Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = vapour finishing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 3841 KiB  
Article
Eco-Friendly Octylsilane-Modified Amino-Functional Silicone Coatings for a Durable Hybrid Organic–Inorganic Water-Repellent Textile Finish
by Mariam Hadhri, Claudio Colleoni, Agnese D’Agostino, Mohamed Erhaim, Raphael Palucci Rosa, Giuseppe Rosace and Valentina Trovato
Polymers 2025, 17(11), 1578; https://doi.org/10.3390/polym17111578 - 5 Jun 2025
Viewed by 1140
Abstract
The widespread phase-out of long-chain per- and poly-fluoroalkyl substances (PFASs) has created an urgent need for durable, fluorine-free water-repellent finishes that match the performance of legacy chemistries while minimising environmental impact. Here, the performance of an eco-friendly hybrid organic–inorganic treatment obtained by the [...] Read more.
The widespread phase-out of long-chain per- and poly-fluoroalkyl substances (PFASs) has created an urgent need for durable, fluorine-free water-repellent finishes that match the performance of legacy chemistries while minimising environmental impact. Here, the performance of an eco-friendly hybrid organic–inorganic treatment obtained by the in situ hydrolysis–condensation of triethoxy(octyl)silane (OS) in an amino-terminated polydimethylsiloxane (APT-PDMS) aqueous dispersion was investigated. The sol was applied to plain-weave cotton and polyester by a pad-dry-cure process and benchmarked against a commercial fluorinated finish. Morphology and chemistry were characterised by SEM–EDS, ATR-FTIR, and Raman spectroscopy; wettability was assessed by static contact angle, ISO 4920 spray ratings, and AATCC 193 water/alcohol repellence; and durability, handle, and breathability were evaluated through repeated laundering, bending stiffness, and water-vapour transmission rate measurements. The silica/PDMS coating formed a uniform, strongly adherent nanostructured layer conferring static contact angles of 130° on cotton and 145° on polyester. After five ISO 105-C10 wash cycles, the treated fabrics still displayed a spray rating of 5/5 and AATCC 193 grade 7, outperforming or equalling the fluorinated control, while causing ≤5% loss of water-vapour permeability and only a marginal increase in bending stiffness. These results demonstrate that the proposed one-step, water-borne sol–gel process affords a sustainable, industrially scalable route to high-performance, durable, water-repellent finishes for both natural and synthetic textiles, offering a viable alternative to PFAS-based chemistry for outdoor apparel and technical applications. Full article
(This article belongs to the Special Issue Environmentally Friendly Textiles, Fibers and Their Composites)
Show Figures

Graphical abstract

14 pages, 4754 KiB  
Article
Optimizing the Material Extrusion Process for Investment Casting Mould Production
by Pablo Rodríguez-González, Pablo Zapico, Sofía Peláez-Peláez, María Ángeles Castro-Sastre and Ana Isabel Fernández-Abia
J. Manuf. Mater. Process. 2024, 8(6), 265; https://doi.org/10.3390/jmmp8060265 - 23 Nov 2024
Cited by 3 | Viewed by 1355
Abstract
This study investigates the optimization of the Material Extrusion (MEX) process for producing polylactic acid (PLA) patterns used in investment casting moulds, specifically targeting the casting of non-ferrous alloys such as brass. Key MEX process parameters—layer thickness, wall thickness, infill density, and post-processing [...] Read more.
This study investigates the optimization of the Material Extrusion (MEX) process for producing polylactic acid (PLA) patterns used in investment casting moulds, specifically targeting the casting of non-ferrous alloys such as brass. Key MEX process parameters—layer thickness, wall thickness, infill density, and post-processing with dichloromethane vapour for surface enhancement—were systematically analyzed for their impact on mould quality. Results indicate that an optimized combination of MEX parameters yields moulds with high dimensional accuracy, low surface roughness, and minimal pattern residue within the mould cavity. These optimized moulds were subsequently used in brass casting, with the final cast parts evaluated for dimensional precision and surface finish. The study concludes that PLA patterns manufactured via optimized MEX parameters provide a precise, cost-effective, and easy-to-implement solution for industry applications. Additionally, this process is environmentally friendly and presents clear advantages over other pattern-making methods, offering a sustainable alternative for producing complex metal parts with reduced environmental impact. The findings underscore the significant role of post-processing in enhancing mould quality and, consequently, the quality of the cast parts. Full article
Show Figures

