Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = vacuolar processing enzymes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5105 KiB  
Article
Behavioral, Hematological, Histological, Physiological Regulation and Gene Expression in Response to Heat Stress in Amur Minnow (Phoxinus lagowskii)
by Weijie Mu, Jing Wang, Yanyan Zhou, Shibo Feng, Ye Huang and Qianyu Li
Fishes 2025, 10(7), 335; https://doi.org/10.3390/fishes10070335 - 8 Jul 2025
Viewed by 412
Abstract
Rising water temperatures due to climate change pose a significant threat to Phoxinus lagowskii, a cold-water fish that is ecologically vital to the high-latitude regions of China. This study assessed heat stress effects on behavioral, hematological, histological, physiological, and molecular responses in [...] Read more.
Rising water temperatures due to climate change pose a significant threat to Phoxinus lagowskii, a cold-water fish that is ecologically vital to the high-latitude regions of China. This study assessed heat stress effects on behavioral, hematological, histological, physiological, and molecular responses in P. lagowskii. The critical maximum temperature (CTmax) was determined using the loss of equilibrium (LOE) method, with the CTmax reaching 29 °C. Elevated temperatures lead to an increase in the OBR. Fish were subjected to acute heat stress at 28 °C (below CTmax) for 48 h, with samples collected during the 48 h period. RBC, WBC, HGB, and HCT significantly increased during heat stress but decreased 12 h after heat stress. The levels of serum cortisol and blood glucose after heat stress were significantly higher than those in the control group. After heat stress, the height of the ILCM in the gills increased significantly, and the liver exhibited vacuolar degeneration and hypopigmentation. The activities of Na+-K+-ATPase and Ca2+-Mg2+-ATPase in the gills initially increased and then decreased over the duration of heat stress. Most enzyme activities (PK, LDH, PFK, and HK) decreased during heat stress, while LPL and HL levels increased, indicating that lipid metabolism was the primary utilization process under heat stress. There was an increase in SOD activity at 12 h, followed by a decrease at 24 h, and an increase in CAT activity under heat stress. Integrated biomarker response (IBR) and principal component analysis (PCA) were employed to synthesize multi-level responses. The IBR values reached their peak at 3 h and 48 h of heat stress. We observed an upregulation of heat shock proteins (Hsp70, Hsp90, and Hsc70) as well as interleukin-10 (IL-10) in response to heat stress. Our findings offer novel insights into the mechanisms underlying the heat stress response in P. lagowskii, thereby enhancing our understanding of the effects of heat stress on cold-water fish. Full article
(This article belongs to the Special Issue Environmental Physiology of Aquatic Animals)
Show Figures

Graphical abstract

20 pages, 3840 KiB  
Article
Vacuolar Proteases of Candida auris from Clades III and IV and Their Relationship with Autophagy
by Daniel Clark-Flores, Alvaro Vidal-Montiel, Ricardo Mondragón-Flores, Eulogio Valentín-Gómez, César Hernández-Rodríguez, Margarita Juárez-Montiel and Lourdes Villa-Tanaca
J. Fungi 2025, 11(5), 388; https://doi.org/10.3390/jof11050388 - 18 May 2025
Cited by 1 | Viewed by 783
Abstract
Candida auris is a multidrug-resistant pathogen with a high mortality rate and widespread distribution. Additionally, it can persist on inert surfaces for extended periods, facilitating its transmissibility in hospital settings. Autophagy is a crucial cellular mechanism that enables fungal survival under adverse conditions. [...] Read more.
Candida auris is a multidrug-resistant pathogen with a high mortality rate and widespread distribution. Additionally, it can persist on inert surfaces for extended periods, facilitating its transmissibility in hospital settings. Autophagy is a crucial cellular mechanism that enables fungal survival under adverse conditions. A fundamental part of this process is mediated by vacuolar proteases, which play an essential role in the degradation and recycling of cellular components. The present work explores the relationship between C. auris vacuolar peptidases and autophagy, aiming to establish a precedent for understanding the survival mechanisms of this emerging fungus. Thus, eight genes encoding putative vacuolar peptidases in the C. auris genomes were identified: PEP4, PRB1, PRC1, ATG42, CPS, LAP4, APE3, and DAP2. Analysis of the protein domains and their phylogenetic relationships suggests that these enzymes are orthologs of Saccharomyces cerevisiae vacuolar peptidases. Notably, both vacuolar protease gene expression and the proteolytic activity of cell-free extracts increased under nutritional stress and rapamycin. An increase in the expression of the ATG8 gene and the presence of autophagic bodies were also observed. These results suggest that proteases could play a role in yeast autophagy and survival during starvation conditions. Full article
Show Figures

