Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,451)

Search Parameters:
Keywords = vascular cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3422 KB  
Article
Therapeutic Exosomes Carrying VEGFA siRNA Inhibit Pathological Corneal Angiogenesis via PI3K–Akt–Caspase-3 Signaling
by Woojune Hur, Basanta Bhujel, Seorin Lee, Seheon Oh, Ho Seok Chung, Hun Lee and Jae Yong Kim
Biomedicines 2026, 14(1), 246; https://doi.org/10.3390/biomedicines14010246 - 21 Jan 2026
Abstract
Background/Objectives: Neovascularization, defined as the sprouting of new blood vessels from pre-existing vasculature, is a critical pathological feature in ocular diseases such as pathological myopia and represents a leading cause of corneal vision loss. Vascular endothelial growth factor A (VEGFA) plays a pivotal [...] Read more.
Background/Objectives: Neovascularization, defined as the sprouting of new blood vessels from pre-existing vasculature, is a critical pathological feature in ocular diseases such as pathological myopia and represents a leading cause of corneal vision loss. Vascular endothelial growth factor A (VEGFA) plays a pivotal role in endothelial cell proliferation, migration, survival by anti-apoptotic signaling, and vascular permeability. Dysregulation of VEGFA is closely linked to pathological neovascularization. Exosomes, nanosized phospholipid bilayer vesicles ranging from 30 to 150 nm, have emerged as promising gene delivery vehicles due to their intrinsic low immunogenicity, superior cellular uptake, and enhanced in vivo stability. This study aimed to investigate whether highly purified mesenchymal stem cell (MSC)-derived exosomes loaded with VEGFA siRNA labeled with FAM can effectively suppress pathological corneal neovascularization (CNV) via targeeted cellular transduction and VEGFA inhibition. Furthermore, we examined whether the therapeutic effect involves the modulation of the PI3K–Akt–Caspase-3 signaling axis. Methods: Exosomes purified by chromatography were characterized by electronmicroscopy, standard marker immunoblotting, and nanoparticle tracking analysis. In vitro, we assessed exosome uptake and cytoplasmic release, suppression of VEGFA mRNA/protein, cell viability, and apoptosis. In a mouse CNV model, we evaluated tissue reach and stromal retention after repeated intrastromal injections; anterior segment angiogenic indices; CD31/VEGFA immunofluorescence/immunoblotting; phosphorylated PI3K and Akt; cleaved caspase-3; histology (H&E); and systemic safety (liver, kidney, and spleen). Results: Exosomes were of high quality and showed peak efficacy at 48 h, with decreased VEGFA mRNA/protein, reduced viability, and increased apoptosis in vitro. In vivo, efficient delivery and stromal retention were observed, with accelerated inhibition of neovascularization after Day 14 and maximal effect on Days 17–19. Treatment reduced CD31 and VEGFA, decreased p-PI3K and p-Akt, and increased cleaved caspase-3. Histologically, concurrent reductions in neovascularization, inflammatory cell infiltration, and inflammatory epithelial thickening were observed, alongside a favorable systemic safety profile. Conclusions:VEGFA siRNA-loaded exosomes effectively reduce pathological CNV via a causal sequence of intracellular uptake, cytoplasmic release, targeted inhibition, and phenotypic suppression. Supported by consistent PI3K–Akt inhibition and caspase-3–mediated apoptosis induction, these exosomes represent a promising local gene therapy that can complement existing antibody-based treatments. Full article
(This article belongs to the Special Issue Stem Cell Therapy: Traps and Tricks)
Show Figures

Figure 1

45 pages, 4315 KB  
Review
A Comprehensive Review of Epigenetic Regulation of Vascular Smooth Muscle Cells During Development and Disease
by Lautaro Natali, Benjamín de la Cruz-Thea, Andrea Godino, Cecilia Conde, Victor I. Peinado and Melina M. Musri
Biomolecules 2026, 16(1), 173; https://doi.org/10.3390/biom16010173 - 21 Jan 2026
Abstract
Vascular smooth muscle cells (VSMCs) in the tunica media are essential for maintaining the structure and function of the arterial wall. These cells regulate vascular tone and contribute to vasculogenesis and angiogenesis, particularly during development. Proper control of VSMC differentiation ensures the correct [...] Read more.
Vascular smooth muscle cells (VSMCs) in the tunica media are essential for maintaining the structure and function of the arterial wall. These cells regulate vascular tone and contribute to vasculogenesis and angiogenesis, particularly during development. Proper control of VSMC differentiation ensures the correct size and patterning of vessels. Dysregulation of VSMC behaviour in adulthood, however, is linked to serious cardiovascular diseases, including aortic aneurysm, coronary artery disease, atherosclerosis and pulmonary hypertension. VSMCs are characterised by their phenotypic plasticity, which is the capacity to transition from a contractile to a synthetic, dedifferentiated state in response to environmental cues. This phenotypic switch plays a central role in vascular remodelling, a process that drives the progression of many vascular pathologies. Epigenetic mechanisms, which are defined as heritable but reversible changes in gene expression that do not involve alterations to the DNA sequence, have emerged as key regulators of VSMC identity and behaviour. These mechanisms include DNA methylation, histone modifications, chromatin remodelling, non-coding RNA and RNA modifications. Understanding how these epigenetic processes influence VSMC plasticity is crucial to uncovering the molecular basis of vascular development and disease. This review explores the current understanding of VSMC biology, focusing on epigenetic regulation in health and pathology. Full article
Show Figures