Figure 1

30 pages, 61579 KiB  
Article
Evaluation of the Influence of the Tool Set Overhang on the Tool Wear and Surface Quality in the Process of Finish Turning of the Inconel 718 Alloy
by Krzysztof Smak, Piotr Szablewski, Stanisław Legutko, Jana Petru, Jiri Kratochwil and Sylwia Wencel
Materials 2024, 17(18), 4465; https://doi.org/10.3390/ma17184465 - 11 Sep 2024
Viewed by 955
Abstract
The work deals with the influence of the reach of the applied tool holder on the edge wear, dimensional accuracy and surface quality defined by the topography as well as the roughness of the machined surface. The research has been conducted on specimens [...] Read more.
The work deals with the influence of the reach of the applied tool holder on the edge wear, dimensional accuracy and surface quality defined by the topography as well as the roughness of the machined surface. The research has been conducted on specimens made of Inconel 718 in the configuration of sleeves, within the scope of finish turning with constant cutting parameters, vc = 85 m/min; f = 0.14 mm/rev; ap = 0.2 mm. The material under machining has undergone heat treatment procedures such as solution treatment and precipitation hardening, resulting in a hardness of 45 ± 2 HRC. Two kinds of turning holders have been used with the reaches of 120 mm and 700 mm. The tools are intended for turning external and internal surfaces, respectively. The tests have been conducted using V-shaped cutting inserts manufactured by different producers, made of fine-grained carbide with coatings applied by the PVD (Physical Vapour Deposition) and CVD (Chemical Vapour Deposition) methods. The edge wear has been evaluated. The value of the achieved diameter dimensions has also been assessed in relation to the set ones, as well as the recorded values of surface roughness and the surface topography parameters have also been assessed. It has been determined that the quality of the manufactured surface evaluated by the 2D and 3D roughness parameters, as well as the dimensional quality are influenced by the kind of the applied tool holder. The influence is also visible considering the edge wear. The smallest values of the deviations from the nominal dimensions have been obtained for the coated inserts of the range of higher abrasion resistance (taking into account information from the producers). The obtained results show that in predicting the dimensional accuracy in the process of turning Inconel 718 alloy with long-overhang tools, one should consider the necessity of correction of the tool path. Taking into account the achieved surface roughness, it should be pointed out that not only the kind of the tool coating but also the character of its wear has a great influence, particularly, when a long cutting distance is required. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

25 pages, 9185 KiB  
Article
Stone Endurance: A Comparative Analysis of Natural and Artificial Weathering on Stone Longevity
by Carla Lisci, Fabio Sitzia, Vera Pires, Marco Aniceto and José Mirão
Heritage 2023, 6(6), 4593-4617; https://doi.org/10.3390/heritage6060244 - 2 Jun 2023
Cited by 7 | Viewed by 4232
Abstract
The long-term endurance of building stones must be assured since their longevity has repercussions for their economic and social value. Frequently, slabs for flooring and cladding are installed with polished finishing in outdoor environments for technical and ornamental purposes in cultural heritage sites [...] Read more.
The long-term endurance of building stones must be assured since their longevity has repercussions for their economic and social value. Frequently, slabs for flooring and cladding are installed with polished finishing in outdoor environments for technical and ornamental purposes in cultural heritage sites and modern civil architecture. Compared to any other finishing, glossy surfaces are rather vulnerable to wear, particularly when they interact with slightly acidic rainwater. Several hydrophobic treatments are applied to prevent this damage by preventing contact between rain and stone; such treatments are efficient but sometimes non-durable. Stakeholders and conservation scientists need better methods to anticipate the future behaviour of this building material and hydrophobic solutions. Complying with this demand, a comparison is made between outdoor natural ageing and artificial weathering, reproduced by UVA radiation, moisture and spray accelerated weathering. Artificial weathering is applied to predict the behaviour of stones over time in the real environment. Data obtained through the measurement of gloss and colour parameters, the detection of micro-textures through SEM, and the calculation of micro-roughness using a digital rugosimeter demonstrate that weakly acidic rainwater is the main cause of superficial decay of stone finishing over just six months of outdoor exposure. This period corresponds to 7–14 days of artificial weathering. Furthermore, the loss of efficiency and durability of the hydrophobic coatings is detected by measuring the static contact angle. This highlights that even if a protective treatment was proficient, it could easily deteriorate in normal weathering conditions if applied on polished, low-porosity stone. Additionally, water vapour permeability indicates variations of regular vapour transmission through the stones due to ageing. The first solution to threats is the prevention of pathologies, including aesthetic ones. A careful choice of the most suitable lithotype finish and an environmental study represent an existing solution to the problem. It must be highlighted that aesthetic requirements should not be prioritised to detriment of the technical requirements of architectural quality, performance, durability, and safety. Full article
(This article belongs to the Special Issue Challenges in Stone Heritage Conservation)
Show Figures