Graphical abstract

26 pages, 1750 KiB  
Review
The Emerging Roles of Vacuolar-Type ATPase-Dependent Lysosomal Acidification in Cardiovascular Disease
by Yan-Yan Chen, Cai-Xia Liu, Hai-Xin Liu and Shi-Yuan Wen
Biomolecules 2025, 15(4), 525; https://doi.org/10.3390/biom15040525 - 3 Apr 2025
Cited by 1 | Viewed by 1668
Abstract
The vacuolar-type ATPase (V-ATPase) is a multi-subunit enzyme complex that maintains lysosomal acidification, a critical process for cellular homeostasis. By controlling the pH within lysosomes, V-ATPase contributes to overall cellular homeostasis, helping to maintain a balance between the degradation and synthesis of cellular [...] Read more.
The vacuolar-type ATPase (V-ATPase) is a multi-subunit enzyme complex that maintains lysosomal acidification, a critical process for cellular homeostasis. By controlling the pH within lysosomes, V-ATPase contributes to overall cellular homeostasis, helping to maintain a balance between the degradation and synthesis of cellular components. Dysfunction of V-ATPase impairs lysosomal acidification, leading to the accumulation of undigested materials and contributing to various diseases, including cardiovascular diseases (CVDs) like atherosclerosis and myocardial disease. Furthermore, V-ATPase’s role in lysosomal function suggests potential therapeutic strategies targeting this enzyme complex to mitigate cardiovascular disease progression. Understanding the mechanisms by which V-ATPase influences cardiovascular pathology is essential for developing novel treatments aimed at improving outcomes in patients with heart and vascular diseases. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

13 pages, 3607 KiB  
Review
Roles and Regulations of Acid Invertases in Plants: Current Knowledge and Future Perspectives
by Jia Liu, Yuan Cheng, Meiying Ruan, Qingjing Ye, Rongqing Wang, Zhuping Yao, Guozhi Zhou, Zhimiao Li, Chenxu Liu and Hongjian Wan
Plants 2025, 14(3), 320; https://doi.org/10.3390/plants14030320 - 22 Jan 2025
Cited by 2 | Viewed by 1320
Abstract
Acid invertases (Ac-Invs) are crucial enzymes in plant physiology, regulating sucrose metabolism and hydrolyzing sucrose into glucose and fructose. These sugars serve not only as energy sources and structural components but also as signaling molecules, influencing diverse developmental processes, including seed and fruit [...] Read more.
Acid invertases (Ac-Invs) are crucial enzymes in plant physiology, regulating sucrose metabolism and hydrolyzing sucrose into glucose and fructose. These sugars serve not only as energy sources and structural components but also as signaling molecules, influencing diverse developmental processes, including seed and fruit growth, flowering, and stress responses. Ac-Invs are classified into cell wall invertases (CWINs) and vacuolar invertases (VINs) based on their subcellular localization, with both playing distinct roles in sucrose unloading, osmotic regulation, and sugar accumulation. Recent studies have also highlighted their involvement in abiotic stress adaptation and hormonal regulation, emphasizing their central role in plant resilience and productivity. However, gaps remain in understanding their regulatory mechanisms, particularly their interactions with plant hormones, defective invertases, and responses to environmental stresses. This review summarizes the biochemical characteristics, functions, and regulatory mechanisms of Ac-Invs, providing insights into their evolutionary significance and potential applications in crop improvement. Future research directions are proposed to elucidate unresolved questions and leverage Ac-Invs for enhancing agricultural sustainability. Full article
(This article belongs to the Special Issue Plant Metabolic Responses to Biotic and Abiotic Stress—2nd Edition)
Show Figures