Figure 1

15 pages, 3127 KB  
Article
Histopathological and Immunohistochemical Findings in Postmortem Lungs from Mexican Patients with Severe COVID-19
by Laura Guadalupe Chávez Gómez, Diana Gabriela Ríos Valencia, Tania Lucía Madrigal-Valencia, Lilian Hernández Mendoza, Armando Pérez-Torres and Rocio Tirado Mendoza
Int. J. Mol. Sci. 2026, 27(2), 1049; https://doi.org/10.3390/ijms27021049 - 21 Jan 2026
Abstract
During the COVID-19 pandemic, SARS-CoV-2 quickly spread all over the world in a pattern of waves. In Mexico, the first wave was from March 2020 to September 2020, and during this time autopsies were forbidden. After that, the postmortem lung samples allowed us [...] Read more.
During the COVID-19 pandemic, SARS-CoV-2 quickly spread all over the world in a pattern of waves. In Mexico, the first wave was from March 2020 to September 2020, and during this time autopsies were forbidden. After that, the postmortem lung samples allowed us to identify histological alterations because of COVID-19. Moreover, SARS-CoV-2 infections are characterized by the manifestation of cytopathic effects like inclusion bodies, and multinucleated cells in alveolar spaces and alveolar walls. Additionally, atypical, enlarged cells, presence of macrophages in alveolar spaces, and congestion of vascular vessels were the other histopathologic alterations of the lung. Our study covered the analysis of nine postmortem lung samples from patients with severe COVID-19 diagnosed by qRT-PCR. The samples were stained with Hematoxylin-Eosin to identify the histological alterations related to lung architecture and cell populations and were subjected to immunohistochemistry for the SARS-CoV-2 Spike and Nucleocapsid proteins. All samples showed alterations associated with diffuse alveolar damage and 1/9 presented no alveolar space, 5/9 presented different levels of pleural fibrosis, and 4/9 presented distention of the small capillaries. Immunohistochemistry results revealed that 4/9 samples showed Spike-positive cytoplasmic inclusion bodies in type I pneumocytes and 2/9 Spike-positive nuclear inclusion bodies in type I pneumocytes. These inclusion bodies were found to be eosinophilic with H&E stains. The H&E results suggest tissue alterations that may contribute to the signs and symptoms of severe COVID-19, as well as the Spike protein expression, as its distribution suggests its participation in pathophysiology. Full article
(This article belongs to the Special Issue Advances in Lung Inflammation, Injury, and Repair (Second Edition))
Show Figures

Figure 1

17 pages, 5352 KB  
Article
Characterization of Enterococcus faecium Based on Multi-Omics Approaches: Genomic, Transcriptomic, and Phenotypic Analyses
by Jiayan Huang, Haoyu Fan, Yurui Wang, Xiao Yue, Zixuan Li, Zhanchun Bai, Da Qiong, Zhuoma Gesang and Sizhu Suolang
Vet. Sci. 2026, 13(1), 103; https://doi.org/10.3390/vetsci13010103 - 21 Jan 2026
Abstract
Animal-derived E. faecium poses a public health risk due to its capacity to acquire antimicrobial resistance (AMR) and virulence genes. However, the pathogenicity and cross-host transmission potential of strains originating from unique environments, such as the Qinghai–Tibet Plateau, remain poorly understood. In this [...] Read more.
Animal-derived E. faecium poses a public health risk due to its capacity to acquire antimicrobial resistance (AMR) and virulence genes. However, the pathogenicity and cross-host transmission potential of strains originating from unique environments, such as the Qinghai–Tibet Plateau, remain poorly understood. In this study, a strain of E. faecium was isolated from yak feces. We constructed a phylogenetic tree and identified AMR and virulence genes via whole-genome sequencing. Antimicrobial susceptibility testing was performed to determine its resistance phenotype. An in vivo mouse infection model was established to assess pathogenicity, and transcriptomic analysis was utilized to investigate the host’s molecular response mechanisms in infected intestinal tissue. The results indicated that this yak-derived strain is closely related to human clinical isolates, suggesting a risk of cross-host transmission. The strain harbored the AMR genes AAC(6′)-Ii, msrC, and eatAv and exhibited resistance to penicillin, kanamycin, erythromycin, and clindamycin. The strain harbored key virulence genes, such as bopD, Acm, and ClpP. Infection with this strain caused characteristic inflammatory damage in mouse intestinal tissue, as revealed by histopathological examination, including epithelial necrosis, vascular congestion, and inflammatory cell infiltration. Transcriptomics further delineated a complete “Recognition–Response–Damage” signaling axis: pathogen recognition through Toll-like receptors and NOD-like receptors activates the NF-κB and MAPK signaling pathways. This activation is accompanied by significant upregulation of various inflammatory factors and recruits immune cells via chemokine signaling, ultimately leading to tissue damage. Our findings provide insights into the pathogenic pathway of this strain from genetic determinants to phenotypic manifestations, providing a theoretical foundation for assessing the public health risk posed by animal-derived E. faecium and for developing targeted intervention strategies. Full article
(This article belongs to the Section Veterinary Food Safety and Zoonosis)
Show Figures