Figure 1

13 pages, 1218 KiB  
Article
Wet Blue Enzymatic Treatment and Its Effect on Leather Properties and Post-Tanning Processes
by Renata Biškauskaitė and Virgilijus Valeika
Materials 2023, 16(6), 2301; https://doi.org/10.3390/ma16062301 - 13 Mar 2023
Cited by 8 | Viewed by 2068
Abstract
Due to their variety, specific activity, and mild reaction conditions, enzymes have a wide application in beam house processes such as soaking, dehairing, bating, and de-greasing. Recently, due to improvements in biotechnology, re-bating after chroming has received increased attention. The aim of this [...] Read more.
Due to their variety, specific activity, and mild reaction conditions, enzymes have a wide application in beam house processes such as soaking, dehairing, bating, and de-greasing. Recently, due to improvements in biotechnology, re-bating after chroming has received increased attention. The aim of this work was to investigate the application of enzyme preparation in the re-bating process and its effect on the semifinished and finished product, as well as its influence on post-tanning operations. The enzymatic treatment of chromed semifinished leather (wet blue) led to a higher shrinkage temperature (1–6 °C), greater water vapour absorption (0.3–5.5%), better chromium compounds exhaustion during re-chroming (4–21%), and better dye penetration. Moreover, collagen was affected during the enzymatic process; the results showed a greater concentration influence in the operation compared to the process time. On the other hand, no effect on the physical and mechanical properties and fat-liquoring process was observed. Overall, these results indicate that some properties and processes are improved; however, before use for re-bating, every enzyme should be carefully investigated. Full article
Show Figures

Figure 1

19 pages, 6341 KiB  
Article
Numerical Simulation of the Impact of Water Vapour and Moisture Blockers in Energy Diagnostics of Ventilated Partitions
by Barbara Ksit, Anna Szymczak-Graczyk and Roman Pilch
Materials 2022, 15(22), 8257; https://doi.org/10.3390/ma15228257 - 21 Nov 2022
Cited by 7 | Viewed by 1898
Abstract
Current trends towards saving energy and designing sustainable buildings result in most designers focusing on achieving the best thermal parameters, thereby neglecting a careful moisture analysis. Excessive moisture content in building partitions degrades the mechanical properties of materials, reduces thermal insulation properties (which [...] Read more.
Current trends towards saving energy and designing sustainable buildings result in most designers focusing on achieving the best thermal parameters, thereby neglecting a careful moisture analysis. Excessive moisture content in building partitions degrades the mechanical properties of materials, reduces thermal insulation properties (which leads to an increase in the demand for thermal energy) and worsens the microclimate in rooms. Modern digital solutions help create appropriate models of partitions that work for many years in good environmental conditions. According to the analysis of air parameters, 1 m3 of air at 20 °C contains approx. 17.3 g of water. When the temperature of the air reaches the dew point temperature, water vapour condenses. The dew point depends on air temperature and relative air humidity; for instance, at the same air temperature of 20 °C, the dew point temperature at 40% relative air humidity is 6 °C, whereas at 90% relative humidity, it is over 18 °C. This means that the higher the value of relative humidity in the room at a certain temperature, the lower the temperature that will cause condensation. The article presents a numerical analysis of the insulation work of flexible materials within the layers of ventilated partitions in an 8-year simulated period of varying environmental conditions. The aim of the article is to analyze different models and variants of ventilated partition operation with respect to the advisability of using a vapour barrier to avoid the problem of destruction of thermal insulation and finishing layers of a ventilated roof. Full article
Show Figures