Figure 1

26 pages, 3897 KiB  
Review
Exploring Aluminum Tolerance Mechanisms in Plants with Reference to Rice and Arabidopsis: A Comprehensive Review of Genetic, Metabolic, and Physiological Adaptations in Acidic Soils
by Nilakshi Chakraborty, Abir Das, Sayan Pal, Soumita Roy, Sudipta Kumar Sil, Malay Kumar Adak and Mirza Hasanuzzaman
Plants 2024, 13(13), 1760; https://doi.org/10.3390/plants13131760 - 25 Jun 2024
Cited by 9 | Viewed by 3142
Abstract
Aluminum (Al) makes up a third of the Earth’s crust and is a widespread toxic contaminant, particularly in acidic soils. It impacts crops at multiple levels, from cellular to whole plant systems. This review delves into Al’s reactivity, including its cellular transport, involvement [...] Read more.
Aluminum (Al) makes up a third of the Earth’s crust and is a widespread toxic contaminant, particularly in acidic soils. It impacts crops at multiple levels, from cellular to whole plant systems. This review delves into Al’s reactivity, including its cellular transport, involvement in oxidative redox reactions, and development of specific metabolites, as well as the influence of genes on the production of membrane channels and transporters, alongside its role in triggering senescence. It discusses the involvement of channel proteins in calcium influx, vacuolar proton pumping, the suppression of mitochondrial respiration, and the initiation of programmed cell death. At the cellular nucleus level, the effects of Al on gene regulation through alterations in nucleic acid modifications, such as methylation and histone acetylation, are examined. In addition, this review outlines the pathways of Al-induced metabolic disruption, specifically citric acid metabolism, the regulation of proton excretion, the induction of specific transcription factors, the modulation of Al-responsive proteins, changes in citrate and nucleotide glucose transporters, and overall metal detoxification pathways in tolerant genotypes. It also considers the expression of phenolic oxidases in response to oxidative stress, their regulatory feedback on mitochondrial cytochrome proteins, and their consequences on root development. Ultimately, this review focuses on the selective metabolic pathways that facilitate Al exclusion and tolerance, emphasizing compartmentalization, antioxidative defense mechanisms, and the control of programmed cell death to manage metal toxicity. Full article
(This article belongs to the Special Issue Plant Responses and Tolerance to Metal/Metalloid Toxicity III)
Show Figures