Figure 1

15 pages, 775 KB  
Article
Serum CCL5 in Liver Transplant Candidates: A Potential Marker of Portal Hypertension, Not Cardiovascular Risk
by Teodora Radu, Speranța M. Iacob, Ioana Manea and Liliana S. Gheorghe
Gastrointest. Disord. 2026, 8(1), 7; https://doi.org/10.3390/gidisord8010007 - 21 Jan 2026
Abstract
Background: Chemokine CCL5 may drive inflammation and vascular risk in advanced liver disease, but its cardiovascular implications are unclear. Secreted by hepatic, endothelial, macrophage, and lymphocytic cells, CCL5 is involved in cytokine regulation. Its serum levels rise in acute liver injury and hepatocellular [...] Read more.
Background: Chemokine CCL5 may drive inflammation and vascular risk in advanced liver disease, but its cardiovascular implications are unclear. Secreted by hepatic, endothelial, macrophage, and lymphocytic cells, CCL5 is involved in cytokine regulation. Its serum levels rise in acute liver injury and hepatocellular carcinoma (HCC), but decline with fibrosis progression in end-stage liver disease (ESLD). CCL5 has also been linked to atherosclerosis. This study aimed to evaluate serum CCL5 levels in ESLD patients listed for liver transplantation (LT) and to assess their potential role as markers of cardiovascular (CV) risk and portal hypertension. Methods: We conducted an observational cohort study. Between 2019 and 2022, patients with ESLD evaluated for LT were enrolled. Data on liver pathology, CV risk, and laboratory parameters were collected. Serum CCL5 concentrations were measured using Sigma Aldrich® CCL5 ELISA kits (MilliporeSigma, St. Louis, MO, USA). The database was analyzed with IBM® SPSS® Statistics version 20 (Chicago, IL, USA). Results: Overall, 46 patients were included, 50% with viral hepatitis and 28.3% with alcohol-related liver disease. HCC was present in 37% of cases. The median CV risk scores (CAD_LT = 7, mCAD_LT = 7, CAR_OLT = 18) placed the population at moderate CV risk. Serum CCL5 levels did not vary significantly between viral vs. non-viral cirrhosis (5511.8 vs. 6272.5 pg/mL, p = 0.15) and were not influenced by the presence of HCC (6098.4 vs. 5771.3 pg/mL, p = 0.55). We did not detect a correlation with MELD score (p = 0.21) or CV risk scores (CAD_LT: p = 0.58; mCAD_LT: p = 0.70; CAR_OLT: p = 0.22). Patients with thrombocytopenia (<100,000/µL, 54.3%) or a history of esophageal variceal ligation had lower CCL5 levels (5170.9 vs. 6750.8 pg/mL, p = 0.002 and 4252.0 vs. 6237.5 pg/mL, p = 0.003, respectively). Similarly, patients with a history of previous variceal bleeding and spontaneous bacterial peritonitis (SBP) had lower levels of CCL5 (4373.8 vs. 6119.9 pg/mL, p = 0.02 and 3404.3 vs. 6606.7 pg/mL, p = 0.01, respectively). We found a negative correlation between CCL5 and QTc interval duration (τ = −0.216, p = 0.037), left ventricle size (LV: τ = −0.235, p = 0.027), and pulmonary artery pressure (RV/RA gradient: τ = −0.225, p = 0.03). CCL5 correlated positively with the inflammatory markers C-reactive protein (CRP) (τ = 0.246, p = 0.018) and fibrinogen (r = 0.216, p = 0.04). Conclusions: In liver transplant candidates, serum CCL5 is not associated with cardiovascular risk scores or coronary atherosclerotic burden, but is inversely associated with clinical markers of portal hypertension severity. These findings suggest that CCL5 may serve as a potential non-invasive surrogate marker of portal hypertension rather than a cardiovascular risk biomarker in ESLD. Full article
Show Figures

