaccini, A. Occurrence of single and mixed infection of Spiroplasma citri and phytoplasmas in sesame plants in Iran. Australas. Plant Pathol. 2022, 51, 13–26. [Google Scholar] [CrossRef]
- Yu, S.S.; Zhu, A.N.; Song, W.W.; Yan, W. Molecular identification and characterization of two groups of phytoplasma and Candidatus Liberibacter asiaticus in single or mixed infection of Citrus maxima on Hainan Island of China. Biology 2022, 11, 869. [Google Scholar] [CrossRef] [PubMed]
- Behrmann, S.C.; Rinklef, A.; Lang, C.; Vilcinskas, A.; Lee, K.Z. Potato (Solanum tuberosum) as a new host for Pentastiridius leporinus (Hemiptera: Cixiidae) and Candidatus Arsenophonus Phytopathogenicus. Insects 2023, 14, 281. [Google Scholar] [CrossRef] [PubMed]
- Duduk, B.; Kosovac, A.; Stepanovic, J.; Rekanovic, E.; Curcic, Z.; Böhm, J.W.; Kube, M.; Vuckovic, N.; Duduk, N.; Vico, I. Phytoplasma, proteobacterium and fungus in single and mixed infections of sugar beet in central Europe. Phytopathogenic Mollicutes 2023, 13, 97–98. [Google Scholar] [CrossRef]
- Lee, G.W.; Han, S.S. Molecular detection of phytoplasmas of the 16SrI and 16SrXXXII groups in Elaeocarpus sylvestris trees with decline disease in Jeju Island, South Korea. Plant Pathol. J. 2023, 39, 149–157. [Google Scholar] [CrossRef]
- Mall, S.; Vishwakarma, R. An update status of coinfection of phytoplasmas with other pathogens in plants. Phytopathogenic Mollicutes 2023, 13, 151–162. [Google Scholar] [CrossRef]
- Muttappagol, M.; Sindhura, K.A.V.; Ashwini, J.H.; Hiremath, S.; Basha, C.J.; Shankarappa, K.S.; Venkataravanappa, V.; Suryanarayana, V.; Reddy, C.L. Molecular detection and multigene characterization of phytoplasmas in mixed infection with begomovirus and its associated DNA satellites in Malabar neem and development of multiplex PCR and LAMP assays. Physiol. Mol. Plant Pathol. 2025, 138, 102703. [Google Scholar] [CrossRef]
- Kohda, K.; Li, X.; Soga, N.; Nagura, R.; Duerna, T.; Nakajima, S.; Nakagawa, I.; Ito, M.; Ikeuchi, A. An in vitro mixed infection model with commensal and pathogenic staphylococci for the exploration of interspecific interactions and their impacts on skin physiology. Front. Cell Infect. Mi. 2021, 11, 712360. [Google Scholar] [CrossRef]
- Paul, A.; Baral, B.; Parida, S.; Naik, D.N.; Sahoo, P.K. Mixed infections in tropical freshwater fish culture systems: A potential emerging threat for successful aquaculture. Aquac. Asia Mag. 2022, 26, 20–24. [Google Scholar]
- Byrd, A.; Deming, C.; Cassidy, S.; Harrison, O.; Ng, W.; Conlan, S.; Belkaid, Y.; Segre, J.A.; Kong, H.H. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci. Transl. Med. 2017, 9, eaal4651. [Google Scholar] [CrossRef]
- Chen, Y.; Fischbach, M.; Belkaid, Y. Skin microbiota-host interactions. Nature 2018, 553, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Manivannan, S.; Otta, S.K.; Karunasagar, I.; Karunasagar, I. Multiple viral infection in Penaeus monodon shrimp postlarvae in an Indian hatchery. Dis. Aquat. Organ. 2002, 48, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, T.R.; Kumar, R.; Dharmaratnam, A.; Basheer, V.S.; Sood, N.; Pradhan, P.K.; Sanil, N.K.; Vijayagopal, P.; Jena, J.K. Emergence of carp edema virus in cultured ornamental koi carp, Cyprinus carpio koi, in India. J. Gen. Virol. 2016, 97, 3392–3399. [Google Scholar] [CrossRef] [PubMed]
