Diffusible Signal Factors and Xylella fastidiosa: A Crucial Mechanism Yet to Be Revealed
Simple Summary
Abstract
1. Introduction
2. Diffusible Signal Factors (DSFs)
2.1. Quorum Sensing and DSF Molecules: Mechanisms and Their Role in Bacterial Communication
2.2. DSF: Regulation of Biofilm and Bacterial Virulence
Bacteria | Role of DSFs | Specific Mechanism | Other Info | Ref. |
---|---|---|---|---|
Xanthomonas campestris pv. campestris | Negatively regulates biofilm production | RpfC/RpfG system | - xagABC gene involved in encoding glycotransferases; - DSF synthesis depends on RpfF; - RpfF/RpfC interact directly; - XccRpf/XccDSF: DSF accumulation and protease expression in the stationary phase; - DSF signal regulated by RpfC; - Hpt domain of RpfC is important for regulation; - RpfH gene present and functional for modulation; | [16,25,31,45,65,66,67,68,69,70,71] |
Xylella fastidiosa | Promotes bacterial adhesion to surfaces and promotes biofilm production and regulates virulence factors | RpfC/RpfG system | - RpfF is involved in the production and detection of DSF; - RpfF inhibits RpfC and vice versa; - DSF-regulated adhesin is expressed early in the bacterial growth initiation phase - The Hpt domain has a different structure to that of Xcc; - The RpfH gene is absent; | [1,37,66,72,73,74,75,76,77,78,79] |
Xanthomonas oryzae pv. oryzae | - Promotes bacterial attachment to surfaces and biofilm formation; - suppresses the motility of the bacterium and the production of type II effectors: cellulase, lipase, xylanase and cellobioseidase | RpfC/RpfG system | DSF synthesis depends on RpfF | [50,80] |
Xanthomonas axonopodis pv. glycines | Regulates biofilm formation and virulence factors | RpfC/RpfG system | DSF synthesis depends on RpfF | [44] |
Xanthomonas citri subsp. citri | They have the same functions as in Xcc | RpfC/RpfG system | - Gene expression more responsive to molecules such as 11-methyldecenoic acid and insensitive to molecules such as 2-tetradecenoic acid characterising Xf; - DSF synthesis depends on RpfF | [37,51] |
Burkholderia cepacia, Burkholderia glumae, Burkholderia plantarii | Promotes bacterial adhesion to surfaces and promotes biofilm production | RpfC/RpfG system | DSF synthesis depends on RpfF | [25,53] |
3. Role of DSF in Xf
3.1. Virulence Mechanisms and Regulation of the Quorum Sensing System
3.2. Role of the Rpf System in Xf
4. Application of DSFs for Xf Containment
4.1. Quorum-Quenching Strategy
4.2. Pathogen Confusion
5. Future Prospects: Challenges and Limitations of Quorum Quenching and Transgenic Plant Strategies
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Xf | Xylella fastidiosa |
DSF | Diffusible signal factor |
QS | Quorum sensing |
Quorum Quenching | |
AHL | Acyl-homoserine lactone |
Xcc | Xanthomonas campestris pv. campestris |
EPS | Extracellular polysaccharide |
ACP | 3-hydroxyacil fatty acid |
c-di-GMP | Cyclic di-GMP |
Hpt | Histidine phosphotransfer |
GM | Genetically modified |
GMO | Genetically modified organism |
References
- Ionescu, M.; Yokota, K.; Antonova, E.; Garcia, A.; Beaulieu, E.; Hayes, T.; Iavarone, A.T.; Lindow, S.E. Promiscuous Diffusible Signal Factor Production and Responsiveness of the Xylella fastidiosa Rpf System. MBio 2016, 7, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Weng, L.W.; Lin, Y.C.; Su, C.C.; Huang, C.T.; Cho, S.T.; Chen, A.P.; Chou, S.J.; Tsai, C.W.; Kuo, C.H. Complete Genome Sequence of Xylella taiwanensis and Comparative Analysis of Virulence Gene Content with Xylella fastidiosa. Front. Microbiol. 2021, 12, 684092. [Google Scholar] [CrossRef] [PubMed]
- Mendes, J.S.; Santiago, A.S.; Toledo, M.A.S.; Horta, M.A.C.; de Souza, A.A.; Tasic, L.; de Souza, A.P. In Vitro Determination of Extracellular Proteins from Xylella fastidiosa. Front. Microbiol. 2016, 7, 2090. [Google Scholar] [CrossRef] [PubMed]
- Niza, B.; Coletta-Filho, H.D.; Merfa, M.V.; Takita, M.A.; de Souza, A.A. Differential Colonization Patterns of Xylella fastidiosa Infecting Citrus Genotypes. Plant Pathol. 2015, 64, 1259–1269. [Google Scholar] [CrossRef]
- Saponari, M.; Boscia, D.; Nigro, F.; Martelli, G.P. Identification of Dna Sequences Related to Xylella fastidiosa in Oleander, Almond and Olive Trees Exhibiting Leaf Scorch Symptoms in Apulia (Southern Italy). J. Plant Pathol. 2013, 95, 668. [Google Scholar] [CrossRef]
- Kottelenberg, D.; Hemerik, L.; Saponari, M.; van der Werf, W. Shape and Rate of Movement of the Invasion Front of Xylella fastidiosa spp. Pauca in Puglia. Sci. Rep. 2021, 11, 1061. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on the Risks to Plant Health Posed by Xylella fastidiosa in the EU Territory, with the Identification and Evaluation of Risk Reduction Options. EFSA J. 2015, 13, 3989. [Google Scholar] [CrossRef]
- Ciervo, M.; Scortichini, M. A Decade of Monitoring Surveys for Xylella fastidiosa subsp. pauca in Olive Groves in Apulia (Italy) Reveals a Low Incidence of the Bacterium in the Demarcated Areas. J. Phytopathol. 2024, 172, e13272. [Google Scholar] [CrossRef]
- Baù, A.; Delbianco, A.; Stancanelli, G.; Tramontini, S. Susceptibility of Olea europaea L. Varieties to Xylella fastidiosa subsp. pauca ST53: Systematic Literature Search up to 24 March 2017. EFSA J. 2017, 15, 4772. [Google Scholar] [CrossRef]