Figure 1

19 pages, 2470 KB  
Article
Microbiota-Mediated Crosstalk Between the Gut and the Vascular System: Protective Effects of Novel Postbiotic Formulations on Human Endothelial and Vascular Smooth Muscle Cells
by Lorenzo Flori, Diletta Francesca Squarzanti, Marta Lo Re, Patrizia Malfa, Alma Martelli and Vincenzo Calderone
Int. J. Mol. Sci. 2026, 27(2), 1011; https://doi.org/10.3390/ijms27021011 - 20 Jan 2026
Abstract
The close connections between the intestine and distal systems, known as axes, are a growing focus of scientific research; however, the gut–vascular axis, particularly as a target of microbial metabolites, remains underexplored. In this study, three supernatants derived from probiotic formulations composed of [...] Read more.
The close connections between the intestine and distal systems, known as axes, are a growing focus of scientific research; however, the gut–vascular axis, particularly as a target of microbial metabolites, remains underexplored. In this study, three supernatants derived from probiotic formulations composed of Lactobacillus and Bifidobacterium strains (MIX-1, MIX-2, and MIX-3) were evaluated in counteracting vascular alterations associated with dysbiosis. Human aortic smooth muscle (HASMCs) and endothelial (HAECs) cells were exposed to pro-oxidative (H2O2) and pro-inflammatory (TMAO) stimuli. Concentrations up to 5–10% (v/v) were tolerated in both cell lines, with MIX-1 and MIX-3 showing the greatest protective efficacy. These formulations exerted antioxidant effects by reducing H2O2-induced ROS production and cell viability loss, and anti-inflammatory effects by limiting TMAO-induced IL-1β release. MIX-1 also attenuated TMAO-induced IL-6 release. Further analyses indicated a partial involvement of the SIRT1-pathway in its vascular antioxidant effects. Chromatographic profiling revealed comparable qualitative metabolites among the probiotic supernatants, while quantitative differences were observed, with higher lactate levels in MIX-1 and MIX-3 compared to MIX-2. Finally, we have determined that Limosilactobacillus reuteri-PBS072 is mainly responsible for the antioxidant effect of MIX-1 and MIX-3. Overall, these findings highlight the potential of probiotic-derived metabolites in modulating the gut–vascular axis and promoting vascular protection. Full article
Show Figures

Graphical abstract

19 pages, 3828 KB  
Article
Norisoboldine Induces Endothelium-Dependent Vasorelaxation and Attenuates Hypertension by Modulating Ca2+-eNOS Signaling, Oxidative Stress, and Inflammation
by Jiaze Li, Shurui Wang, Enyi Jin, Ziyi Zhao, Jinyue Liang, Yun Jung Lee and Lihua Cao
Antioxidants 2026, 15(1), 131; https://doi.org/10.3390/antiox15010131 - 20 Jan 2026
Abstract
Vascular function is a direct factor affecting blood pressure, and it is a primary strategy for clinically controlling hypertension by regulating the constriction/relaxation of blood vessels. This study evaluates the vasodilatory and anti-hypertensive effects of norisoboldine (NOR), an isoquinoline alkaloid in Ayurvedic medicine. [...] Read more.
Vascular function is a direct factor affecting blood pressure, and it is a primary strategy for clinically controlling hypertension by regulating the constriction/relaxation of blood vessels. This study evaluates the vasodilatory and anti-hypertensive effects of norisoboldine (NOR), an isoquinoline alkaloid in Ayurvedic medicine. The rat thoracic aorta was isolated to investigate the vasodilatory effect, and L-NAME-induced hypertensive rats were established, respectively. In the isolated vascular ring, removal of the endothelium resulted in a significant decrease in the vasodilatory effect. Pretreatment with L-NAME, ODQ, KT5823, WT, Tri, Dilt, calcium-free solution, TG, Gd3+, 2-APB, Indo, 4-AP, Gli, and BaCl2 inhibited the vasodilatory effect of NOR. In vascular endothelial cells, NOR promoted eNOS phosphorylation and inhibited TNF-α-induced expression of ICAM-1 and VCAM-1. SBP and DBP were significantly decreased after administration of different doses of NOR in the femoral vein of rats. In addition, NOR significantly reduced the blood pressure of L-NAME-induced hypertensive rats, up-regulated the serum levels of NO, cGMP, and CAT, and down-regulated MDA, IL-6, and TNF-α in hypertensive rats. NOR administration improved pathological changes in the thoracic aorta by regulating the arrangement of thoracic aortic smooth muscle cells, decreasing the thickness of the thoracic aortic wall, and reducing the degree of collagen deposition and fibrosis. In conclusion, the vasodilatory mechanisms of NOR were related to the Ca2+-eNOS signaling pathway, including the PGI2 and various K+/Ca2+ channels, the inositol triphosphate receptor (IP3R) calcium release, and the α-adrenergic receptor pathway. The anti-hypertensive mechanism of NOR may be related to increased NO and cGMP bioavailability, inhibition of oxidative stress and inflammatory responses, and improved vascular remodeling. Full article
Show Figures