- Thamizhvanan, S.; Sivakumar, S.; Santhosh Kumar, S.; Vinoth Kumar, D.; Suryakodi, S.; Balaji, K.; Rajkumar, T.; Vimal, S.; Abdul Majeed, S.; Taju, G.; et al. Multiple infections caused by white spot syndrome virus and Enterocytozoon hepatopenaei in pond-reared Penaeus vannamei in India and multiplex PCR for their simultaneous detection. J. Fish Dis. 2019, 42, 447–454. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Paul, A.; Sahoo, M.K.; Pattanayak, S.; Rajesh Kumar, P.; Das, B.K. Incidences of infectious diseases in freshwater aquaculture farms of eastern India: A passive surveillance based study from 2014–2018. J. Aquac. Res. Dev. 2020, 11, 1–5. [Google Scholar]
- Satta, E.; Ramirez, A.S.; Paltrinieri, S.; Contaldo, N.; Benito, P.; Poveda, J.B.; Bertaccini, A. Simultaneous detection of mixed ‘Candidatus Phytoplasma asteris’ and ‘Ca. Liberibacter solanacearum’ infection in carrot. Phytopathol. Mediterr. 2016, 55, 401–409. [Google Scholar]
- Wang, Z.; Wang, W.; Yuan, E.; Su, F.; Mao, Q.; Wan, Q.; Cai, H. Identification of Camptotheca acuminate witches-broom phytoplasma and Taqman-based fluorescence qPCR method for detection. Acta Phytopathol. Sin. 2021, 51, 429–440. [Google Scholar]
- Tiwari, N.N.; Jain, R.K.; Prajapati, M.R.; Singh, J.; Srivastava, S.; Tiwari, A.K.; Marcone, C. Evidence of mixed infection of phytoplasma and Begomovirus associated with Withania somnifera and Capsicum annum plants from Uttar Pradesh, India. Arch. Phytopathol. Plant Prot. 2022, 55, 2146–2157. [Google Scholar] [CrossRef]
- Lee, I.M.; Gundersen-Rindal, D.E.; Davis, R.E.; BARTOSZYK, I.M. Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. Int. J. Syst. Evol. Microbiol. 1998, 48, 1153–1169. [Google Scholar] [CrossRef]
- Wei, W.; Lee, I.M.; Davis, R.E.; Suo, X.; Zhao, Y. Automated RFLP pattern comparison and similarity coefficient calculation for rapid delineation of new and distinct phytoplasma 16Sr subgroup lineages. Int. J. Syst. Evol. Microbiol. 2008, 58, 2368–2377. [Google Scholar] [CrossRef]
- Zhao, Y.; Wei, W.; Lee, I.M.; Shao, J.; Suo, X.B.; Davis, R.E. Construction of an interactive online phytoplasma classification tool, iPhyClassifier, its application in analysis of the peach X-disease phytoplasma group (16SrIII). Int. J. Syst. Evol. Microbiol. 2009, 59, 2582–2593. [Google Scholar] [CrossRef] [PubMed]
- Rihne, T.; Namita; Singh, K.P.; Singh, M.K.; Talukdar, A.; Rao, G.P. Multilocus gene typing, mixed infection of phytoplasma strains associated with rose genotypes and confirmation of their natural reservoir sources. Trop. Plant Pathol. 2021, 46, 596–607. [Google Scholar] [CrossRef]
- Alma, A.; Davis, R.E.; Vibio, M.; Danielli, A.; Bosco, D.; Arzone, A.; Bertaccini, A. Mixed Infection of Grapevines in Northern Italy by Phytoplasmas Including16S rRNA RFLP Subgroup 16SrI-B Strains Previously Unreported in This Host. Plant Dis. 1996, 80, 418–421. [Google Scholar] [CrossRef]
- Gajardo, A.; Fiore, N.; Prodan, S.; Paltrinieri, S.; Botti, S.; Pino, A.M.; Zamorano, A.; Montealegre, J.; Bertaccini, A. Phytoplasmas associated with grapevine yellows disease in Chile. Plant Dis. 2009, 93, 789–796. [Google Scholar] [CrossRef]