Figure 1

14 pages, 3014 KiB  
Article
Thin Film Encapsulation for LCP-Based Flexible Bioelectronic Implants: Comparison of Different Coating Materials Using Test Methodologies for Life-Time Estimation
by Anna Pak, Kambiz Nanbakhsh, Ole Hölck, Riina Ritasalo, Maria Sousa, Matthias Van Gompel, Barbara Pahl, Joshua Wilson, Christine Kallmayer and Vasiliki Giagka
Micromachines 2022, 13(4), 544; https://doi.org/10.3390/mi13040544 - 30 Mar 2022
Cited by 12 | Viewed by 5629
Abstract
Liquid crystal polymer (LCP) has gained wide interest in the electronics industry largely due to its flexibility, stable insulation and dielectric properties and chip integration capabilities. Recently, LCP has also been investigated as a biocompatible substrate for the fabrication of multielectrode arrays. Realizing [...] Read more.
Liquid crystal polymer (LCP) has gained wide interest in the electronics industry largely due to its flexibility, stable insulation and dielectric properties and chip integration capabilities. Recently, LCP has also been investigated as a biocompatible substrate for the fabrication of multielectrode arrays. Realizing a fully implantable LCP-based bioelectronic device, however, still necessitates a low form factor packaging solution to protect the electronics in the body. In this work, we investigate two promising encapsulation coatings based on thin-film technology as the main packaging for LCP-based electronics. Specifically, a HfO2–based nanolaminate ceramic (TFE1) deposited via atomic layer deposition (ALD), and a hybrid Parylene C-ALD multilayer stack (TFE2), both with a silicone finish, were investigated and compared to a reference LCP coating. T-peel, water-vapour transmission rate (WVTR) and long-term electrochemical impedance spectrometry (EIS) tests were performed to evaluate adhesion, barrier properties and overall encapsulation performance of the coatings. Both TFE materials showed stable impedance characteristics while submerged in 60 °C saline, with TFE1-silicone lasting more than 16 months under a continuous 14V DC bias (experiment is ongoing). The results presented in this work show that WVTR is not the main factor in determining lifetime, but the adhesion of the coating to the substrate materials plays a key role in maintaining a stable interface and thus longer lifetimes. Full article
Show Figures

Figure 1

18 pages, 9895 KiB  
Article
Experimental and Numerical Study on Friction and Wear Performance of Hot Extrusion Die Materials
by Leilei Zhao, Kecheng Zhou, Ding Tang, Huamiao Wang, Dayong Li and Yinghong Peng
Materials 2022, 15(5), 1798; https://doi.org/10.3390/ma15051798 - 27 Feb 2022
Cited by 10 | Viewed by 3568
Abstract
For the aluminium alloys produced by the hot extrusion process, the profile is shaped according to the bearing at the exit of the extrusion die. The tribological process has significant effects on the die service life, profile dimensional tolerances, and profile surface finish. [...] Read more.
For the aluminium alloys produced by the hot extrusion process, the profile is shaped according to the bearing at the exit of the extrusion die. The tribological process has significant effects on the die service life, profile dimensional tolerances, and profile surface finish. Recently, new technologies have been introduced to the hot extrusion die, such as cemented carbide insert die and surface coating. However, under hot extrusion working conditions, quantitative studies on their friction and wear performances are lacking. In this work, the friction and wear performances of three typical extrusion die materials, traditional hot tool steel (H13), cemented carbide (YG8), and chemical vapour deposition (CVD) coating, were studied. Macro and nano hardness tests, Pin-on-disk friction and wear tests, optical profiler and SEM observations, and experiments and simulations of hot extrusion were conducted. The results show that the coefficients of friction of CVD coatings and H13 hot work tool steel specimens were smaller under the hot extrusion condition than at room temperature. The wear mechanisms of H13, YG8, and CVD coatings at 500 °C are adhesion, abrasive, and fatigue, respectively. Moreover, the tribology results were validated by the extrusion experiments and the finite element analysis of hot extrusion. The conclusion of this manuscript is useful not only for the numerical simulation of the hot extrusion process but also for the surface finishing of the extrusion profile. Full article
(This article belongs to the Topic Metallurgical and Materials Engineering)
Show Figures