Graphical abstract

63 pages, 7234 KB  
Review
Cellular Allies Against Glioblastoma: Therapeutic Potential of Macrophages and Mesenchymal Stromal Cells
by Bruno Agustín Cesca, Kali Pellicer San Martin and Luis Exequiel Ibarra
Pharmaceutics 2026, 18(1), 124; https://doi.org/10.3390/pharmaceutics18010124 - 19 Jan 2026
Viewed by 37
Abstract
Background/Objectives: Glioblastoma (GBM) remains the most aggressive primary brain tumor in adults, with limited therapeutic options and poor prognosis despite maximal surgery, radiotherapy, and chemotherapy. The complex and immunosuppressive tumor microenvironment, pronounced intratumoral heterogeneity, and the presence of the blood–brain barrier (BBB) [...] Read more.
Background/Objectives: Glioblastoma (GBM) remains the most aggressive primary brain tumor in adults, with limited therapeutic options and poor prognosis despite maximal surgery, radiotherapy, and chemotherapy. The complex and immunosuppressive tumor microenvironment, pronounced intratumoral heterogeneity, and the presence of the blood–brain barrier (BBB) severely restrict the efficacy of conventional and emerging therapies. In this context, cell-based strategies leveraging macrophages, mesenchymal stromal cells (MSCs), and their derivatives have gained attention as “cellular allies” capable of modulating the GBM microenvironment and acting as targeted delivery platforms. Methods: This review systematically analyzes preclinical and early clinical literature on macrophage- and MSC-based therapeutic strategies in GBM, including engineered cells, extracellular vesicles (EVs), membrane-coated nanoparticles, and hybrid biomimetic systems. Studies were selected based on relevance to GBM biology, delivery across or bypass of the BBB, microenvironmental modulation, and translational potential. Evidence from in vitro models, orthotopic and syngeneic in vivo models, and available clinical trials was critically evaluated, with emphasis on efficacy endpoints, biodistribution, safety, and manufacturing considerations. Results: The reviewed evidence demonstrates that macrophages and MSCs can function as active therapeutic agents or delivery vehicles, enabling localized oncolysis, immune reprogramming, stromal and vascular remodeling, and enhanced delivery of viral, genetic, and nanotherapeutic payloads. EVs and membrane-based biomimetic platforms further extend these capabilities while reducing cellular risks. However, therapeutic efficacy is highly context-dependent, influenced by tumor heterogeneity, BBB integrity, delivery route, and microenvironmental dynamics. Clinical translation remains limited, with most approaches at preclinical or early-phase clinical stages. Conclusions: Cell-based and cell-derived platforms represent a promising but still evolving therapeutic paradigm for GBM. Their successful translation will require rigorous biomarker-driven patient selection, improved models that capture invasive GBM biology, scalable GMP-compliant manufacturing, and rational combination strategies to overcome adaptive resistance mechanisms. Full article
(This article belongs to the Special Issue Where Are We Now and Where Is Cell Therapy Headed? (2nd Edition))
Show Figures

Graphical abstract

33 pages, 2502 KB  
Review
Non-Coding RNA Profile in the Progression of Carotid Atherosclerosis: A Systematic Review
by Gemma Sardelli, Pasquale Bufano, Rosetta Ragusa, Marco Laurino, Gabriele Masini, Luna Gargani, Danilo Neglia, Raffaele De Caterina and Chiara Caselli
Int. J. Mol. Sci. 2026, 27(2), 1002; https://doi.org/10.3390/ijms27021002 - 19 Jan 2026
Viewed by 30
Abstract
Carotid atherosclerosis remains one of the primary etiological factors underlying ischemic stroke, contributing to adult neurological disability and mortality. In recent years, non-coding RNAs (ncRNAs) have emerged as key regulators of gene expression, actively modulating molecular pathways involved in atherogenesis. This systematic review, [...] Read more.
Carotid atherosclerosis remains one of the primary etiological factors underlying ischemic stroke, contributing to adult neurological disability and mortality. In recent years, non-coding RNAs (ncRNAs) have emerged as key regulators of gene expression, actively modulating molecular pathways involved in atherogenesis. This systematic review, the first to be exclusively focused on carotid atherosclerosis, aimed at synthesizing current findings on the differential expression of ncRNAs throughout the natural history of the disease, thus providing the first comprehensive attempt to delineate a stage-specific ncRNA expression profile in carotid disease. A comprehensive literature search was conducted in PubMed and Scopus databases in January 2025, following PRISMA guidelines. Original studies involving human subjects with carotid atherosclerosis, evaluating the expression of intracellular or circulating ncRNAs, were included and then categorized according to their association with cardiovascular risk factors, carotid intima-media thickness (cIMT), presence of atherosclerotic plaques, plaque vulnerability, clinical symptoms, and ischemic stroke. Out of 148 articles initially identified, 49 met the inclusion criteria and were analyzed in depth. Among the different classes of ncRNAs, microRNAs (miRNAs) were the most frequently reported as dysregulated, followed by circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs). Notably, the majority of identified ncRNAs were implicated in key pathogenic mechanisms such as inflammatory signaling, vascular smooth muscle cell (VSMC) phenotypic modulation, and ABCA1-mediated cholesterol efflux. Collectively, the evidence underscores the association and possible involvement of ncRNAs in the initiation and progression of carotid atherosclerosis and its cerebrovascular complications. Their relative stability in biological fluids and cell-specific expression profiles highlight their strong potential as minimally invasive biomarkers and—possibly—novel therapeutic targets. Full article
Show Figures