- Duduk, B.; Botti, S.; Ivanovic, M.; Krstic, B.; Dukic, N.; Bertaccini, A. identification of phytoplasma associated with grapevine yellows in Serbia. J. Phytopathol. 2004, 152, 575–579. [Google Scholar] [CrossRef]
- Franco-Lara, L.; Varela-Correa, C.A.; Guerrero-Carranza, G.P.; Quintero-Vargas, J.C. Association of phytoplasmas with a new disease of potato crops in cundinamarca, Colombia. Crop Prot. 2023, 163, 106123. [Google Scholar] [CrossRef]
- Bertaccini, A.; Botti, S.; Martini, M.; Kaminska, M. Molecular evidence for mixed phytoplasma infection in Lily plants. In X International Symposium on Virus Diseases of Ornamental Plants; Hammond, J., Ed.; ISHS Acta Horticulturae: Annapolis, MD, USA, 2002; Volume 568, pp. 35–41. [Google Scholar]
- Staniulis, J.B.; Davis, R.E.; Jomantiene, R.; Kalvelyte, A.; Dally, E.L. Single and mixed phytoplasma infections in phyllody- and dwarf-diseased clover plants in Lithuania. Plant Dis. 2000, 84, 1061–1066. [Google Scholar] [CrossRef]
- Esmaeilzadeh-Hosseini, S.A.; Babaei, G.; Mateeti, S.T.; Pacini, F.; Bertaccini, A. Detection and Identification of Diverse Phytoplasmas in Declining Persimmon Plants. Microorganisms 2025, 13, 645. [Google Scholar] [CrossRef]
- Wang, J.; Tian, G.Z.; Xu, Q.C.; Liu, Y.G.; Gao, R.; Li, X.D.; Zhu, X.P. Molecular detection of phytoplasma strains from several plants around diseased paulownia infected with paulownia witches’-broom phytoplasma. Sci. Agric. Sin. 2010, 43, 304–312. [Google Scholar]
- Liefting, L.W.; Egusquiza, Z.C.; Clover, G.R.G.; Anderson, J.A.D. A new ‘Candidatus Liberibacter’ species in Solanum tuberosum in New Zealand. Plant Dis. 2008, 92, 1474. [Google Scholar] [CrossRef]
- Sumner-Kalkun, J.C.; Highet, F.; Arnsdorf, Y.M.; Back, E.; Carnegie, M.; Madden, S.; Carboni, S.; Billaud, W.; Lawrence, Z.; Kenyon, D. ‘Candidatus Liberibacter solanacearum’ distribution and diversity in Scotland and the characterisation of novel haplotypes from Craspedolepta spp. (Psylloidea: Aphalaridae). Sci. Rep. 2020, 10, 16567. [Google Scholar] [CrossRef] [PubMed]
- Bao, M.; Zheng, Z.; Chen, J.; Deng, X. Investigation of citrus HLB symptom variations associated with “Candidatus Liberibacter asiaticus” strains harboring different phages in Southern China. Agronomy 2021, 11, 2262. [Google Scholar] [CrossRef]
- Munyaneza, J.E.; Fisher, T.W.; Sengoda, V.G.; Garczynski, S.F.; Nissinen, A.; Lemmetty, A. First report of ‘Candidatus Liberibacter solanacearum’ in carrots in Europe. Plant Dis. 2010, 94, 639. [Google Scholar] [CrossRef]
- Arce-Leal, A.P.; Bautista, R.; Rodriguez-Negrete, E.A.; Manzanilla-Ramirez, M.A.; Velazquez-Monreal, J.J.; Santos-Cervantes, M.E.; Mendez-Lozano, J.; Beuzon, C.R.; Bejarano, E.R.; Castillo, A.G.; et al. Gene expression profile of Mexican Lime (Citrus aurantifolia) trees in response to Huanglongbing disease caused by Candidatus Liberibacter asiaticus. Microorganisms 2020, 8, 528. [Google Scholar] [CrossRef]
- Quiroga, N.; Gamboa, C.; Medina, G.; Contaldo, N.; Torres, F.; Bertaccini, A.; Zamorano, A.; Fiore, N. Survey for ‘Candidatus Liberibacter’ and ‘Candidatus Phytoplasma’ in Citrus in Chile. Pathogens 2022, 11, 48. [Google Scholar] [CrossRef]