Figure 1

15 pages, 5440 KiB  
Article
Colour Stabilisation of Surface of Four Thermally Modified Woods with Saturated Water Vapour by Finishes
by Zuzana Vidholdová and Gabriela Slabejová
Polymers 2021, 13(19), 3373; https://doi.org/10.3390/polym13193373 - 30 Sep 2021
Cited by 12 | Viewed by 1991
Abstract
This paper deals with the influence of the type of transparent surface finish on the change of colour of the surfaces of native wood, and thermally treated wood, with saturated water vapour. In the experiment, alder, European beech, Paper birch, and Norway maple [...] Read more.
This paper deals with the influence of the type of transparent surface finish on the change of colour of the surfaces of native wood, and thermally treated wood, with saturated water vapour. In the experiment, alder, European beech, Paper birch, and Norway maple wood were thermally treated at a temperature of 135 °C under saturated water vapour for six hours. Three various types of surface finishes (acrylic-polyurethane, polyacrylic and aldehyde resin, and alkyd resin) were applied onto the wood surfaces. The colours of the surfaces in the system, CIE L*a*b* (lightness, coordinates a* and b*, chroma and hue angle), were measured during finishing and natural ageing behind glass windows in an interior, over a period of 60 days. The results show that the changes in the yellowness index, and the total colour differences after the application of individual surface finishes to wood species, changed because of sunlight exposure. Moreover, it is clear that different wood finishes behaved differently on all of the wood species. An analysis is presented in this paper. Full article
(This article belongs to the Special Issue Durability and Modification of Wood Surfaces)
Show Figures

Graphical abstract

19 pages, 2718 KiB  
Article
Traditional and Modern Plasters for Built Heritage: Suitability and Contribution for Passive Relative Humidity Regulation
by Alessandra Ranesi, Paulina Faria and Maria do Rosário Veiga
Heritage 2021, 4(3), 2337-2355; https://doi.org/10.3390/heritage4030132 - 10 Sep 2021
Cited by 26 | Viewed by 4393
Abstract
Plasters have covered wide surface areas of buildings since antiquity, with a main purpose of indoor protection of the substrate on which they are applied. When no longer functional, they might require substitution with solutions that can combine compatibility with the substrate with [...] Read more.
Plasters have covered wide surface areas of buildings since antiquity, with a main purpose of indoor protection of the substrate on which they are applied. When no longer functional, they might require substitution with solutions that can combine compatibility with the substrate with the current need to mitigate building emissions. Indeed, plasters can contribute to lowering buildings’ energy demands while improving indoor air quality and the comfort of buildings’ users, as plasters can be used as passive regulators of relative humidity (RH). Hence, this study presents the relative-humidity-dependent properties of different plastering mortars based on clay, air lime, and natural hydraulic lime, and plastering finishing pastes based on gypsum and gypsum–air lime, in all cases tested using small size specimens. A cement-based plaster is also analysed for comparison. The clay-based plaster was the most promising material for RH passive regulation, and could be applied to repair and replace plasters in different types of buildings. Pastes based on air lime–gypsum could be applied as finishing layers, specifically on traditional porous walls. The sorption behaviour of cement plaster appeared interesting; however, its water vapour permeability was as expected, found to be the lowest, discouraging its application on historic walls. Full article
(This article belongs to the Special Issue Built Heritage Conservation and Climate Change)
Show Figures