Graphical abstract

17 pages, 3124 KB  
Article
Force-Dependent Presence of Senescent Cells Expressing Vascular Endothelial Growth Factor During Orthodontic Tooth Movement
by Yohei Morihana, Masato Nakagawa, Yue Zhou, Hidetoshi Morikuni, Zi Deng, Yoshitomo Honda and Aki Nishiura
Biology 2026, 15(2), 187; https://doi.org/10.3390/biology15020187 - 19 Jan 2026
Viewed by 29
Abstract
Orthodontic force magnitude influences angiogenesis during orthodontic tooth movement (OTM); however, the role of senescent cells remains largely unclear. This study investigated the localization of senescent cells and their expression of vascular endothelial growth factor (VEGF) during angiogenesis using a rat horizontal OTM [...] Read more.
Orthodontic force magnitude influences angiogenesis during orthodontic tooth movement (OTM); however, the role of senescent cells remains largely unclear. This study investigated the localization of senescent cells and their expression of vascular endothelial growth factor (VEGF) during angiogenesis using a rat horizontal OTM model with different force magnitudes. Nickel–titanium coil springs exerting 60 g or 180 g of orthodontic force were applied to the maxillary first molar of 15-week-old male Sprague–Dawley rats; untreated rats served as controls. Tooth movement was evaluated by stereomicroscopy and micro-computed tomography. Senescent cells (p21, p16) and angiogenesis (CD31 and VEGF) were evaluated by multiplex immunofluorescence. Tooth movement was observed under both the 60 g and 180 g conditions. The 60 g group showed increased cellularity, vascular density, and VEGF expression, suggesting an optimal mechanical force. In contrast, the 180 g group reduced cellularity and angiogenesis, consistent with excessive force. Senescent cells were more abundant in the 60 g group, with over 40% expressing VEGF. These findings suggest that force magnitude influences the presence of VEGF+ senescent cells, which may be associated with the angiogenic process in OTM. This work provides insights into the mechanisms underlying optimal force in orthodontic treatment. Full article
(This article belongs to the Special Issue Cellular Senescence in Development, Regeneration, Aging, and Cancer)
Show Figures

Graphical abstract

18 pages, 685 KB  
Review
Fibroblast Growth Factor-7 and Hair Biology: Bridging Basic Science and Therapeutic Applications
by Huey-Chun Huang, Wang-Ju Hsieh, Ivona Percec and Tsong-Min Chang
Curr. Issues Mol. Biol. 2026, 48(1), 102; https://doi.org/10.3390/cimb48010102 - 19 Jan 2026
Viewed by 55
Abstract
Alopecia profoundly impacts psychological well-being and quality of life, yet current therapeutic options such as minoxidil and finasteride exhibit limited efficacy. Fibroblast growth factor 7 (FGF-7), also known as keratinocyte growth factor (KGF), is a paracrine growth factor secreted by dermal papilla cells [...] Read more.
Alopecia profoundly impacts psychological well-being and quality of life, yet current therapeutic options such as minoxidil and finasteride exhibit limited efficacy. Fibroblast growth factor 7 (FGF-7), also known as keratinocyte growth factor (KGF), is a paracrine growth factor secreted by dermal papilla cells that specifically activates the epithelial receptor FGFR2b. Receptor engagement triggers multiple downstream signaling cascades, including the MAPK/ERK, PI3K/Akt, and Wnt/β-catenin pathways, promoting keratinocyte proliferation, stem cell activation, and the transition of hair follicles into the anagen phase. Both in vitro and in vivo animal studies consistently demonstrate that FGF-7 accelerates telogen-to-anagen transition and enhances follicular regeneration. FGF-7 acts synergistically with insulin-like growth factor 1 (IGF-1) and vascular endothelial growth factor (VEGF) to sustain nutrient delivery and cell proliferation. Human scalp studies further reveal a strong association between the FGF-7/FGFR2b signaling and follicular activity; however, clinical trials remain scarce. Topical application of FGF-7 has demonstrated an excellent safety profile, whereas systemic administration necessitates careful monitoring. Future directions include the development of engineering to extend the systemic half-life, advanced delivery systems, and gene or mRNA-based therapeutic approaches. Thus, the FGF-7/FGFR2b axis is a highly compelling molecular target for next-generation hair regeneration therapies. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