- Sabella, E.; Aprile, A.; Genga, A.; Siciliano, T.; Nutricati, E.; Nicolì, F.; Vergine, M.; Negro, C.; De Bellis, L.; Luvisi, A. Xylem Cavitation Susceptibility and Refilling Mechanisms in Olive Trees Infected by Xylella fastidiosa. Sci. Rep. 2019, 9, 9602. [Google Scholar] [CrossRef]
- Vergine, M.; Pavan, S.; Negro, C.; Nicolì, F.; Greco, D.; Sabella, E.; Aprile, A.; Ricciardi, L.; De Bellis, L.; Luvisi, A. Phenolic Characterization of Olive Genotypes Potentially Resistant to Xylella. J. Plant Interact. 2022, 17, 462–474. [Google Scholar] [CrossRef]
- Martelli, G.P.; Boscia, D.; Porcelli, F.; Saponari, M. The Olive Quick Decline Syndrome in South-East Italy: A Threatening Phytosanitary Emergency. Eur. J. Plant Pathol. 2016, 144, 235–243. [Google Scholar] [CrossRef]
- Bosso, L.; Di Febbraro, M.; Cristinzio, G.; Zoina, A.; Russo, D. Shedding Light on the Effects of Climate Change on the Potential Distribution of Xylella fastidiosa in the Mediterranean Basin. Biol. Invasions 2016, 18, 1759–1768. [Google Scholar] [CrossRef]
- Almeida, R.P.P.; Purcell, A.H. Biological Traits of Xylella fastidiosa Strains from Grapes and Almonds. Appl. Environ. Microbiol. 2003, 69, 7447–7452. [Google Scholar] [CrossRef]
- Janse, J.D.; Obradovic, A. Xylella fastidiosa: Its Biology, Diagnosis, Control and Risks. Plant Pathol. J. 2010, 92, S1.35–S1.48. [Google Scholar]
- Dow, J.M. Diffusible Signal Factor-Dependent Quorum Sensing in Pathogenic Bacteria and Its Exploitation for Disease Control. J. Appl. Microbiol. 2017, 122, 2–11. [Google Scholar] [CrossRef]
- Waldron, E.J.; Snyder, D.; Fernandez, N.L.; Sileo, E.; Inoyama, D.; Freundlich, J.S.; Waters, C.M.; Cooper, V.S.; Neiditch, M.B. Structural Basis of DSF Recognition by Its Receptor Rpfr and Its Regulatory Interaction with the DSF Synthase RpfF. PLoS Biol. 2019, 17, 3000123. [Google Scholar] [CrossRef]
- Boon, C.; Deng, Y.; Wang, L.H.; He, Y.; Xu, J.L.; Fan, Y.; Pan, S.Q.; Zhang, L.H. A Novel DSF-like Signal from Burkholderia cenocepacia Interferes with Candida albicans Morphological Transition. ISME J. 2008, 2, 27–36. [Google Scholar] [CrossRef]
- Silva, I.N.; Santos, P.M.; Santos, M.R.; Zlosnik, J.E.A.; Speert, D.P.; Buskirk, S.W.; Bruger, E.L.; Waters, C.M.; Cooper, V.S.; Moreira, L.M. Long-Term Evolution of Burkholderia multivorans during a Chronic Cystic Fibrosis Infection Reveals Shifting Forces of Selection. mSystems 2016, 1, e00029–16. [Google Scholar] [CrossRef]
- Velázquez-Sánchez, C.; Vences-Guzmán, M.Á.; Moreno, S.; Tinoco-Valencia, R.; Espín, G.; Guzmán, J.; Sahonero-Canavesi, D.X.; Sohlenkamp, C.; Segura, D. PsrA Positively Regulates the Unsaturated Fatty Acid Synthesis Operon FabAB in Azotobacter vinelandii. Microbiol. Res. 2021, 249, 126775. [Google Scholar] [CrossRef]
- Wang, L.H.; Weng, L.X.; Dong, Y.H.; Zhang, L.H. Specificity and Enzyme Kinetics of the Quorum-Quenching N-Acyl Homoserine Lactone Lactonase (AHL-Lactonase). J. Biol. Chem. 2004, 279, 13645–13651. [Google Scholar] [CrossRef] [PubMed]
- Ohlrogge, J.B.; Jaworski, J.G. Regulation of Fatty Acid Synthesis. Plant Physiol. Plant Mol. Biol. 1997, 48, 109–136. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, M.M.; Andrade, M.D.S.; Bauermeister, A.; Merfa, M.V.; Forim, M.R.; Fernandes, J.B.; Vieira, P.C.; Da Silva, M.F.d.G.a.F.; Lopes, N.P.; Machado, M.A.; et al. A Simple Defined Medium for the Production of True Diketopiperazines in Xylella fastidiosa and Their Identification by Ultra-Fast Liquid Chromatography-Electrospray Ionization Ion Trap Mass Spectrometry. Molecules 2017, 22, 985. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Wu, J.; Tao, F.; Zhang, L.H. Listening to a New Language: DSF-Based Quorum Sensing in Gram-Negative Bacteria. Chem. Rev. 2011, 111, 160–179. [Google Scholar] [CrossRef]
- Ryan, R.P.; An, S.Q.; Allan, J.H.; McCarthy, Y.; Dow, J.M. The DSF Family of Cell–Cell Signals: An Expanding Class of Bacterial Virulence Regulators. PLoS Pathog. 2015, 11, 1004986. [Google Scholar] [CrossRef]
- Li, Z.; Nair, S.K. Quorum Sensing: How Bacteria Can Coordinate Activity and Synchronize Their Response to External Signals? Protein Sci. 2012, 21, 1403–1417. [Google Scholar] [CrossRef]
- Feitosa-Junior, O.R.; Lubbe, A.; Kosina, S.M.; Martins-Junior, J.; Barbosa, D.; Baccari, C.; Zaini, P.A.; Bowen, B.P.; Northen, T.R.; Lindow, S.E.; et al. The Exometabolome of Xylella fastidiosa in Contact with Paraburkholderia phytofirmans Supernatant Reveals Changes in Nicotinamide, Amino Acids, Biotin, and Plant Hormones. Metabolites 2024, 14, 82. [Google Scholar] [CrossRef]
- Loh, J.; Pierson, E.A.; Pierson, L.S.; Stacey, G.; Chatterjee, A. Quorum Sensing in Plant-Associated Bacteria. Curr. Opin. Plant Biol. 2002, 5, 285–290. [Google Scholar] [CrossRef]
- Kindler, O.; Pulkkinen, O.; Cherstvy, A.G.; Metzler, R. Burst Statistics in an Early Biofilm Quorum Sensing Model: The Role of Spatial Colony-Growth Heterogeneity. Sci. Rep. 2019, 9, 12077. [Google Scholar] [CrossRef]
- Pan, J.; Zhou, J.; Tang, X.; Guo, Y.; Zhao, Y.; Liu, S. Bacterial Communication Coordinated Behaviors of Whole Communities to Cope with Environmental Changes. Environ. Sci. Technol. 2023, 57, 4253–4265. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, L.H.; Cámara, M.; He, Y.W. The DSF Family of Quorum Sensing Signals: Diversity, Biosynthesis, and Turnover. Trends Microbiol. 2017, 25, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Zheng, H.; Ren, Y.; Lou, R.; Wu, F.; Yu, W.; Liu, X.; Ma, X. A Crucial Role for Spatial Distribution in Bacterial Quorum Sensing. Sci. Rep. 2016, 6, 34695. [Google Scholar] [CrossRef] [PubMed]