Figure 1

19 pages, 5076 KiB  
Article
Improving the Quality of Friction Stir Welds in Aluminium Alloys
by Arutiun Ehiasarian, Yashodhan Purandare, Arunprabhu Sugumaran, Papken Hovsepian, Peter Hatto and Jeroen De Backer
Coatings 2021, 11(5), 539; https://doi.org/10.3390/coatings11050539 - 2 May 2021
Cited by 7 | Viewed by 3314
Abstract
The Stationary Shoulder Friction Stir Welding (SS-FSW) technique benefits from reduced heat input, improved mechanical properties and surface finish of the weld, avoiding the need for post weld processing. Coatings on the tool probe and the shoulder for welding of aggressive Aluminium alloys [...] Read more.
The Stationary Shoulder Friction Stir Welding (SS-FSW) technique benefits from reduced heat input, improved mechanical properties and surface finish of the weld, avoiding the need for post weld processing. Coatings on the tool probe and the shoulder for welding of aggressive Aluminium alloys have rarely been successful. Such coatings must be well adherent and inert. In this study, coated tools were used for SS-FSW of AA6082-T6 alloy. Performance of a nanoscale multilayer TiAlN/VN coating deposited by High Power Impulse Magnetron Sputtering (HIPIMS) technology was compared with amorphous Diamond Like Carbon (a-C:H) by Plasma Assisted Chemical Vapour Deposition (PACVD), AlTiN deposited by arc evaporation and TiBCN along with TiB2 produced by Chemical Vapour Deposition (CVD) methods. The TiAlN/VN coating was found to have low affinity to aluminium, acceptable coefficient of friction and provided excellent weld quality by inhibiting intermixing between the tool and workpiece materials resulting in a significant reduction in tool wear. Full article
(This article belongs to the Special Issue Hard Coatings for Surface Engineering Solutions)
Show Figures

Figure 1

15 pages, 6396 KiB  
Article
Taguchi S/N and TOPSIS Based Optimization of Fused Deposition Modelling and Vapor Finishing Process for Manufacturing of ABS Plastic Parts
by Jasgurpreet Singh Chohan, Raman Kumar, TH Bhatia Singh, Sandeep Singh, Shubham Sharma, Jujhar Singh, Mozammel Mia, Danil Yurievich Pimenov, Somnath Chattopadhyaya, Shashi Prakash Dwivedi and Wojciech Kapłonek
Materials 2020, 13(22), 5176; https://doi.org/10.3390/ma13225176 - 17 Nov 2020
Cited by 91 | Viewed by 3341
Abstract
Despite several additive manufacturing techniques are commercially available in market, Fused Deposition Modeling (FDM) is increasingly used by researchers and engineers for new product development. FDM is an established process with a plethora of advantages, but the visible surface roughness (SR), being an [...] Read more.
Despite several additive manufacturing techniques are commercially available in market, Fused Deposition Modeling (FDM) is increasingly used by researchers and engineers for new product development. FDM is an established process with a plethora of advantages, but the visible surface roughness (SR), being an intrinsic limitation, is major barrier against utilization of fabricated parts for practical applications. In the present study, the chemical finishing method, using vapour of acetone mixed with heated air, is being used. The combined impact of orientation angle, finishing temperature and finishing time has been studied using Taguchi and ANOVA, whereas multi-criteria optimization is performed using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). The surface finish was highly responsive to increase in temperature while orientation angle of 0° yielded maximum strength; increase in finishing time led to weight gain of FDM parts. As the temperature increases, the percentage change in surface roughness increases as higher temperature assists the melt down process. On the other hand, anisotropic behaviour plays a major role during tensile testing. The Signal-to-noise (S/N) ratio plots, and ANOVA results indicated that surface finish is directly proportionate to finishing time because a longer exposure results in complete layer reflowing and settlement. Full article
Show Figures

Figure 1

7 pages, 559 KiB  
Proceeding Paper
Optical Properties of Vanadium Oxide/Cellulose Triacetate Photochromic Films
by Joseba Gomez-Hermoso-de-Mendoza, Junkal Gutierrez and Agnieszka Tercjak
Proceedings 2021, 69(1), 37; https://doi.org/10.3390/CGPM2020-07182 - 3 Nov 2020
Cited by 1 | Viewed by 1431
Abstract
The properties of polymer-based nanocomposites strongly depend on the fillers added and their dispersion on the matrix. Proposing a simple method that can control these variables is essential to obtain nanocomposites with enhanced properties. In this study, cellulose triacetate based nanocomposites modified with [...] Read more.
The properties of polymer-based nanocomposites strongly depend on the fillers added and their dispersion on the matrix. Proposing a simple method that can control these variables is essential to obtain nanocomposites with enhanced properties. In this study, cellulose triacetate based nanocomposites modified with sol-gel synthesised vanadium oxide nanoparticles (V2O5) and poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (PEO-b-PPO-b-PEO or EPE) triblock copolymer were obtained by two methods: solvent casting (SC, drying at ambient conditions) and solvent vapour annealing (SVA, drying under solvent vapour atmosphere). Nanocomposites were characterised by Fourier-transform infrared spectroscopy (FTIR) and UV-vis spectroscopy. Nanocomposites presented green colour and high transparency, improving the SVA method the surface finish of the films. Moreover, V2O5 nanoparticles provided switchable photochromic properties, changing the film colour from green to pale blue when exposed to UV radiation. Nanocomposites with EPE triblock copolymer presented a more noticeable colour change. As for the speed of the recovery process to the initial state, it increased with the addition of EPE and the sol-gel content. Thus, it was proved that the SVA preparation method was more appropriate that the SC, as well as corroborate that the EPE triblock copolymer and the sol-gel content affected the properties of developed CTA nanocomposites. Full article
Show Figures

Figure 1

36 pages, 7902 KiB  
Review
Recent Progress in Precision Machining and Surface Finishing of Tungsten Carbide Hard Composite Coatings
by Christian Micallef, Yuri Zhuk and Adrianus Indrat Aria
Coatings 2020, 10(8), 731; https://doi.org/10.3390/coatings10080731 - 25 Jul 2020
Cited by 30 | Viewed by 9155
Abstract
Owing to their high hardness, fracture toughness and oxidation resistance, tungsten carbide (WC) coatings are extensively deposited on parts that operate in demanding applications, necessitating wear, erosion, and corrosion resistance. The application of thick and hard WC coatings has an inevitable effect on [...] Read more.
Owing to their high hardness, fracture toughness and oxidation resistance, tungsten carbide (WC) coatings are extensively deposited on parts that operate in demanding applications, necessitating wear, erosion, and corrosion resistance. The application of thick and hard WC coatings has an inevitable effect on the original dimensions of the parts, affecting the geometrical tolerances and surface roughness. The capability of achieving a sub-micron surface finish and adhere to tight geometrical tolerances accurately and repeatably is an important requirement, particularly with components that operate in high-precision sliding motion. Meeting such requirements through conventional surface finishing methods, however, can be challenging due to the superior mechanical and tribological properties of WC coatings. A brief review into the synthesis techniques of cemented and binderless WC coatings is presented together with a comprehensive review into the available techniques which are used to surface finish WC-based coatings with reference to their fundamental mechanisms and capabilities to process parts with intricate and internal features. The binderless WC/W coating considered in this work is deposited through chemical vapour deposition (CVD) and unlike traditional cemented carbide coatings, it has a homogenous coating structure. This distinctive characteristic has the potential of eliminating key issues commonly encountered with machining and finishing of WC-based coatings. Here, six contact and non-contact surface finishing techniques, include diamond turning, precision grinding, superfinishing, vibratory polishing, electrical discharge machining, and electropolishing are discussed along with their current use in industry and limitations. Key challenges in the field are highlighted and potential directions for future investigation, particularly on binderless WC coatings, are proposed herein. Full article
(This article belongs to the Special Issue Hard Coatings in Research and Industry)
Show Figures

Figure 1

Back to TopTop