19 pages, 6022 KB  
Article
Repurposing PDE5-Inhibitors: Sildenafil Drives Arteriogenesis via Localized Regenerative Inflammation
by Katharina Elbs, Lisa Bobrowski, Christoph Arnholdt, Matthias Kübler, Philipp Götz, Michael R. Rohrmoser, Daphne Merkus, Manuel Lasch and Elisabeth Deindl
Int. J. Mol. Sci. 2026, 27(2), 985; https://doi.org/10.3390/ijms27020985 - 19 Jan 2026
Viewed by 66
Abstract
Arteriogenesis, the growth of pre-existing arterioles into functional collateral arteries, represents a key adaptive response to severe arterial stenosis. This process is driven by hemodynamic forces and a tightly coordinated inflammatory cascade. Here, we investigated the effects of pharmacological stimulation of the nitric [...] Read more.
Arteriogenesis, the growth of pre-existing arterioles into functional collateral arteries, represents a key adaptive response to severe arterial stenosis. This process is driven by hemodynamic forces and a tightly coordinated inflammatory cascade. Here, we investigated the effects of pharmacological stimulation of the nitric oxide-cyclic guanosine monophosphate (NO-cGMP) signaling pathway using the phosphodiesterase-5 (PDE5) inhibitor Sildenafil on collateral vessel growth in a murine model of femoral artery ligation (FAL). Flow cytometric analyses revealed that Sildenafil treatment significantly enhanced platelet–leukocyte aggregate formation, a prerequisite for the subsequent initiation of a localized perivascular inflammation. Histological and immunofluorescence analyses further demonstrated a marked increase in mast cell recruitment and degranulation at early time points (days 1 and 3 post-FAL). In addition, Sildenafil promoted perivascular macrophage accumulation on days 3 and 7, with a pronounced shift toward an M2-like pro-regenerative polarization state, ultimately resulting in the enhanced proliferation of vascular cells and the enlargement of collateral diameters. Together, these findings identify Sildenafil as a potent enhancer of arteriogenesis through coordinated immune cell activation, stimulating vascular cell proliferation along with positive collateral outward remodeling. Thus, Sildenafil emerges as a promising therapeutic candidate to promote collateral artery growth in cardiovascular occlusive diseases. Full article
Show Figures

Graphical abstract

9 pages, 1389 KB  
Case Report
Progressive Destructive Hypothyroidism Associated with Sunitinib Therapy: A Three-Year Case Analysis
by Marcin Nosal
J. Clin. Med. 2026, 15(2), 788; https://doi.org/10.3390/jcm15020788 - 19 Jan 2026
Viewed by 41
Abstract
Sunitinib, a tyrosine kinase inhibitor (TKI) targeting vascular endothelial growth factor receptors (VEGFRs) and platelet-derived growth factor receptors (PDGFRs), is widely used in renal cell carcinoma. A broad spectrum of thyroid dysfunctions has been observed during TKI therapy, yet their mechanisms and clinical [...] Read more.
Sunitinib, a tyrosine kinase inhibitor (TKI) targeting vascular endothelial growth factor receptors (VEGFRs) and platelet-derived growth factor receptors (PDGFRs), is widely used in renal cell carcinoma. A broad spectrum of thyroid dysfunctions has been observed during TKI therapy, yet their mechanisms and clinical progression remain only partially explained. A longitudinal case analysis of a woman with metastatic clear-cell renal cell carcinoma treated with cyclical sunitinib therapy (4 weeks on, 2 weeks off) was performed. Thyroid function tests, clinical symptoms, and ultrasound imaging findings were evaluated over time and compared with treatment exposure and dose adjustments. Baseline thyroid function was normal. During the third cycle, thyroid-stimulating hormone (TSH) increased markedly (33.44–41.26 mIU/L), with free thyroid hormones initially remaining within reference limits. TSH fluctuations corresponded to treatment intervals before stabilising into persistent hypothyroidism requiring levothyroxine replacement. Thyroid ultrasound revealed progressive parenchymal destruction and a reduction in gland volume from 18 mL to approximately 2 mL over three years. Endocrine management enabled maintenance of biochemical euthyroidism, and systemic oncological treatment continued without interruption. Sunitinib treatment may lead to progressive destructive hypothyroidism. Routine surveillance of thyroid function is essential, and timely levothyroxine therapy facilitates continued anticancer treatment and symptom control. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Figure 1