- Alizadeh, H.; Quaglino, F.; Azadvar, M.; Kumar, S.; Alizadeh, A.; Bolboli, F.; Casati, P.; Bianco, P.A. First report of a new citrus decline disease (CDD) in association with double and single infection by ‘Candidatus Liberibacter asiaticus’ and ‘Candidatus Phytoplasma aurantifolia’ related strains in Iran. Plant Dis. 2017, 101, 2145. [Google Scholar] [CrossRef]
- Yu, S.S.; Tang, Q.H.; Wu, Y.; Lin, M.X.; Zhao, R.L.; Song, W.W.; Qin, W.Q. First report of 16SrXXXII group related phytoplasma associated with Trema tomentosa witches’-broom disease in China. Plant Dis. 2021, 105, 1191. [Google Scholar] [CrossRef]
- Yu, S.S.; Zhao, R.L.; Lin, M.X.; Wu, Y.; Chen, S.G.; Yu, F.Y.; Song, W.W.; Zhu, H. Occurrence of phytoplasma belongs to 16SrII group associated with witches’-broom symptoms in Emilia sonchifolia in Hainan Island of China. Plant Dis. 2021, 105, 4151. [Google Scholar] [CrossRef]
- Yu, S.S.; Zhao, R.L.; Lin, M.X.; Wu, Y.; Chen, S.G.; Yu, F.Y.; Song, W.W.; Zhu, H. Waltheria indica is a new host of phytoplasma belongs to 16SrI-B subgroup associated with virescence symptoms in China. Plant Dis. 2021, 105, 2012. [Google Scholar] [CrossRef]
- Yu, S.S.; Song, W.W.; Qin, W.Q. Molecular detection and phylogenetic relationship of areca palm yellow leaf phytoplasma in Hainan, China. Chin. J. Trop. Crops 2021, 42, 3066–3072. [Google Scholar]
- Yu, S.S.; Wu, Y.; Song, W.W. Occurrence of a 16SrII-V subgroup phytoplasma associated with witches’-broom disease in Melochia corchorifolia in China. Plant Dis. 2022, 106, 754. [Google Scholar] [CrossRef]
- Alfaro-Fernández, A.; Cebrián, M.C.; Villaescusa, F.J.; Hermoso de Mendoza, A.; Ferrándiz, J.C.; Sanjuán, S.; Font, M.I. First report of ‘Candidatus Liberibacter solanacearum’ in carrot in mainland Spain. Plant Dis. 2012, 96, 582. [Google Scholar] [CrossRef] [PubMed]
- EPPO. First report of ‘Candidatus Liberibacter solanacearum’ on carrots and celery in Spain, in association with Bactericera trigonica. EPPO Rep. Serv.-Pests Dis. 2012, 6, 4–5. [Google Scholar]
- Singhal, P.; Nabi, S.U.; Yadav, M.K.; Dubey, A. Mixed infection of plant viruses: Diagnostics, interactions and impact on host. J. Plant Dis. Protect. 2021, 128, 353–368. [Google Scholar] [CrossRef]
- Abirami, R.; Manoranjitham, S.K.; Mohankumar, S.; Karthikeyan, G. Preponderance of mixed infection of Cucumber mosaic virus and ‘Candidatus Phytoplasma australasia’ on brinjal in India. Microb. Pathog. 2022, 169, 105596. [Google Scholar] [CrossRef]
- Kumar, M.; Katiyar, A.; Madhupriya and Rao, G.P. First report of association of Potato virus X and Potato virus Y and ‘Candidatus Phytoplasma trifolii’ in brinjal in India. Virus Dis. 2016, 27, 207–208. [Google Scholar] [CrossRef]
- Venkataravanappa, V.; Prasanna, H.C.; Lakshminarayana, C.N.; Reddy, M.K. Molecular detection and characterization of phytoplasma in association with Begomovirus in eggplant. Acta Virol. 2018, 62, 246–258. [Google Scholar] [CrossRef]
- Arocha, Y.; Gonzalez, L.; Peralta, E.L.; Jones, P. First report of virus and phytoplasma pathogens associated with yellow leaf syndrome of sugarcane in Cuba. Plant Dis. 1999, 83, 1177. [Google Scholar] [CrossRef]
- El Sayed, A.I.; Soufi, Z.; Wahdan, K.M.; Komor, E. Detection and characterization of phytoplasma and sugarcane yellow leaf virus associated with leaf yellowing of sugarcane. J. Phytopathol. 2016, 164, 217–225. [Google Scholar] [CrossRef]