Figure 1

41 pages, 4340 KiB  
Review
Transcriptional Control of Seed Life: New Insights into the Role of the NAC Family
by Javier Fuertes-Aguilar and Angel J. Matilla
Int. J. Mol. Sci. 2024, 25(10), 5369; https://doi.org/10.3390/ijms25105369 - 14 May 2024
Cited by 11 | Viewed by 2734
Abstract
Transcription factors (TFs) regulate gene expression by binding to specific sequences on DNA through their DNA-binding domain (DBD), a universal process. This update conveys information about the diverse roles of TFs, focusing on the NACs (NAM-ATAF-CUC), in regulating target-gene expression and influencing various [...] Read more.
Transcription factors (TFs) regulate gene expression by binding to specific sequences on DNA through their DNA-binding domain (DBD), a universal process. This update conveys information about the diverse roles of TFs, focusing on the NACs (NAM-ATAF-CUC), in regulating target-gene expression and influencing various aspects of plant biology. NAC TFs appeared before the emergence of land plants. The NAC family constitutes a diverse group of plant-specific TFs found in mosses, conifers, monocots, and eudicots. This update discusses the evolutionary origins of plant NAC genes/proteins from green algae to their crucial roles in plant development and stress response across various plant species. From mosses and lycophytes to various angiosperms, the number of NAC proteins increases significantly, suggesting a gradual evolution from basal streptophytic green algae. NAC TFs play a critical role in enhancing abiotic stress tolerance, with their function conserved in angiosperms. Furthermore, the modular organization of NACs, their dimeric function, and their localization within cellular compartments contribute to their functional versatility and complexity. While most NAC TFs are nuclear-localized and active, a subset is found in other cellular compartments, indicating inactive forms until specific cues trigger their translocation to the nucleus. Additionally, it highlights their involvement in endoplasmic reticulum (ER) stress-induced programmed cell death (PCD) by activating the vacuolar processing enzyme (VPE) gene. Moreover, this update provides a comprehensive overview of the diverse roles of NAC TFs in plants, including their participation in ER stress responses, leaf senescence (LS), and growth and development. Notably, NACs exhibit correlations with various phytohormones (i.e., ABA, GAs, CK, IAA, JA, and SA), and several NAC genes are inducible by them, influencing a broad spectrum of biological processes. The study of the spatiotemporal expression patterns provides insights into when and where specific NAC genes are active, shedding light on their metabolic contributions. Likewise, this review emphasizes the significance of NAC TFs in transcriptional modules, seed reserve accumulation, and regulation of seed dormancy and germination. Overall, it effectively communicates the intricate and essential functions of NAC TFs in plant biology. Finally, from an evolutionary standpoint, a phylogenetic analysis suggests that it is highly probable that the WRKY family is evolutionarily older than the NAC family. Full article
Show Figures

Figure 1

21 pages, 2044 KiB  
Review
Multiple Roles of Glycerate Kinase—From Photorespiration to Gluconeogenesis, C4 Metabolism, and Plant Immunity
by Leszek A. Kleczkowski and Abir U. Igamberdiev
Int. J. Mol. Sci. 2024, 25(6), 3258; https://doi.org/10.3390/ijms25063258 - 13 Mar 2024
Cited by 8 | Viewed by 2777
Abstract
Plant glycerate kinase (GK) was previously considered an exclusively chloroplastic enzyme of the glycolate pathway (photorespiration), and its sole predicted role was to return most of the glycolate-derived carbon (as glycerate) to the Calvin cycle. However, recent discovery of cytosolic GK revealed metabolic [...] Read more.
Plant glycerate kinase (GK) was previously considered an exclusively chloroplastic enzyme of the glycolate pathway (photorespiration), and its sole predicted role was to return most of the glycolate-derived carbon (as glycerate) to the Calvin cycle. However, recent discovery of cytosolic GK revealed metabolic links for glycerate to other processes. Although GK was initially proposed as being solely regulated by substrate availability, subsequent discoveries of its redox regulation and the light involvement in the production of chloroplastic and cytosolic GK isoforms have indicated a more refined regulation of the pathways of glycerate conversion. Here, we re-evaluate the importance of GK and emphasize its multifaceted role in plants. Thus, GK can be a major player in several branches of primary metabolism, including the glycolate pathway, gluconeogenesis, glycolysis, and C4 metabolism. In addition, recently, the chloroplastic (but not cytosolic) GK isoform was implicated as part of a light-dependent plant immune response to pathogen attack. The origins of glycerate are also discussed here; it is produced in several cell compartments and undergoes huge fluctuations depending on light/dark conditions. The recent discovery of the vacuolar glycerate transporter adds yet another layer to our understanding of glycerate transport/metabolism and that of other two- and three-carbon metabolites. Full article
(This article belongs to the Special Issue Plant Respiration in the Light and Photorespiration)
Show Figures