- Connell, J.L.; Kim, J.; Shear, J.B.; Bard, A.J.; Whiteley, M. Real-Time Monitoring of Quorum Sensing in 3D-Printed Bacterial Aggregates Using Scanning Electrochemical Microscopy. Proc. Natl. Acad. Sci. USA. 2014, 111, 18255–18260. [Google Scholar] [CrossRef] [PubMed]
- Ryan, R.P.; Dow, J.M. Communication with a Growing Family: Diffusible Signal Factor (DSF) Signaling in Bacteria. Trends Microbiol. 2011, 19, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Anbumani, S.; da Silva, A.M.; Carvalho, I.G.B.; Fischer, E.R.; de Souza ESilva, M.; von Zuben, A.A.G.; Carvalho, H.F.; de Souza, A.A.; Janissen, R.; Cotta, M.A. Controlled spatial organization of bacterial growth reveals key role of cell filamentation preceding Xylella fastidiosa biofilm formation. NPJ Biofilms Microbiomes 2021, 7, 86. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ma, B.; Dai, Z.; Wang, H.; Dsouza, M.; Liu, X.; He, Y.; Wu, J.; Rodrigues, J.L.M.; Gilbert, J.A.; Brookes, P.C.; et al. Distinct Biogeographic Patterns for Archaea, Bacteria, and Fungi along the Vegetation Gradient at the Continental Scale in Eastern China. mSystems 2017, 2, 00174–16. [Google Scholar] [CrossRef]
- Beaulieu, E.D.; Ionescu, M.; Chatterjee, S.; Yokota, K.; Trauner, D.; Lindow, S. Characterization of a Diffusible Signaling Factor from Xylella fastidiosa. mBio 2013, 4, e00539–12. [Google Scholar] [CrossRef]
- Shi, X.; Bi, J.; Morse, J.G.; Toscano, N.C.; Cooksey, D.A. Differential Expression of Genes of Xylella fastidiosa in Xylem Fluid of Citrus and Grapevine. FEMS Microbiol. Lett. 2010, 304, 82–88. [Google Scholar] [CrossRef]
- Yao, Z.; Wang, A.; Li, Y.; Cai, Z.; Lemaitre, B.; Zhang, H. The Dual Oxidase Gene BdDuox Regulates the Intestinal Bacterial Community Homeostasis of Bactrocera dorsalis. ISME J. 2016, 10, 1037–1050. [Google Scholar] [CrossRef]
- Griffiths, R.I.; Thomson, B.C.; James, P.; Bell, T.; Bailey, M.; Whiteley, A.S. The Bacterial Biogeography of British Soils. Environ. Microbiol. 2011, 13, 1642–1654. [Google Scholar] [CrossRef]
- Langille, M.G.I.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.C.; Burkepile, D.E.; Vega Thurber, R.L.; Knight, R.; et al. Predictive Functional Profiling of Microbial Communities Using 16S RRNA Marker Gene Sequences. Nat. Biotechnol. 2013, 31, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Ma, C.; Zhou, X.; Xiong, C.; Wang, B.; Wang, Y.; Liu, F. Regulatory Effects of Diverse DSF Family Quorum-Sensing Signals in Plant-Associated Bacteria. Mol. Plant-Microbe Interact. 2024, 37, 6–14. [Google Scholar] [CrossRef] [PubMed]
- He, Y.-W.; Wu, J.; Cha, J.-S.; Zhang, L.-H. Rice Bacterial Blight Pathogen Xanthomonas Ooryzae pv. oryzae Produces Multiple DSF-Family Signals in Regulation of Virulence Factor Production. BMC Microbiol. 2010, 10, 187. Available online: https://www.biomedcentral.com/1471-2180/10/187 (accessed on 27 February 2025). [CrossRef] [PubMed]
- Thowthampitak, J.; Shaffer, B.T.; Prathuangwong, S.; Loper, J.E. Role of RpfF in Virulence and Exoenzyme Production of Xanthomonas axonopodis pv. glycines, the Causal Agent of Bacterial Pustule of Soybean. Phytopathology 2008, 98, 1252–1260. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Y.; Li, J.-L.; Wang, N. Diffusible Signal Factor-Mediated Quorum Sensing Plays a Central Role in Coordinating Gene Expression of Xanthomonas citri subsp. citri. Mol. Plant-Microbe Interact. 2012, 25, 165–179. [Google Scholar] [CrossRef]
- Deng, Y.; Wu, J.; Eberl, L.; Zhang, L.H. Structural and Functional Characterization of Diffusible Signal Factor Family Quorum-Sensing Signals Produced by Members of the Burkholderia cepacia Complex. Appl. Environ. Microbiol. 2010, 76, 4675–4683. [Google Scholar] [CrossRef]
- Akimoto-Tomiyama, C. Multiple Endogenous Seed-Born Bacteria Recovered Rice Growth Disruption Caused by Burkholderia glumae. Sci. Rep. 2021, 11, 4177. [Google Scholar] [CrossRef]
- Qian, Y.; Matsumoto, H.; Li, W.; Zhu, G.; Hashidoko, Y.; Hu, Y.; Wang, M. Genome Sequence of Burkholderia plantarii ZJ171, a Tropolone-Producing Bacterial Pathogen Responsible for Rice Seedling Blight. Genome Announc. 2016, 4, 01318–16. [Google Scholar] [CrossRef]
- He, Y.W.; Deng, Y.; Miao, Y.; Chatterjee, S.; Tran, T.M.; Tian, J.; Lindow, S. DSF-Family Quorum Sensing Signal-Mediated Intraspecies, Interspecies, and Inter-Kingdom Communication. Trends Microbiol. 2023, 31, 36–50. [Google Scholar] [CrossRef]
- Rai, R.; Ranjan, M.; Pradhan, B.B.; Chatterjee, S. Atypical Regulation of Virulence-Associated Functions by a Diffusible Signal Factor in Xanthomonas oryzae pv. oryzae. Mol. Plant-Microbe Interact. 2012, 25, 789–801. [Google Scholar] [CrossRef]
- Caserta, R.; Picchi, S.C.; Takita, M.A.; Tomaz, J.P.; Pereira, W.E.L.; Machado, M.A.; Ionescu, M.; Lindow, S.; De Souza, A.A. Expression of Xylella fastidiosa RpfF in Citrus Disrupts Signaling in Xanthomonas citri subsp. citri and Thereby Its Virulence. Mol. Plant-Microbe Interact. 2014, 27, 1241–1252. [Google Scholar] [CrossRef] [PubMed]
- Killiny, N.; Rashed, A.; Almeida, R.P.P. Disrupting the Transmission of a Vector-Borne Plant Pathogen. Appl. Environ. Microbiol. 2012, 78, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Horgan, C.; Baccari, C.; O’Driscoll, M.; Lindow, S.E.; O’Sullivan, T.P. BDSF Analogues Inhibit Quorum Sensing-Regulated Biofilm Production in Xylella fastidiosa. Microorganisms 2024, 12, 2496. [Google Scholar] [CrossRef] [PubMed]
- Huedo, P.; Yero, D.; Martinez-Servat, S.; Ruyra, À.; Roher, N.; Daura, X.; Gibert, I. Decoding the Genetic and Functional Diversity of the DSF Quorum-Sensing System in Stenotrophomonas maltophilia. Front. Microbiol. 2015, 6, 761. [Google Scholar] [CrossRef]
- Yero, D.; Huedo, P.; Conchillo-Solé, O.; Martínez-Servat, S.; Mamat, U.; Coves, X.; Llanas, F.; Roca, I.; Vila, J.; Schaible, U.E.; et al. Genetic Variants of the DSF Quorum Sensing System in Stenotrophomonas maltophilia Influence Virulence and Resistance Phenotypes Among Genotypically Diverse Clinical Isolates. Front. Microbiol. 2020, 11, 1160. [Google Scholar] [CrossRef]
- Huedo, P.; Yero, D.; Martínez-Servat, S.; Estibariz, I.; Planell, R.; Martínez, P.; Ruyra, À.; Roher, N.; Roca, I.; Vila, J.; et al. Two Different Rpf Clusters Distributed among a Population of Stenotrophomonas maltophilia Clinical Strains Display Differential Diffusible Signal Factor Production and Virulence Regulation. J. Bacteriol. 2014, 196, 2431–2442. [Google Scholar] [CrossRef]
- Deng, Y.; Lim, A.; Wang, J.; Zhou, T.; Chen, S.; Lee, J.; Dong, Y.H.; Zhang, L.H. Cis-2-Dodecenoic Acid Quorum Sensing System Modulates N-Acyl Homoserine Lactone Production through RpfR and Cyclic Di-GMP Turnover in Burkholderia cenocepacia. BMC Microbiol. 2013, 13, 148. [Google Scholar] [CrossRef]
- Deng, Y.; Lim, A.; Lee, J.; Chen, S.; An, S.; Dong, Y.H.; Zhang, L.H. Diffusible Signal Factor (DSF) Quorum Sensing Signal and Structurally Related Molecules Enhance the Antimicrobial Efficacy of Antibiotics against Some Bacterial Pathogens. BMC Microbiol. 2014, 14, 51. [Google Scholar] [CrossRef]
- Singh, A.; Gupta, R.; Tandon, S.; Pandey, R. Thyme Oil Reduces Biofilm Formation and Impairs Virulence of Xanthomonas oryzae. Front. Microbiol. 2017, 8, 1074. [Google Scholar] [CrossRef]
- Tao, F.; He, Y.W.; Wu, D.H.; Swarup, S.; Zhang, L.H. The Cyclic Nucleotide Monophosphate Domain of Xanthomonas campestris Global Regulator Clp Defines a New Class of Cyclic Di-GMP Effectors. J. Bacteriol. 2010, 192, 1020–1029. [Google Scholar] [CrossRef]
- Tao, F.; Swarup, S.; Zhang, L.H. Quorum Sensing Modulation of a Putative Glycosyltransferase Gene Cluster Essential for Xanthomonas campestris Biofilm Formation. Environ. Microbiol. 2010, 12, 3159–3170. [Google Scholar] [CrossRef] [PubMed]
- Marques, C.N.H.; Davies, D.G.; Sauer, K. Control of Biofilms with the Fatty Acid Signaling Molecule Cis-2-Decenoic Acid. Pharmaceuticals 2015, 8, 816–835. [Google Scholar] [CrossRef] [PubMed]
- Rahmani-Badi, A.; Sepehr, S.; Fallahi, H.; Heidari-Keshel, S. Exposure of E. coli to DNA-Methylating Agents Impairs Biofilm Formation and Invasion of Eukaryotic Cells via Down Regulation of the N-Acetylneuraminate Lyase NanA. Front. Microbiol. 2016, 6, 383. [Google Scholar] [CrossRef]
- Qian, G.; Zhou, Y.; Zhao, Y.; Song, Z.; Wang, S.; Fan, J.; Hu, B.; Venturi, V.; Liu, F. Proteomic Analysis Reveals Novel Extracellular Virulence-Associated Proteins and Functions Regulated by the Diffusible Signal Factor (DSF) in Xanthomonas oryzae pv. oryzicola. J. Proteome Res. 2013, 12, 3327–3341. [Google Scholar] [CrossRef]
- Zhou, L.; Yu, Y.; Chen, X.; Diab, A.A.; Ruan, L.; He, J.; Wang, H.; He, Y.W. The Multiple DSF-Family QS Signals Are Synthesized from Carbohydrate and Branched-Chain Amino Acids via the FAS Elongation Cycle. Sci. Rep. 2015, 5, 13294. [Google Scholar] [CrossRef]
- Papenfort, K.; Bassler, B.L. Quorum sensing signal-response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 2016, 11, 576–588. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chatterjee, S.; Killiny, N.; Almeida, R.P.P.; Lindow, S.E. Role of Cyclic Di-GMP in Xylella fastidiosa Biofilm Formation, Plant Virulence, and Insect Transmission. Mol. Plant-Microbe Interact. 2010, 23, 1356–1363. [Google Scholar] [CrossRef]
- Dow, J.M.; Fouhy, Y.; Lucey, J.F.; Ryan, R.P. The HD-GYP Domain, Cyclic Di-GMP Signaling, and Bacterial Virulence to Plants. Mol. Plant-Microbe Interact. 2006, 19, 1378–1384. [Google Scholar] [CrossRef]
- He, Y.W.; Zhang, L.H. Quorum Sensing and Virulence Regulation in Xanthomonas campestris. FEMS Microbiol. Rev. 2008, 32, 842–857. [Google Scholar] [CrossRef]
- Ionescu, M.; Baccari, C.; Da Silva, A.M.; Garcia, A.; Yokota, K.; Lindow, S.E. Diffusible Signal Factor (DSF) Synthase RpfF of Xylella fastidiosa Is a Multifunction Protein Also Required for Response to DSF. J. Bacteriol. 2013, 195, 5273–5284. [Google Scholar] [CrossRef]
- Feitosa-Junior, O.R.; Stefanello, E.; Zaini, A.P.; Nascimento, R.; Pierry, P.M.; Dandekar, A.M.; Lindow, S.E.; Da Silva, A.M. Proteomic and Metabolomic Analyses of Xylella fastidiosa OMV-Enriched Fractions Reveal 2 Association with Virulence Factors and Signaling Molecules of the DSF Family. Phytopathology 2019, 109, 1344–1353. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.H.; He, Y.; Gao, Y.; Wu, J.E.; Dong, Y.H.; He, C.; Wang, S.X.; Weng, L.X.; Xu, J.L.; Tay, L.; et al. A Bacterial Cell-Cell Communication Signal with Cross-Kingdom Structural Analogues. Mol. Microbiol. 2004, 51, 903–912. [Google Scholar] [CrossRef]
- Baltenneck, J.; Reverchon, S.; Hommais, F. Quorum Sensing Regulation in Phytopathogenic Bacteria. Microorganisms 2021, 9, 239. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Wistrom, C.; Lindow, S.E. A Cell-Cell Signaling Sensor Is Required for Virulence and Insect Transmission of Xylella fastidiosa. Proc. Natl. Acad. Sci. USA 2008, 105, 2670–2675. [Google Scholar] [CrossRef]
- He, Y.W.; Wang, C.; Zhou, L.; Song, H.; Dow, J.M.; Zhang, L.H. Dual Signaling Functions of the Hybrid Sensor Kinase RpfC of Xanthomonas campestris Involve Either Phosphorelay or Receiver Domain-Protein Interaction. J. Biol. Chem. 2006, 281, 33414–33421. [Google Scholar] [CrossRef]
- Killiny, N.; Almeida, R.P.P. Xylella fastidiosa Afimbrial Adhesins Mediate Cell Transmission to Plants by Leafhopper Vectors. Appl. Environ. Microbiol. 2009, 75, 521–528. [Google Scholar] [CrossRef]
- Newman, K.L.; Almeida, R.P.P.; Purcell, A.H.; Lindow, S.E. Cell-Cell Signaling Controls Xylella fastidiosa Interactions with Both Insects and Plants. Proc. Natl. Acad. Sci. USA 2003, 101, 1737–1742. [Google Scholar] [CrossRef]
- Simionato, A.V.C.; Da Silva, D.S.; Lambais, M.R.; Carrilho, E. Characterization of a Putative Xylella fastidiosa Diffusible Signal Factor by HRGC-EI-MS. J. Mass Spectrom. 2007, 42, 1375–1381. [Google Scholar] [CrossRef]
- Slater, H.; Alvarez-Morales, A.; Barber, C.E.; Daniels, M.J.; Maxwell Dow, J. A Two-Component System Involving an HD-GYP Domain Protein Links Cell-Cell Signalling to Pathogenicity Gene Expression in Xanthomonas campestris. Mol. Microbiol. 2000, 38, 986–1003. [Google Scholar] [CrossRef]
- Jha, G.; Rajeshwari, R.; Sonti, R. V Functional Interplay Between Two Xanthomonas oryzae pv. oryzae Secretion Systems in Modulating Virulence on Rice. Abramovitch Martin 2007, 20, 31–40. [Google Scholar] [CrossRef]
- Chatterjee, S.; Almeida, R.P.P.; Lindow, S. Living in Two Worlds: The Plant and Insect Lifestyles of Xylella fastidiosa. Annu. Rev. Phytopathol. 2008, 46, 243–271. [Google Scholar] [CrossRef] [PubMed]
- Dourado, M.N.; Pierry, P.M.; Feitosa-Junior, O.R.; Uceda-Campos, G.; Barbosa, D.; Zaini, P.A.; Dandekar, A.M.; da Silva, A.M.; Araújo, W.L. Transcriptome and Secretome Analyses of Endophyte Methylobacterium Mesophilicum and Pathogen Xylella fastidiosa Interacting Show Nutrient Competition. Microorganisms 2023, 11, 2755. [Google Scholar] [CrossRef] [PubMed]
- Barel, V.; Chalupowicz, L.; Barash, I.; Sharabani, G.; Reuven, M.; Dror, O.; Burdman, S.; Manulis-Sasson, S. Virulence and Inplanta Movement of Xanthomonas hortorum pv. pelargonii Are Affected by the Diffusible Signal Factor (DSF)-Dependent Quorum Sensing System. Mol. Plant Pathol. 2015, 16, 710–723. [Google Scholar] [CrossRef] [PubMed]
- Scala, V.; Pucci, N.; Salustri, M.; Modesti, V.; L’Aurora, A.; Scortichini, M.; Zaccaria, M.; Momeni, B.; Reverberi, M.; Loreti, S. Xylella fastidiosa subsp. pauca and Olive Produced Lipids Moderate the Switch Adhesive versus Non-Adhesive State and Viceversa. PLoS ONE 2020, 15, 0233013. [Google Scholar] [CrossRef]
- Santos, C.A.; Toledo, M.A.S.; Trivella, D.B.B.; Beloti, L.L.; Schneider, D.R.S.; Saraiva, A.M.; Crucello, A.; Azzoni, A.R.; Souza, A.A.; Aparicio, R.; et al. Functional and Structural Studies of the Disulfide Isomerase DsbC from the Plant Pathogen Xylella fastidiosa Reveals a Redox-Dependent Oligomeric Modulation in Vitro. FEBS J. 2012, 279, 3828–3843. [Google Scholar] [CrossRef]
- Labroussaa, F.; Ionescu, M.; Zeilinger, A.R.; Lindow, S.E.; Almeida, R.P.P. A Chitinase Is Required for Xylella fastidiosa Colonization of Its Insect and Plant Hosts. Microbiology 2017, 163, 502–509. [Google Scholar] [CrossRef]
- Wang, N.; Li, J.L.; Lindow, S.E. RpfF-Dependent Regulon of Xylella fastidiosa. Phytopathology 2012, 102, 1045–1053. [Google Scholar] [CrossRef]
- Bragard, C.; Dehnen-Schmutz, K.; Di Serio, F.; Gonthier, P.; Jacques, M.A.; Jaques Miret, J.A.; Justesen, A.F.; MacLeod, A.; Magnusson, C.S.; Milonas, P.; et al. Effectiveness of in Planta Control Measures for Xylella fastidiosa. EFSA J. 2019, 17, 5666. [Google Scholar] [CrossRef]
- Murugayah, S.A.; Gerth, M.L. Engineering Quorum Quenching Enzymes: Progress and Perspectives. Biochem. Soc. Trans. 2019, 47, 793–800. [Google Scholar] [CrossRef]
- Lindow, S.; Newman, K.; Chatterjee, S.; Baccari, C.; Lavarone, A.T.; Ionescu, M. Production of Xylella fastidiosa Diffusible Signal Factor in Transgenic Grape Causes Pathogen Confusion and Reduction in Severity of Pierce’s Disease. Mol. Plant-Microbe Interact. 2014, 27, 244–254. [Google Scholar] [CrossRef]
- Grandclément, C.; Tannières, M.; Moréra, S.; Dessaux, Y.; Faure, D. Quorum Quenching: Role in Nature and Applied Developments. FEMS Microbiol. Rev. 2015, 40, 86–116. [Google Scholar] [CrossRef] [PubMed]
- Bzdrenga, J.; Daudé, D.; Rémy, B.; Jacquet, P.; Plener, L.; Elias, M.; Chabrière, E. Biotechnological Applications of Quorum Quenching Enzymes. Chem. Biol. Interact. 2017, 267, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Uroz, S.; Oger, P.M.; Chapelle, E.; Adeline, M.T.; Faure, D.; Dessaux, Y. A Rhodococcus QsdA-Encoded Enzyme Defines a Novel Class of Large-Spectrum Quorum-Quenching Lactonases. Appl. Environ. Microbiol. 2008, 74, 1357–1366. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.H.; Xu, J.L.; Hu, J.; Wang, L.H.; Leong Ong, S.; Renton Leadbetter, J.; Zhang, L.H. Acyl-Homoserine Lactone Acylase from Ralstonia Strain XJ12B Represents a Novel and Potent Class of Quorum-Quenching Enzymes. Mol. Microbiol. 2003, 47, 849–860. [Google Scholar] [CrossRef]
- Bijtenhoorn, P.; Mayerhofer, H.; Müller-Dieckmann, J.; Utpatel, C.; Schipper, C.; Hornung, C.; Szesny, M.; Grond, S.; Thürmer, A.; Brzuszkiewicz, E.; et al. A Novel Metagenomic Short-Chain Dehydrogenase/Reductase Attenuates Pseudomonas aeruginosa Biofilm Formation and Virulence on Caenorhabditis elegans. PLoS ONE 2011, 6, e26278. [Google Scholar] [CrossRef]
- Bergonzi, C.; Schwab, M.; Naik, T.; Daudé, D.; Chabrière, E.; Elias, M. Structural and Biochemical Characterization of AaL, a Quorum Quenching Lactonase with Unusual Kinetic Properties. Sci. Rep. 2018, 8, 11262. [Google Scholar] [CrossRef]
- Bergonzi, C.; Schwab, M.; Naik, T.; Elias, M. The Structural Determinants Accounting for the Broad Substrate Specificity of the Quorum Quenching Lactonase GcL. ChemBioChem 2019, 20, 1848–1855. [Google Scholar] [CrossRef]
- Hiblot, J.; Gotthard, G.; Chabriere, E.; Elias, M. Characterisation of the Organophosphate Hydrolase Catalytic Activity of SsoPox. Sci. Rep. 2012, 2, 779. [Google Scholar] [CrossRef]
- Tang, K.; Su, Y.; Brackman, G.; Cui, F.; Zhang, Y.; Shi, X.; Coenye, T.; Zhang, X.H. MomL, a Novel Marine-Derived N-Acyl Homoserine Lactonase from Muricauda olearia. Appl. Environ. Microbiol. 2015, 81, 774–782. [Google Scholar] [CrossRef]
- Sikdar, R.; Elias, M. Quorum Quenching Enzymes and Their Effects on Virulence, Biofilm, and Microbiomes: A Review of Recent Advances. Expert Rev. Anti-Infect. Ther. 2020, 18, 1221–1233. [Google Scholar] [CrossRef]
- Gao, A.; Mei, G.Y.; Liu, S.; Wang, P.; Tang, Q.; Liu, Y.P.; Wen, H.; An, X.M.; Zhang, L.Q.; Yan, X.X.; et al. High-Resolution Structures of AidH Complexes Provide Insights into a Novel Catalytic Mechanism for N-Acyl Homoserine Lactonase. Acta Crystallogr. Sect. D Biol. Crystallogr. 2013, 69, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Harel, M.; Aharoni, A.; Gaidukov, L.; Brumshtein, B.; Khersonsky, O.; Meged, R.; Dvir, H.; Ravelli, R.B.G.; McCarthy, A.; Toker, L.; et al. Structure and Evolution of the Serum Paraoxonase Family of Detoxifying and Anti-Atherosclerotic Enzymes. Nat. Struct. Mol. Biol. 2004, 11, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Bar-Rogovsky, H.; Hugenmatter, A.; Tawfik, D.S. The Evolutionary Origins of Detoxifying Enzymes: The Mammalian Serum Paraoxonases (PONs) Relate to Bacterial Homoserine Lactonases. J. Biol. Chem. 2013, 288, 23914–23927. [Google Scholar] [CrossRef]
- Bokhove, M.; Jimenez, P.N.; Quax, W.J.; Dijkstra, B.W. The Quorum-Quenching N-Acyl Homoserine Lactone Acylase PvdQ Is an Ntn-Hydrolase with an Unusual Substrate-Binding Pocket. Proc. Natl. Acad. Sci. USA 2010, 107, 686–691. [Google Scholar] [CrossRef]
- Wahjudi, M.; Papaioannou, E.; Hendrawati, O.; van Assen, A.H.G.; van Merkerk, R.; Cool, R.H.; Poelarends, G.J.; Quax, W.J. PA0305 of Pseudomonas aeruginosa Is a Quorum Quenching Acylhomoserine Lactone Acylase Belonging to the Ntn Hydrolase Superfamily. Microbiology 2011, 157, 2042–2055. [Google Scholar] [CrossRef]
- Leadbetter, J.R.; Greenberg, E.P. Metabolism of Acyl-Homoserine Lactone Quorum-Sensing Signals by Variovorax paradoxus. J. Bacteriol. 2000, 182, 6921–6926. [Google Scholar] [CrossRef]
- Defoirdt, T.; Boon, N.; Bossier, P. Can Bacteria Evolve Resistance to Quorum Sensing Disruption? PLoS Pathog. 2010, 6, 1000989. [Google Scholar] [CrossRef]
- García-Contreras, R.; Maeda, T.; Wood, T.K. Resistance to Quorum-Quenching Compounds. Appl. Environ. Microbiol. 2013, 79, 6840–6846. [Google Scholar] [CrossRef]
- Guendouze, A.; Plener, L.; Bzdrenga, J.; Jacquet, P.; Rémy, B.; Elias, M.; Lavigne, J.P.; Daudé, D.; Chabrière, E. Effect of Quorum Quenching Lactonase in Clinical Isolates of Pseudomonas aeruginosa and Comparison with Quorum Sensing Inhibitors. Front. Microbiol. 2017, 8, 227. [Google Scholar] [CrossRef]
- López-Jácome, L.E.; Garza-Ramos, G.; Hernández-Durán, M.; Franco-Cendejas, R.; Loarca, D.; Romero-Martínez, D.; Nguyen, P.T.D.; Maeda, T.; González-Pedrajo, B.; Díaz-Guerrero, M.; et al. AiiM Lactonase Strongly Reduces Quorum Sensing Controlled Virulence Factors in Clinical Strains of Pseudomonas aeruginosa Isolated from Burned Patients. Front. Microbiol. 2019, 10, 2657. [Google Scholar] [CrossRef]
- Hentzer, M.; Givskov, M. Pharmacological Inhibition of Quorum Sensing for the Treatment of Chronic Bacterial Infections. J. Clin. Investig. 2003, 112, 1300–1307. [Google Scholar] [CrossRef]
- Rasmussen, T.B.; Givskov, M. Quorum-Sensing Inhibitors as Anti-Pathogenic Drugs. Int. J. Med. Microbiol. 2006, 296, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Vattem, D.A.; Mihalik, K.; Crixell, S.H.; McLean, R.J.C. Dietary Phytochemicals as Quorum Sensing Inhibitors. Fitoterapia 2007, 78, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, T.B.; Bjarnsholt, T.; Skindersoe, M.E.; Hentzer, M.; Kristoffersen, P.; Köte, M.; Nielsen, J.; Eberl, L.; Givskov, M. Screening for Quorum-Sensing Inhibitors (QSI) by Use of a Novel Genetic System, the QSI Selector. J. Bacteriol. 2005, 187, 1799–1814. [Google Scholar] [CrossRef]
- Teplitski, M.; Mathesius, U.; Rumbaugh, K.P. Perception and Degradation of N-Acyl Homoserine Lactone Quorum Sensing Signals by Mammalian and Plant Cells. Chem. Rev. 2011, 111, 100–116. [Google Scholar] [CrossRef] [PubMed]
- Al-Hussaini, R.; Mahasneh, A.M. Microbial Growth and Quorum Sensing Antagonist Activities of Herbal Plants Extracts. Molecules 2009, 14, 3425–3435. [Google Scholar] [CrossRef]
- Kalia, V.C. Quorum Sensing Inhibitors: An Overview. Biotechnol. Adv. 2013, 31, 224–245. [Google Scholar] [CrossRef]
- Hentzer, M.; Wu, H.; Andersen, J.B.; Riedel, K.; Rasmussen, T.B.; Bagge, N.; Kumar, N.; Schembri, M.A.; Song, Z.; Kristoffersen, P.; et al. Attenuation of Pseudomonas aeruginosa Virulence by Quorum Sensing Inhibitors. EMBO J. 2003, 22, 3803–3815. [Google Scholar] [CrossRef]
- Romero, M.; Acuña, L.; Otero, A. Patents on Quorum Quenching: Interfering with Bacterial Communication as a Strategy to Fight Infections. Recent Pat. Biotechnol. 2012, 6, 2–12. [Google Scholar] [CrossRef]
- Uroz, S.; Dessaux, Y.; Oger, P. Quorum Sensing and Quorum Quenching: The Yin and Yang of Bacterial Communication. ChemBioChem 2009, 10, 205–216. [Google Scholar] [CrossRef]
- Turan, N.B.; Engin, G.Ö. Quorum Quenching. In Comprehensive Analytical Chemistry; Elsevier B.V.: Amsterdam, The Netherlands, 2018; Volume 81, pp. 117–149. ISBN 9780444640642. [Google Scholar]
- Diggle, S.P.; Griffin, A.S.; Campbell, G.S.; West, S.A. Cooperation and Conflict in Quorum-Sensing Bacterial Populations. Nature 2007, 450, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Newman, K.L.; Chatterjee, S.; Ho, K.A.; Lindow, S.E. Virulence of Plant Pathogenic Bacteria Attenuated by Degradation of Fatty Acid Cell-to-Cell Signaling Factors. Mol. Plant-Microbe Interact. 2008, 21, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wang, X.Y.; Sun, S.; Yang, L.C.; Jiang, B.L.; He, Y.W. Identification and Characterization of Naturally Occurring DSF-Family Quorum Sensing Signal Turnover System in the Phytopathogen Xanthomonas. Environ. Microbiol. 2015, 17, 4646–4658. [Google Scholar] [CrossRef]
- Bi, H.; Yu, Y.; Dong, H.; Wang, H.; Cronan, J.E. Xanthomonas campestris RpfB Is a Fatty Acyl-CoA Ligase Required to Counteract the Thioesterase Activity of the RpfF Diffusible Signal Factor (DSF) Synthase. Mol. Microbiol. 2014, 93, 262–275. [Google Scholar] [CrossRef]
- Lindow, S.E.; Ionescu, M.; Baccari, C.; Souza, A. Control of Pierce’s Disease by Methods Involving Pathogen Confusion. In Proceedings of the Pierce’s Disease Research Symposium, Sacramento, CA, USA, 9–11 December 2009; California Department of Food and Agriculture: Sacramento, CA, USA, 2009. [Google Scholar]
- Chen, F.; Gao, Y.; Chen, X.; Yu, Z.; Li, X. Quorum Quenching Enzymes and Their Application in Degrading Signal Molecules to Block Quorum Sensing-Dependent Infection. Int. J. Mol. Sci. 2013, 14, 17477–17500. [Google Scholar] [CrossRef]
- Caicedo, J.C.; Villamizar, S. Xanthomonas citri ssp. citri pathogenicity, a review. In Citrus—Research, Development and Biotechnology; Khan, M.S., Khan, I.A., Eds.; IntechOpen: Rijeka, Croatia, 2021. [Google Scholar] [CrossRef]
- Tay, S.B.; Chow, J.Y.; Go, M.K.; Yew, W.S. Anti-Virulent Disruption of Pathogenic Biofilms Using Engineered Quorumquenching Lactonases. J. Vis. Exp. 2016, 107, 53243. [Google Scholar] [CrossRef]
- Krkingrubkr, V.; Kuttlkr, C.; Ebkrl, H.J.; Ghasemi, M. A Mathematical Model of Quorum Quenching in Biofilms and Its Potential Role As an Adjuvant for Antibiotic Treatment. Math. Appl. Sci. Eng. 2022, 3, 119–149. [Google Scholar] [CrossRef]
- Jiang, W.; Xia, S.; Liang, J.; Zhang, Z.; Hermanowicz, S.W. Effect of Quorum Quenching on the Reactor Performance, Biofouling and Biomass Characteristics in Membrane Bioreactors. Water Res. 2013, 47, 187–196. [Google Scholar] [CrossRef]
- Fong, J.; Zhang, C.; Yang, R.; Boo, Z.Z.; Tan, S.K.; Nielsen, T.E.; Givskov, M.; Liu, X.W.; Bin, W.; Su, H.; et al. Combination Therapy Strategy of Quorum Quenching Enzyme and Quorum Sensing Inhibitor in Suppressing Multiple Quorum Sensing Pathways of P. aeruginosa. Sci. Rep. 2018, 8, 1155. [Google Scholar] [CrossRef]
- Moll, L.; Giralt, N.; Planas, M.; Feliu, L.; Montesinos, E.; Bonaterra, A.; Badosa, E. Prunus dulcis Response to Novel Defense Elicitor Peptides and Control of Xylella fastidiosa Infections. Plant Cell Rep. 2024, 43, 190. [Google Scholar] [CrossRef] [PubMed]
- Scala, V.; Pucci, N.; Salustri, M.; Modesti, V.; L’Aurora, A.; Scortichini, M.; Zaccaria, M.; Momeni, B.; Reverberi, M.; Loreti, S. Bacterial and Plant Produced Lipids Can Exacerbate the Olive Quick Decline Syndrome Caused by Xylella. BioRxiv 2019, 867523. [Google Scholar] [CrossRef]
- Carvalho, I.G.B.; Merfa, M.V.; Teixeira-Silva, N.S.; Martins, P.M.M.; Takita, M.A.; de Souza, A.A. Overexpression of MqsR in Xylella fastidiosa Leads to a Priming Effect of Cells to Copper Stress Tolerance. Front. Microbiol. 2021, 12, 712564. [Google Scholar] [CrossRef] [PubMed]
- Mastin, A.J.; van den Bosch, F.; Bourhis, Y.; Parnell, S. Out of Sight: Surveillance Strategies for Emerging Vectored Plant Pathogens. BioRxiv 2022. [Google Scholar] [CrossRef]
- Chartois, M.; Mesmin, X.; Quiquerez, I.; Borgomano, S.; Farigoule, P.; Pierre, É.; Thuillier, J.M.; Streito, J.C.; Casabianca, F.; Hugot, L.; et al. Environmental Factors Driving the Abundance of Philaenus Spumarius in Mesomediterranean Habitats of Corsica (France). Sci. Rep. 2023, 13, 1901. [Google Scholar] [CrossRef]
- Gong, Z.; Cheng, M.; Botella, J.R. Non-GM Genome Editing Approaches in Crops. Front. Genome Ed. 2021, 3, 817279. [Google Scholar] [CrossRef]
- Zhang, S.; Shen, J.; Li, D.; Cheng, Y. Strategies in the Delivery of Cas9 Ribonucleoprotein for CRISPR/Cas9 Genome Editing. Theranostics 2020, 11, 614–648. [Google Scholar] [CrossRef]
- Zhao, X.; Yu, Z.; Ding, T. Quorum-Sensing Regulation of Antimicrobial Resistance in Bacteria. Microorganisms 2020, 8, 425. [Google Scholar] [CrossRef]
- Lade, H.; Paul, D.; Kweon, J.H. Quorum Quenching Mediated Approaches for Control of Membrane Biofouling. Int. J. Biol. Sci. 2014, 10, 547–562. [Google Scholar] [CrossRef]
- Fierro, A.; Liccardo, A.; Porcelli, F. A Lattice Model to Manage the Vector and the Infection of the Xylella fastidiosa on Olive Trees. Sci. Rep. 2019, 9, 8723. [Google Scholar] [CrossRef]
Bacteria | Main Host | DSFs | Ref. |
---|---|---|---|
Xanthomonas campestris pv. campestris | Crucifers | Cis-11-methyldodecenoic acid; Cis-2-dodecenoic acid; Cis, cis-11-methyldodeca-2,5-dienoic acid; Cis-10-methyl-2-dodecenoic acid; Cis-9-methyl-2-dodecenoic acid; Cis-2-undecenoic acid | [31] |
Xanthomonas oryzae pv. oryzae | Rice | Cis-11-methyl-dodecenoic acid; Cis-2 dodecenoic acid; Cis, cis-11-methyldodeca-2,5-dienoic acid | [43] |
Xanthomonas axonopodis pv. glycines | Soybean | Cis-11-methyldodecenoic acid | [44] |
Xanthomonas citri subsp. citri | Citrus | Cis-2-dodecenoic acid | [45] |
Burkholderia cepacia | Onion | Cis-2-dodecenoic acid | [46] |
Burkholderia glumae | Rice | Cis-2-dodecenoic acid | [47] |
Burkholderia plantarii | Rice | Cis-2-dodecenoic acid | [48] |
Xylella fastidiosa | Grapevine, citrus, almond, olive etc. | 2-tetradecenoic acid 2-cishexadecanoic acid | [31] |
QQ Advantages | QQ Disadvantages |
---|---|
Replaces the use of antibiotics [91,92]; | It affects the bacteria that have a positive effect on the plant [91,92]; |
The light selective pressure applied serves to inhibit bacterial virulence without killing microorganisms [92,118,119,120]; | The type of inhibitor and the type of strategy used affect resistance to QQ [121]; |
Bacteria do not develop resistance to QQ strategies except for “social cheaters” [121]; | Bacteria “social cheaters” negatively interfere with QQ strategies because they interrupt the formation of QS signals [121]; |
Enzymes less inclined to resistance [92,107,108,120,122]. | High production of QS autoinducers causes enzyme resistance [92,108,120,122]. |
Aspect | Quorum Quenching (QQ) Strategies | Transgenic Plant Strategies |
---|---|---|
Objective | Interfere with bacterial communication (QS) and reduce the virulence of Xf. | Genetically modify plants to produce DSF and reduce the virulence of Xf. |
Mechanism | Enzymes (lactonases, acylases) are used to degrade QS signals and disrupt bacterial virulence. | Genetically engineered plants to produce high levels of DSF, “deceiving” Xf and reducing its virulence. |
Key Challenges | - Enzyme stability: QQ enzymes degrade quickly in the field due to environmental factors (temperature, pH, UV). - Specificity: Enzymes must be specific to Xf to avoid harming beneficial bacteria. - Delivery systems: Effective distribution methods (foliar sprays, soil applications, microbial consortia) need to be developed. | - Long-term ecological impact: Extended DSF production may affect plant physiology or beneficial microbes. - Resistance development: Xf could develop resistance to DSF production. - Public acceptance: GM crops are highly regulated and face opposition, especially in Europe. |
Proposed Solutions | - Develop more stable QQ enzymes through research and encapsulation techniques. - Create highly specific enzymes for Xf. - Identify the most effective delivery systems for QQ enzymes in agricultural settings. | - Systematic studies on the ecological impacts of DSF production in transgenic plants. - Monitor long-term Xf resistance. - Research alternative methods and non-GM approaches (e.g., genome editing). |
Alternative Techniques | - Genome editing (e.g., CRISPR/Cas9) can be used to induce DSF overproduction in plants without introducing foreign DNA, reducing public opposition. | - Genome editing techniques like preassembled CRISPR/Cas9 ribonucleoproteins can induce specific genetic changes in plants without creating GMOs. |
Future Research Directions | - Understand how DSFs function in plant microbial communities to improve natural QQ systems. - Identify new QS inhibitors to expand Xf management tools. - Field-scale validation of DSF-based strategies. | - Validate the efficacy of transgenic plants in real-world and field environments. - Combine DSF-based strategies with other disease control practices (vector management, resistant crop varieties, sustainable agronomy). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Portaccio, L.; Vergine, M.; De Pascali, M.; De Bellis, L.; Luvisi, A. Diffusible Signal Factors and Xylella fastidiosa: A Crucial Mechanism Yet to Be Revealed. Biology 2025, 14, 303. https://doi.org/10.3390/biology14030303
Portaccio L, Vergine M, De Pascali M, De Bellis L, Luvisi A. Diffusible Signal Factors and Xylella fastidiosa: A Crucial Mechanism Yet to Be Revealed. Biology. 2025; 14(3):303. https://doi.org/10.3390/biology14030303
Chicago/Turabian StylePortaccio, Letizia, Marzia Vergine, Mariarosaria De Pascali, Luigi De Bellis, and Andrea Luvisi. 2025. "Diffusible Signal Factors and Xylella fastidiosa: A Crucial Mechanism Yet to Be Revealed" Biology 14, no. 3: 303. https://doi.org/10.3390/biology14030303
APA StylePortaccio, L., Vergine, M., De Pascali, M., De Bellis, L., & Luvisi, A. (2025). Diffusible Signal Factors and Xylella fastidiosa: A Crucial Mechanism Yet to Be Revealed. Biology, 14(3), 303. https://doi.org/10.3390/biology14030303