- Nithya, K.; Parameswari, B.; Viswanathan, R. Mixed infection of sugarcane yellow leaf virus and grassy shoot phytoplasma in yellow leaf affected Indian sugarcane cultivars. Plant Pathol. J. 2020, 36, 364–377. [Google Scholar] [CrossRef]
- Arocha, Y.; Piñol, B.; Acosta, K.; Almeida, R.; Devonshire, J.; Van de Meene, A.; Boa, E.; Lucas, J. Detection of phytoplasma and potyvirus pathogens in papaya (Carica papaya L.) affected with bunchy top symptom (BTS) in eastern Cuba. Crop Prot. 2009, 28, 640–646. [Google Scholar] [CrossRef]
- Mitra, S.; Debnath, P.; Rai, R.; Srivastava, N.; Rao, G.P.; Baranwal, V.K. Identification of ‘Ca. Phytoplasma asteris’, Banana bunchy top virus and Banana streak MY virus associated with Champa and Sabri banana cultivars in Tripura, a north eastern state of India. Eur. J. Plant Pathol. 2022, 163, 907–922. [Google Scholar] [CrossRef]
- Lebsky, V.; Hernandez-Gonzalez, J.; Arguello-Astorga, A.; Cardenas-Conejo, Y.; Poghosyan, A. Detection of phytoplasmas in mixed infection with begomoviruses: A case study of tomato and pepper in Mexico. Bull. Insectology 2011, 64, S55–S56. [Google Scholar]
- Singh, J.; Singh, A.; Kumar, P.; Rani, A.; Baranwal, V.K.; Sirohi, A. Evidence of a mixed infection of ‘Candidatus Phytoplasma Trifolii’ and a begomovirus in eggplant (Solanum melongena). J. Pure Appl. Microbio. 2015, 9, 663–670. [Google Scholar]
- Oliveira, E.; Landau, E.C.; Sousa, S.M. Simultaneous transmission of phytoplasma and spiroplasma by Dalbulus maidis leafhopper and symptoms of infected maize. Phytopathog. Mollicutes 2015, 5, S99. [Google Scholar] [CrossRef]
- Lebsky, V.; Hernandez-Gonzalez, J.; Barraza, A.; Oropeza, C.; Narvaez, M.; Carrillo, A.; Castellanos, T.; Poghosyan, A. Ultrastructural analysis of spiroplasmas detected in palm species infected with the lethal yellowing phytoplasma from Yucatan and Baja California Sur, Mexico. Phytopathog. Mollicutes 2019, 9, 155–156. [Google Scholar] [CrossRef]
- Gatineau, F.; Jacob, N.; Vautrin, S.; Larrue, J.; Lherminier, J.; RichardMolard, M.; Boudon-Padieu, E. Association with the syndrome “basses richesses” of sugar beet of a phytoplasma and a bacterium-like organism transmitted by a Pentastiridius sp. Phytopathology 2002, 92, 384–392. [Google Scholar] [CrossRef]
- Danet, J.L.; Foissac, X.; Zreik, L.; Salar, P.; Verdin, E.; Nourrisseau, J.G.; Garnier, M. ‘Candidatus Phlomobacter fragariae’ is the prevalent agent of marginal chlorosis of strawberry in French production fields and is transmitted by the planthopper Cixius wagneri (China). Phytopathology 2003, 93, 644–649. [Google Scholar] [CrossRef]
- Che, H.Y.; Yu, S.S.; Chen, W.; Zheng, W.H.; Cao, X.R.; Luo, D.Q. Molecular identification and characterization of novel taxonomic subgroups and new host plants in 16SrI and 16SrII group phytoplasmas and their evolutionary diversity on Hainan Island, China. Plant Dis. 2024, 108, 1703–1718. [Google Scholar] [CrossRef]
- Yu, S.S.; Zhu, A.N.; Che, H.Y.; Song, W.W. Molecular identification of ‘Candidatus Phytoplasma malaysianum’-related strains associated with Areca catechu palm yellow leaf disease and phylogenetic diversity of the phytoplasmas within 16SrXXXII Group. Plant Dis. 2024, 108, 1331–1343. [Google Scholar] [CrossRef]