Figure 1

14 pages, 4185 KiB  
Brief Report
Identification and Potential Participation of Lipases in Autophagic Body Degradation in Embryonic Axes of Lupin (Lupinus spp.) Germinating Seeds
by Karolina Wleklik, Szymon Stefaniak, Katarzyna Nuc, Małgorzata Pietrowska-Borek and Sławomir Borek
Int. J. Mol. Sci. 2024, 25(1), 90; https://doi.org/10.3390/ijms25010090 - 20 Dec 2023
Cited by 1 | Viewed by 1389
Abstract
Autophagy is a fundamental process for plants that plays a crucial role in maintaining cellular homeostasis and promoting survival in response to various environmental stresses. One of the lesser-known stages of plant autophagy is the degradation of autophagic bodies in vacuoles. To this [...] Read more.
Autophagy is a fundamental process for plants that plays a crucial role in maintaining cellular homeostasis and promoting survival in response to various environmental stresses. One of the lesser-known stages of plant autophagy is the degradation of autophagic bodies in vacuoles. To this day, no plant vacuolar enzyme has been confirmed to be involved in this process. On the other hand, several enzymes have been described in yeast (Saccharomyces cerevisiae), including Atg15, that possess lipolytic activity. In this preliminary study, which was conducted on isolated embryonic axes of the white lupin (Lupinus albus L.) and Andean lupin (Lupinus mutabilis Sweet), the potential involvement of plant vacuolar lipases in the degradation of autophagic bodies was investigated. We identified in transcriptomes (using next-generation sequencing (NGS)) of white and Andean lupin embryonic axes 38 lipases with predicted vacuolar localization, and for three of them, similarities in amino acid sequences with yeast Atg15 were found. A comparative transcriptome analysis of lupin isolated embryonic axes cultured in vitro under different sucrose and asparagine nutrition, evaluating the relations in the levels of the transcripts of lipase genes, was also carried out. A clear decrease in lipase gene transcript levels caused by asparagine, a key amino acid in lupin seed metabolism which retards the degradation of autophagic bodies during sugar-starvation-induced autophagy in lupin embryonic axes, was detected. Although the question of whether lipases are involved in the degradation of autophagic bodies during plant autophagy is still open, our findings strongly support such a hypothesis. Full article
(This article belongs to the Special Issue New Insight into Signaling and Autophagy in Plants 3.0)
Show Figures

Figure 1

22 pages, 3092 KiB  
Article
Regulation of V-ATPase by Jasmonic Acid: Possible Role of Persulfidation
by Magdalena Zboińska, Luis C. Romero, Cecilia Gotor and Katarzyna Kabała
Int. J. Mol. Sci. 2023, 24(18), 13896; https://doi.org/10.3390/ijms241813896 - 9 Sep 2023
Cited by 3 | Viewed by 1890
Abstract
Vacuolar H+-translocating ATPase (V-ATPase) is a proton pump crucial for plant growth and survival. For this reason, its activity is tightly regulated, and various factors, such as signaling molecules and phytohormones, may be involved in this process. The aim of this [...] Read more.
Vacuolar H+-translocating ATPase (V-ATPase) is a proton pump crucial for plant growth and survival. For this reason, its activity is tightly regulated, and various factors, such as signaling molecules and phytohormones, may be involved in this process. The aim of this study was to explain the role of jasmonic acid (JA) in the signaling pathways responsible for the regulation of V-ATPase in cucumber roots and its relationship with other regulators of this pump, i.e., H2S and H2O2. We analyzed several aspects of the JA action on the enzyme, including transcriptional regulation, modulation of protein levels, and persulfidation of selected V-ATPase subunits as an oxidative posttranslational modification induced by H2S. Our results indicated that JA functions as a repressor of V-ATPase, and its action is related to a decrease in the protein amount of the A and B subunits, the induction of oxidative stress, and the downregulation of the E subunit persulfidation. We suggest that both H2S and H2O2 may be downstream components of JA-dependent negative proton pump regulation. The comparison of signaling pathways induced by two negative regulators of the pump, JA and cadmium, revealed that multiple pathways are involved in the V-ATPase downregulation in cucumber roots. Full article
Show Figures