19 pages, 1080 KB  
Review
Diagnostic, Prognostic and Therapeutic Utility of MicroRNA-21 in Ischemic Heart Disease
by Boris Burnjaković, Marko Atanasković, Marko Baralić, Aladin Altić, Emil Nikolov, Anastasija Ilić, Aleksandar Sič, Verica Stanković Popović, Ana Bontić, Selena Gajić and Sanja Stankovic
Int. J. Mol. Sci. 2026, 27(2), 954; https://doi.org/10.3390/ijms27020954 - 18 Jan 2026
Viewed by 103
Abstract
Ischemic heart disease (IHD) remains a leading cause of global morbidity and mortality despite advances in prevention, diagnosis, and therapy. Traditional clinical risk scores and biomarkers often fail to fully capture the complex molecular processes underlying atherosclerosis, myocardial infarction, and ischemic cardiomyopathy, leaving [...] Read more.
Ischemic heart disease (IHD) remains a leading cause of global morbidity and mortality despite advances in prevention, diagnosis, and therapy. Traditional clinical risk scores and biomarkers often fail to fully capture the complex molecular processes underlying atherosclerosis, myocardial infarction, and ischemic cardiomyopathy, leaving substantial residual risk. MicroRNAs have emerged as promising regulators and biomarkers of cardiovascular disease, among which microRNA-21 (miR-21) has attracted particular attention. MiR-21 is deeply involved in key pathophysiological mechanisms of IHD, including endothelial dysfunction, vascular inflammation, vascular smooth muscle cell proliferation, plaque development and vulnerability, cardiomyocyte survival, and myocardial fibrosis. Accumulating clinical evidence suggests that circulating miR-21 holds diagnostic value across the ischemic continuum, from stable coronary artery disease to acute coronary syndromes, myocardial infarction, and ischemic heart failure. Moreover, miR-21 demonstrates prognostic relevance, correlating with plaque instability, adverse remodeling, heart failure progression, and long-term cardiovascular outcomes. Preclinical studies further indicate that miR-21 represents a double-edged therapeutic target, offering cardio protection in acute ischemic injury while contributing to fibrosis and maladaptive remodeling if dysregulated. This narrative review summarizes current evidence on the diagnostic, prognostic, and therapeutic utility of miR-21 in IHD, highlighting its clinical promise as well as key limitations and future translational challenges. Full article
Show Figures

Figure 1

27 pages, 12913 KB  
Article
Preserved Function of Endothelial Colony-Forming Cells in Female Rats with Intrauterine Growth Restriction: Protection Against Arterial Hypertension and Arterial Stiffness?
by Thea Chevalley, Floriane Bertholet, Marion Dübi, Maria Serena Merli, Mélanie Charmoy, Sybil Bron, Manon Allouche, Alexandre Sarre, Nicole Sekarski, Stéphanie Simoncini, Patrick Taffé, Umberto Simeoni and Catherine Yzydorczyk
Cells 2026, 15(2), 171; https://doi.org/10.3390/cells15020171 - 17 Jan 2026
Viewed by 195
Abstract
Individuals born after intrauterine growth restriction (IUGR) are at increased risk of long-term cardiovascular complications, including elevated blood pressure, endothelial dysfunction, and arterial stiffness. Endothelial progenitor cells (EPCs), particularly endothelial colony-forming cells (ECFCs), play a critical role in maintaining vascular homeostasis. Previously, Simoncini [...] Read more.
Individuals born after intrauterine growth restriction (IUGR) are at increased risk of long-term cardiovascular complications, including elevated blood pressure, endothelial dysfunction, and arterial stiffness. Endothelial progenitor cells (EPCs), particularly endothelial colony-forming cells (ECFCs), play a critical role in maintaining vascular homeostasis. Previously, Simoncini et al. observed that in a rat model of IUGR, six-month-old males exhibited elevated systolic blood pressure (SBP) and microvascular rarefaction compared with control (CTRL) rats. These vascular alterations were accompanied by reduced numbers and impaired function of bone marrow-derived ECFCs, which were associated with oxidative stress and stress-induced premature senescence (SIPS). In contrast, IUGR females of the same age and from the same litter did not exhibit higher SBP or microvascular rarefaction, raising the question of whether ECFC dysfunction in IUGR female rats can be present without vascular alterations. So, we investigated ECFCs isolated from six-month-old female IUGR offspring (maternal 9% casein diet) and CTRL females (23% casein diet). To complete the vascular assessment, we performed in vivo and in vitro investigations. No alteration in pulse wave velocity (measured by echo-Doppler) was observed; however, IUGR females showed decreased aortic collagen and increased elastin content compared with CTRL. Regarding ECFCs, those from IUGR females maintained their endothelial identity (CD31+/CD146+ ratio among viable CD45 cells) but exhibited slight alterations in progenitor marker expression (CD34) compared with those of CTRL females. Functionally, IUGR-ECFCs displayed a delayed proliferation phase between 6 and 24 h, while their ability to form capillary-like structures remained unchanged, however their capacity to form capillary-like structures was preserved. Regarding the nitric oxide (NO) pathway, a biologically relevant trend toward reduced NO levels and decreased endothelial nitric oxide synthase expression was observed, whereas oxidative stress and SIPS markers remained unchanged. Overall, these findings indicate that ECFCs from six-month-old female IUGR rats exhibit only minor functional alterations, which may contribute to vascular protection against increase SBP, microvascular rarefaction, and arterial stiffness. Full article
(This article belongs to the Special Issue Role of Endothelial Progenitor Cells in Vascular Dysfunction)
Show Figures

Figure 1

Back to TopTop