- Zhu, A.; Yu, S.; Su, L.; Liu, L.; Song, W.; Yan, W. Molecular detection and genetic variation of phytoplasmas from eight plants in garden of areca with yellow leaf disease in China. Chin. J. Trop. Crops 2023, 44, 1190–1202. [Google Scholar]
- Yang, Y.; Jiang, L.; Che, H.Y.; Cao, X.R.; Luo, D.Q. Phytoplasma in association with rubber tree (Hevea brasiliensis) stem fasciation in China. Plant Dis. 2016, 100, 2520. [Google Scholar] [CrossRef]
- Li, Y.; Piao, C.G.; Tian, G.Z.; Liu, Z.X.; Guo, M.W.; Lin, C.L.; Wang, X.Z. Multilocus sequences confirm the close genetic relationship of four phytoplasmas of peanut witches’-broom group 16SrII-A. J. Basic Microb. 2014, 54, 818–827. [Google Scholar] [CrossRef]
- Nejat, N.; Sijam, K.; Abdullah, S.N.A.; Vadamalai, G.; Dickinson, M. Phytoplasmas associated with disease of coconut in Malaysia: Phylogenetic groups and host plant species. Plant Pathol. 2009, 58, 1152–1160. [Google Scholar] [CrossRef]
- Nejat, N.; Vadamalai, G.; Davis, R.E.; Harrison, N.A.; Sijam, K.; Dickinson, M.; Abdullah, S.N.A.; Zhao, Y. ‘Candidatus Phytoplasma malaysianum’, a novel taxon associated with virescence and phyllody of Madagascar periwinkle (Catharanthus roseus). Int. J. Syst. Evol. Microbiol. 2013, 63, 540–548. [Google Scholar] [CrossRef]
- Iwabuchi, N.; Endo, A.; Kameyama, N.; Satoh, M.; Miyazaki, A.; Koinuma, H.; Kitazawa, Y.; Maejima, K.; Yamaji, Y.; Oshima, K.; et al. First report of “Candidatus Phytoplasma malaysianum” associated with Elaeocarpus yellows of Elaeocarpus zollingeri. J. Gen. Plant Pathol. 2018, 84, 160–164. [Google Scholar] [CrossRef]
- Lee, G.W.; Han, T.W.; Lee, S.K.; Han, S.S. Candidatus phytoplasma malaysianum (16SrXXXII) associated with Elaeocarpus sylvestris decline in South Korea. For. Sci. Technol. 2022, 18, 7–13. [Google Scholar] [CrossRef]
- Yang, Y.; Li, D.; Duan, Y.; Jiang, L. Investigation and distribution of the citrus Huanglongbing and identification of Huanglongbing Liberibacter species in Hainan. Plant Quar. 2020, 34, 43–47. [Google Scholar]
- Zhang, X.F.; Li, Z.; Qiu, J.; Zhang, R.; Jiang, Z.; Wang, T.; Chen, H.; Wei, T. A phytoplasma effector suppresses insect melanization immune response to promote pathogen persistent transmission. Sci. Adv. 2025, 11, eads9781. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, S.-S.; Wei, W. Beyond Single-Pathogen Models: Understanding Mixed Infections Involving Phytoplasmas and Other Plant Pathogens. Plants 2025, 14, 2049. https://doi.org/10.3390/plants14132049
Yu S-S, Wei W. Beyond Single-Pathogen Models: Understanding Mixed Infections Involving Phytoplasmas and Other Plant Pathogens. Plants. 2025; 14(13):2049. https://doi.org/10.3390/plants14132049
Chicago/Turabian StyleYu, Shao-Shuai, and Wei Wei. 2025. "Beyond Single-Pathogen Models: Understanding Mixed Infections Involving Phytoplasmas and Other Plant Pathogens" Plants 14, no. 13: 2049. https://doi.org/10.3390/plants14132049
APA StyleYu, S.-S., & Wei, W. (2025). Beyond Single-Pathogen Models: Understanding Mixed Infections Involving Phytoplasmas and Other Plant Pathogens. Plants, 14(13), 2049. https://doi.org/10.3390/plants14132049