Figure 1

21 pages, 5682 KiB  
Article
Involvement of Vacuolar Processing Enzyme CgVPE1 in Vacuole Rupture in the Programmed Cell Death during the Development of the Secretory Cavity in Citrus grandis ‘Tomentosa’ Fruits
by Bin Huai, Minjian Liang, Junjun Lin, Panpan Tong, Mei Bai, Hanjun He, Xiangxiu Liang, Jiezhong Chen and Hong Wu
Int. J. Mol. Sci. 2023, 24(14), 11681; https://doi.org/10.3390/ijms241411681 - 20 Jul 2023
Cited by 3 | Viewed by 1791
Abstract
Vacuolar processing enzymes (VPEs) with caspase-1-like activity are closely associated with vacuole rupture. The destruction of vacuoles is one of the characteristics of programmed cell death (PCD) in plants. However, whether VPE is involved in the vacuole destruction of cells during secretory cavity [...] Read more.
Vacuolar processing enzymes (VPEs) with caspase-1-like activity are closely associated with vacuole rupture. The destruction of vacuoles is one of the characteristics of programmed cell death (PCD) in plants. However, whether VPE is involved in the vacuole destruction of cells during secretory cavity formation in Citrus plants remains unclear. This research identified a CgVPE1 gene that encoded the VPE and utilized cytology and molecular biology techniques to explore its temporal and spatial expression characteristics during the PCD process of secretory cavity cells in the Citrus grandis ‘Tomentosa’ fruit. The results showed that CgVPE1 is an enzyme with VPE and caspase-1-like activity that can self-cleave into a mature enzyme in an acidic environment. CgVPE1 is specifically expressed in the epithelial cells of secretory cavities. In addition, it mainly accumulates in vacuoles before it is ruptured in the secretory cavity cells. The spatial and temporal immunolocalization of CgVPE1 showed a strong relationship with the change in vacuole structure during PCD in secretory cavity cells. In addition, the change in the two types of VPE proteins from proenzymes to mature enzymes was closely related to the change in CgVPE1 localization. Our results indicate that CgVPE1 plays a vital role in PCD, causing vacuole rupture in cells during the development of the secretory cavity in C. grandis ‘Tomentosa’ fruits. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

10 pages, 1305 KiB  
Communication
Promoter Cis-Element Analyses Reveal the Function of αVPE in Drought Stress Response of Arabidopsis
by Chu-Nie Tang, Wan Muhamad Asrul Nizam Wan Abdullah, Chien-Yeong Wee, Zetty Norhana Balia Yusof, Wai-Sum Yap, Wan-Hee Cheng, Nadiya Akmal Baharum, Janna Ong-Abdullah, Jiun-Yan Loh and Kok-Song Lai
Biology 2023, 12(3), 430; https://doi.org/10.3390/biology12030430 - 10 Mar 2023
Cited by 9 | Viewed by 3819
Abstract
Vacuolar processing enzyme (VPE) is a cysteine protease responsible for vacuolar proteins’ maturation and regulation of programmed cell death (PCD). Four isoforms of Arabidopsis thaliana VPEs were identified previously, but only the functions of βVPE, γVPE, and δVPE were determined. The specific function [...] Read more.
Vacuolar processing enzyme (VPE) is a cysteine protease responsible for vacuolar proteins’ maturation and regulation of programmed cell death (PCD). Four isoforms of Arabidopsis thaliana VPEs were identified previously, but only the functions of βVPE, γVPE, and δVPE were determined. The specific function of a gene is linked to the cis-acting elements in the promoter region. A promoter analysis found repetitive drought-related cis-elements in αVPE, which highlight its potential involvement in drought regulation in A. thaliana. The further co-expression network portraying genes interacting with αVPE substantiated its drought-regulation-related function. Expression of αVPE was upregulated after drought treatment in A. thaliana. To confirm the role of αVPE, a loss of function study revealed that αVPE knockout mutants remained green compared with WT after drought treatment. The mutants had reduced proline activity, decreased sucrose content, and lower MDA content, but increased photosynthetic pigments, indicating that αVPE negatively regulates drought tolerance in A. thaliana. Taken together, our findings serve as important evidence of the involvement of αVPE in modulating drought tolerance in A. thaliana. Full article
(This article belongs to the Section Plant Science)
Show Figures

Graphical abstract

21 pages, 2059 KiB  
Review
Structural and Functional Diversity of Two ATP-Driven Plant Proton Pumps
by Katarzyna Kabała and Małgorzata Janicka
Int. J. Mol. Sci. 2023, 24(5), 4512; https://doi.org/10.3390/ijms24054512 - 24 Feb 2023
Cited by 13 | Viewed by 4364
Abstract
Two ATP-dependent proton pumps function in plant cells. Plasma membrane H+-ATPase (PM H+-ATPase) transfers protons from the cytoplasm to the apoplast, while vacuolar H+-ATPase (V-ATPase), located in tonoplasts and other endomembranes, is responsible for proton pumping into [...] Read more.
Two ATP-dependent proton pumps function in plant cells. Plasma membrane H+-ATPase (PM H+-ATPase) transfers protons from the cytoplasm to the apoplast, while vacuolar H+-ATPase (V-ATPase), located in tonoplasts and other endomembranes, is responsible for proton pumping into the organelle lumen. Both enzymes belong to two different families of proteins and, therefore, differ significantly in their structure and mechanism of action. The plasma membrane H+-ATPase is a member of the P-ATPases that undergo conformational changes, associated with two distinct E1 and E2 states, and autophosphorylation during the catalytic cycle. The vacuolar H+-ATPase represents rotary enzymes functioning as a molecular motor. The plant V-ATPase consists of thirteen different subunits organized into two subcomplexes, the peripheral V1 and the membrane-embedded V0, in which the stator and rotor parts have been distinguished. In contrast, the plant plasma membrane proton pump is a functional single polypeptide chain. However, when the enzyme is active, it transforms into a large twelve-protein complex of six H+-ATPase molecules and six 14-3-3 proteins. Despite these differences, both proton pumps can be regulated by the same mechanisms (such as reversible phosphorylation) and, in some processes, such as cytosolic pH regulation, may act in a coordinated way. Full article
(This article belongs to the Special Issue Structural Biology of Membrane Proteins)
Show Figures

Figure 1

19 pages, 2795 KiB  
Article
Bioinformatics-Based Screening Approach for the Identification and Characterization of Lipolytic Enzymes from the Marine Diatom Phaeodactylum tricornutum
by Victor Murison, Josiane Hérault, Benoît Schoefs, Justine Marchand and Lionel Ulmann
Mar. Drugs 2023, 21(2), 125; https://doi.org/10.3390/md21020125 - 14 Feb 2023
Cited by 8 | Viewed by 3038
Abstract
Oleaginous diatoms accumulate lipids of biotechnological interest when exposed to nutrient stress conditions such as nitrogen starvation. While accumulation mechanisms are well-known and have been engineered to improve lipid production, degradation mechanisms remain poorly investigated in diatoms. Identifying lipid-degrading enzymes is the initial [...] Read more.
Oleaginous diatoms accumulate lipids of biotechnological interest when exposed to nutrient stress conditions such as nitrogen starvation. While accumulation mechanisms are well-known and have been engineered to improve lipid production, degradation mechanisms remain poorly investigated in diatoms. Identifying lipid-degrading enzymes is the initial step to understanding the catabolic processes. In this study, an in silico screening of the genome of Phaeodactylum tricornutum led to the identification of 57 putative triacylglycerol lipases (EC 3.1.1.3) grouped in 4 families. Further analysis revealed the presence of conserved domains and catalytic residues of lipases. Physico-chemical characteristics and subcellular localization predictions highlighted that a majority of these putative proteins are hydrophilic and cytosolic, suggesting they could be recruited to lipid droplets directly from the cytosol. Among the 57 identified putative proteins, three lipases were identified as possibly involved in lipophagy due to a potential vacuolar localization. The expression of the mRNA corresponding to the 57 proteins was then searched in 3 transcriptomic datasets obtained under nitrogen starvation. Nine genes were highly regulated and were considered as encoding enzymes with a probable important function in lipid catabolism. A tertiary structure prediction of these nine candidates yielded eight functional 3D models. Among those, two downregulated enzymes, Phatr3_J54974 and Phatr3_EG00720, were highlighted as good targets for future functional genomics and purification studies to investigate their role in lipid degradation. Full article
(This article belongs to the Special Issue Biotechnological Applications of Marine Enzymes)
Show Figures

Figure 1

14 pages, 3153 KiB  
Review
Vacuolar Processing Enzymes in Plant Programmed Cell Death and Autophagy
by Karolina Wleklik and Sławomir Borek
Int. J. Mol. Sci. 2023, 24(2), 1198; https://doi.org/10.3390/ijms24021198 - 7 Jan 2023
Cited by 17 | Viewed by 4959
Abstract
Vacuolar processing enzymes (VPEs) are plant cysteine proteases that are subjected to autoactivation in an acidic pH. It is presumed that VPEs, by activating other vacuolar hydrolases, are in control of tonoplast rupture during programmed cell death (PCD). Involvement of VPEs has been [...] Read more.
Vacuolar processing enzymes (VPEs) are plant cysteine proteases that are subjected to autoactivation in an acidic pH. It is presumed that VPEs, by activating other vacuolar hydrolases, are in control of tonoplast rupture during programmed cell death (PCD). Involvement of VPEs has been indicated in various types of plant PCD related to development, senescence, and environmental stress responses. Another pathway induced during such processes is autophagy, which leads to the degradation of cellular components and metabolite salvage, and it is presumed that VPEs may be involved in the degradation of autophagic bodies during plant autophagy. As both PCD and autophagy occur under similar conditions, research on the relationship between them is needed, and VPEs, as key vacuolar proteases, seem to be an important factor to consider. They may even constitute a potential point of crosstalk between cell death and autophagy in plant cells. This review describes new insights into the role of VPEs in plant PCD, with an emphasis on evidence and hypotheses on the interconnections between autophagy and cell death, and indicates several new research opportunities. Full article
(This article belongs to the Special Issue New Insight into Signaling and Autophagy in Plants 2.0)
Show Figures

Figure 1

13 pages, 2034 KiB  
Article
Co-Expression of ZmVPP1 with ZmNAC111 Confers Robust Drought Resistance in Maize
by Shengxue Liu, Xiaohu Liu, Xiaomin Zhang, Shujie Chang, Chao Ma and Feng Qin
Genes 2023, 14(1), 8; https://doi.org/10.3390/genes14010008 - 20 Dec 2022
Cited by 21 | Viewed by 3674
Abstract
Drought is a primary environmental factor limiting maize production globally. Although transferring a single gene to maize can enhance drought resistance, maize response to water deficit requires further improvement to accommodate the steadily intensifying drought events worldwide. Here, we generated dual transgene lines [...] Read more.
Drought is a primary environmental factor limiting maize production globally. Although transferring a single gene to maize can enhance drought resistance, maize response to water deficit requires further improvement to accommodate the steadily intensifying drought events worldwide. Here, we generated dual transgene lines simultaneously overexpressing two drought-resistant genes, ZmVPP1 (encoding a vacuolar-type H+ pyrophosphatase) and ZmNAC111 (encoding a NAM, ATAF, and CUC (NAC)-type transcription factor). Following drought stress, survival rates of the pyramided transgenic seedlings reached 62–66%, while wild-type and single transgene seedling survival rates were 23% and 37–42%, respectively. Maize seedlings co-expressing ZmVPP1 and ZmNAC111 exhibited higher photosynthesis rates, antioxidant enzyme activities, and root-shoot ratios than the wild type, and anthesis-silking intervals were shorter while grain yields were higher under water deficit conditions in field trials. Additionally, RNA-sequencing analysis confirmed that photosynthesis and stress-related metabolic processes were stimulated in the dual transgene plants under drought conditions. The findings in this work illustrate how high co-expression of different drought-related genes can reinforce drought resistance over that of individual transgene lines, providing a path for developing arid climate-adapted elite maize varieties. Full article
(This article belongs to the Special Issue Abiotic Stress in Land Plants: Molecular Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop