Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = uropathogenic Proteus mirabilis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1217 KiB  
Review
Beyond Infection: How Antimicrobial Therapies Influence the Urinary Microbiome and Stone Disease
by Oana Nicu-Canareica, Vlad-Octavian Bolocan, Loredana Sabina Cornelia Manolescu, Petru Armean, Cosmin Medar, Liliana Burlibașa, Maria-Luiza Băean and Viorel Jinga
Pharmaceuticals 2025, 18(7), 1038; https://doi.org/10.3390/ph18071038 - 12 Jul 2025
Viewed by 574
Abstract
The discovery of a resident urinary microbiome has significantly altered the understanding of urolithiasis, expanding its etiology beyond metabolic and dietary factors to include microbial contributions. This review highlights how specific uropathogens—particularly Proteus mirabilis, Klebsiella pneumoniae, and Escherichia coli—facilitate stone [...] Read more.
The discovery of a resident urinary microbiome has significantly altered the understanding of urolithiasis, expanding its etiology beyond metabolic and dietary factors to include microbial contributions. This review highlights how specific uropathogens—particularly Proteus mirabilis, Klebsiella pneumoniae, and Escherichia coli—facilitate stone formation through mechanisms such as urease activity, citrate degradation, urine alkalinization, biofilm development, and inflammatory signaling. We critically examine how antibiotic therapies, while essential for treating urinary tract infections (UTIs), disrupt microbial homeostasis by depleting beneficial taxa like Lactobacillus and enabling colonization by lithogenic and resistant strains. Recurrent or broad-spectrum antibiotic use is linked to persistent dysbiosis and increased risk of stone recurrence. Additionally, this paper explores emerging microbiome-targeted strategies—such as probiotics, prebiotics, bacteriotherapy, and precision antimicrobials—as potential interventions to restore microbial balance and mitigate stone risk. Recognizing the urinary microbiome as a therapeutic target opens new avenues for personalized, microbiota-conscious strategies in the prevention and management of kidney stone disease. Full article
Show Figures

Graphical abstract

9 pages, 763 KiB  
Article
Epidemiological Profile and Antibiotic Resistance in Urinary Tract Infections Among Elderly Women
by Francisco José Barbas Rodrigues, Patrícia Coelho, Sónia Mateus, João Metello and Miguel Castelo-Branco
Women 2025, 5(2), 16; https://doi.org/10.3390/women5020016 - 14 May 2025
Viewed by 465
Abstract
Urinary tract infections (UTIs) are among the most prevalent infectious diseases in older women, especially those over 65 years of age. Physiological changes related to aging, comorbidities, and frequent use of medical devices such as urinary catheters increase susceptibility. Increasing antimicrobial resistance further [...] Read more.
Urinary tract infections (UTIs) are among the most prevalent infectious diseases in older women, especially those over 65 years of age. Physiological changes related to aging, comorbidities, and frequent use of medical devices such as urinary catheters increase susceptibility. Increasing antimicrobial resistance further complicates treatment strategies. This study aims to describe the epidemiological profile of UTI in women over 65 years of age, focusing on the characterization of etiological agents, observed antimicrobial resistance patterns, and commonly reported risk factors. We conducted a retrospective analysis of microbiological and clinical data from elderly women diagnosed with UTIs. Bacterial isolates were identified and antimicrobial susceptibility profiles were evaluated over a specified period. A statistical analysis was performed to determine the prevalence of different pathogens and antibiotic resistance trends. Escherichia coli was the predominant uropathogen, consistent across different clinical scenarios and patient conditions. The four most common bacterial strains—E. coli, Klebsiella pneumoniae, Proteus mirabilis, and Enterococcus faecalis—aligned with global epidemiological data. In Escherichia coli a significant increase in resistance to nitrofurantoin was observed, possibly indicating excessive empirical use, while resistance to other antibiotics, such as amoxicillin/clavulanic acid and ertapenem, remained stable or decreased. Institutional antibiotic stewardship programs likely contributed to this trend. The study highlights E. coli as the main etiological agent in elderly women with UTIs. The observed resistance patterns emphasize the need for localized antimicrobial surveillance and personalized therapeutic approaches. Continuous microbiological monitoring and rational use of antibiotics are crucial to optimize treatment outcomes and control the development of resistance. Full article
Show Figures

Figure 1

16 pages, 8772 KiB  
Article
Substances Secreted by Lactobacillus spp. from the Urinary Tract Microbiota Play a Protective Role against Proteus mirabilis Infections and Their Complications
by Dominika Szczerbiec, Mirosława Słaba and Agnieszka Torzewska
Int. J. Mol. Sci. 2024, 25(1), 103; https://doi.org/10.3390/ijms25010103 - 20 Dec 2023
Cited by 6 | Viewed by 2211
Abstract
Proteus mirabilis urinary tract infections can lead to serious complications such as development of urinary stones. Lactobacillus spp., belonging to the natural microbiota of the urinary tract, exhibit a number of antagonistic mechanisms against uropathogens, including the secretion of organic acids. In this [...] Read more.
Proteus mirabilis urinary tract infections can lead to serious complications such as development of urinary stones. Lactobacillus spp., belonging to the natural microbiota of the urinary tract, exhibit a number of antagonistic mechanisms against uropathogens, including the secretion of organic acids. In this study, we determined the anti-adhesion, anti-cytotoxicity and anti-crystallization properties of the substances secreted by Lactobacillus. For this purpose, membrane inserts with a pore diameter 0.4 μm were used, which prevent mixing of cultured cells, simultaneously enabling the diffusion of metabolic products. The intensity of crystallization was assessed by measuring the levels of Ca2+, Mg2+ and NH3 and by observing crystals using microscopic methods. The cytotoxicity of the HCV-29 cell line was determined using the LDH and MTT assays, and the impact of lactobacilli on P. mirabilis adhesion to the bladder epithelium was assessed by establishing CFU/mL after cell lysis. It was shown that in the presence of L. gasseri the adhesion of P. mirabilis and the cytotoxicity of the cells decreased. The degree of crystallization was also inhibited in all experimental models. Moreover, it was demonstrated that L. gasseri is characterized by the secretion of a high concentration of L-lactic acid. These results indicate that L-lactic acid secreted by L. gasseri has a significant impact on the crystallization process and pathogenicity of P. mirabilis. Full article
(This article belongs to the Special Issue Molecular Research in Prebiotics, Probiotics and Postbiotics)
Show Figures

Figure 1

22 pages, 10192 KiB  
Article
Differential Contribution of Hydrogen Metabolism to Proteus mirabilis Fitness during Single-Species and Polymicrobial Catheterized Urinary Tract Infection
by Aimee L. Brauer, Brian S. Learman and Chelsie E. Armbruster
Pathogens 2023, 12(12), 1377; https://doi.org/10.3390/pathogens12121377 - 22 Nov 2023
Cited by 1 | Viewed by 2382
Abstract
Proteus mirabilis is a common uropathogen and a leading cause of catheter-associated urinary tract infections (CAUTIs), which are often polymicrobial. Through a genome-wide screen, we previously identified two [NiFe] hydrogenases as candidate fitness factors for P. mirabilis CAUTI: a Hyb-type Group 1c H [...] Read more.
Proteus mirabilis is a common uropathogen and a leading cause of catheter-associated urinary tract infections (CAUTIs), which are often polymicrobial. Through a genome-wide screen, we previously identified two [NiFe] hydrogenases as candidate fitness factors for P. mirabilis CAUTI: a Hyb-type Group 1c H2-uptake hydrogenase and a Hyf-type Group 4a H2-producing hydrogenase. In this study, we disrupted one gene of each system (hyfE and hybC) and also generated a double mutant to examine the contribution of flexible H2 metabolism to P. mirabilis growth and fitness in vitro and during experimental CAUTI. Since P. mirabilis is typically present as part of a polymicrobial community in the urinary tract, we also examined the impact of two common co-colonization partners, Providencia stuartii and Enterococcus faecalis, on the expression and contribution of each hydrogenase to fitness. Our data demonstrate that neither system alone is critical for P. mirabilis growth in vitro or fitness during experimental CAUTI. However, perturbation of flexible H2 metabolism in the ∆hybChyfE double mutant decreased P. mirabilis fitness in vitro and during infection. The Hyf system alone contributed to the generation of proton motive force and swarming motility, but only during anaerobic conditions. Unexpectedly, both systems contributed to benzyl viologen reduction in TYET medium, and disruption of either system increased expression of the other. We further demonstrate that polymicrobial interactions with P. stuartii and E. faecalis alter the expression of Hyb and Hyf in vitro as well as the contribution of each system to P. mirabilis fitness during CAUTI. Full article
(This article belongs to the Special Issue Molecular and Cellular Aspects of Urinary Tract Infection)
Show Figures

Figure 1

14 pages, 2861 KiB  
Article
Antigenic and Structural Properties of the Lipopolysaccharide of the Uropathogenic Proteus mirabilis Dm55 Strain Classified to a New O85 Proteus Serogroup
by Agata Palusiak, Anna Turska-Szewczuk and Dominika Drzewiecka
Int. J. Mol. Sci. 2023, 24(22), 16424; https://doi.org/10.3390/ijms242216424 - 16 Nov 2023
Cited by 3 | Viewed by 1490
Abstract
The aim of the study was the serological and structural characterization of the lipopolysaccharide (LPS) O antigen from P. mirabilis Dm55 coming from the urine of a patient from Lodz. The Dm55 LPS was recognized in ELISA only by the O54 antiserum, suggesting [...] Read more.
The aim of the study was the serological and structural characterization of the lipopolysaccharide (LPS) O antigen from P. mirabilis Dm55 coming from the urine of a patient from Lodz. The Dm55 LPS was recognized in ELISA only by the O54 antiserum, suggesting a serological distinction of the Dm55 O antigen from all the 84 Proteus LPS serotypes described. The obtained polyclonal rabbit serum against P. mirabilis Dm55 reacted in ELISA and Western blotting with a few LPSs (including O54), but the reactions were weaker than those observed in the homologous system. The LPS of P. mirabilis Dm55 was subjected to mild acid hydrolysis, and the obtained high-molecular-mass O polysaccharide was chemically studied using sugar and methylation analyses, mass spectrometry, and 1H and 13C NMR spectroscopy, including 1H,1H NOESY, and 1H,13C HMBC experiments. The Dm55 O unit is a branched three-saccharide, and its linear fragment contains α-GalpNAc and β-Galp, whereas α-GlcpNAc occupies a terminal position. The Dm55 OPS shares a disaccharide epitope with the Proteus O54 antigen. Due to the structural differences of the studied O antigen from the other described Proteus O polysaccharides, we propose to classify the P. mirabilis Dm55 strain to a new Proteus O85 serogroup. Full article
(This article belongs to the Special Issue Lipopolysaccharide: Bacterial Endotoxin 2023)
Show Figures

Figure 1

17 pages, 3191 KiB  
Article
Antibiotic Resistance Profiling and Phylogenicity of Uropathogenic Bacteria Isolated from Patients with Urinary Tract Infections
by Muhammad Ajmal Khan, Atta Ur Rahman, Bakhtawar Khan, Samiah Hamad Al-Mijalli, Amal S. Alswat, Aftab Amin, Refaat A. Eid, Mohamed Samir A. Zaki, Sadia Butt, Jamshaid Ahmad, Eman Fayad and Amin Ullah
Antibiotics 2023, 12(10), 1508; https://doi.org/10.3390/antibiotics12101508 - 3 Oct 2023
Cited by 9 | Viewed by 3450
Abstract
Urinary tract infections (UTIs) are healthcare problems that commonly involve bacterial and, in some rare instances, fungal or viral infections. The irrational prescription and use of antibiotics in UTI treatment have led to an increase in antibiotic resistance. Urine samples (145) were collected [...] Read more.
Urinary tract infections (UTIs) are healthcare problems that commonly involve bacterial and, in some rare instances, fungal or viral infections. The irrational prescription and use of antibiotics in UTI treatment have led to an increase in antibiotic resistance. Urine samples (145) were collected from male and female patients from Lower Dir, Khyber Pakhtunkhwa (KP), Pakistan. Biochemical analyses were carried out to identify uropathogens. Molecular analysis for the identification of 16S ribosomal RNA in samples was performed via Sanger sequencing. Evolutionary linkage was determined using Molecular Evolutionary Genetics Analysis-7 (MEGA-7). The study observed significant growth in 52% of the samples (83/145). Gram-negative bacteria were identified in 85.5% of samples, while Gram-positive bacteria were reported in 14.5%. The UTI prevalence was 67.5% in females and 32.5% in males. The most prevalent uropathogenic bacteria were Klebsiella pneumoniae (39.7%, 33/83), followed by Escherichia coli (27.7%, 23/83), Pseudomonas aeruginosa (10.8%, 9/83), Staphylococcus aureus (9.6%, 8/83), Proteus mirabilis (7.2%, 6/83) and Staphylococcus saprophyticus (4.8%, 4/83). Phylogenetic analysis was performed using the neighbor-joining method, further confirming the relation of the isolates in our study with previously reported uropathogenic isolates. Antibiotic susceptibility tests identified K. pneumonia as being sensitive to imipenem (100%) and fosfomycin (78.7%) and resistant to cefuroxime (100%) and ciprofloxacin (94%). Similarly, E. coli showed high susceptibility to imipenem (100%), fosfomycin (78.2%) and nitrofurantoin (78.2%), and resistance to ciprofloxacin (100%) and cefuroxime (100%). Imipenem was identified as the most effective antibiotic, while cefuroxime and ciprofloxacin were the least. The phylogenetic tree analysis indicated that K. pneumoniae, E. coli, P. aeruginosa, S. aureus and P. mirabilis clustered with each other and the reference sequences, indicating high similarity (based on 16S rRNA sequencing). It can be concluded that genetically varied uropathogenic organisms are commonly present within the KP population. Our findings demonstrate the need to optimize antibiotic use in treating UTIs and the prevention of antibiotic resistance in the KP population. Full article
Show Figures

Figure 1

15 pages, 3618 KiB  
Article
Protective Role of Betulinic Acid against Cisplatin-Induced Nephrotoxicity and Its Antibacterial Potential toward Uropathogenic Bacteria
by Fatemah A. Alherz, Engy Elekhnawy, Hend Mostafa Selim, Thanaa A. El-Masry, Aya H. El-Kadem, Ismail A. Hussein and Walaa A. Negm
Pharmaceuticals 2023, 16(8), 1180; https://doi.org/10.3390/ph16081180 - 18 Aug 2023
Cited by 4 | Viewed by 1922
Abstract
Acute kidney injury (AKI) is one of the major side effects of cisplatin, a remarkable anticancer agent. Therefore, there is a growing need to find an agent that could mitigate cisplatin-induced nephrotoxicity. Betulinic acid (BA) is a natural compound isolated from Silene succulenta [...] Read more.
Acute kidney injury (AKI) is one of the major side effects of cisplatin, a remarkable anticancer agent. Therefore, there is a growing need to find an agent that could mitigate cisplatin-induced nephrotoxicity. Betulinic acid (BA) is a natural compound isolated from Silene succulenta Forssk for the first time, with miraculous biological activities and no reports of its effect on the nephrotoxicity induced by cisplatin. Mice received BA orally with doses of 30 and 50 mg/kg before the intraperitoneal injection of cisplatin. Betulinic acid was found to decrease serum levels of creatinine and tissue levels of NGAL and kidney injury molecule (KIM-1) and improve the histological changes in the kidney. In addition, BA decreased the oxidative stress marker malondialdehyde (MDA), increased superoxide dismutase (SOD) antioxidative activity and suppressed the intensity of IL-1B and NFкB immuno-staining. Interestingly, betulinic acid enhanced autophagy by increasing beclin 1, ATG5, and LC3II and decreasing p62 expressions. Thus, our findings suggest betulinic acid as a potential agent that may protect from acute kidney injury by targeting inflammation, oxidative stress, and autophagy processes. Novel drugs are needed to combat the spreading of multidrug resistance between pathogenic bacteria, especially uropathogenic isolates. So, we elucidated the antibacterial properties of BA on Pseudomonas aeruginosa, Escherichia coli, Proteus mirabilis, and Klebsiella pneumoniae. Betulinic acid had minimum inhibitory concentration values (128 to 512 µg/mL). In addition, it adversely affected the membrane integrity of the tested isolates. Accordingly, betulinic acid should be clinically investigated in the future for urinary tract diseases. Full article
(This article belongs to the Special Issue Pharmacotherapy of Kidney Diseases)
Show Figures

Figure 1

33 pages, 3193 KiB  
Review
Urinary Tract Infections Caused by Uropathogenic Escherichia coli: Mechanisms of Infection and Treatment Options
by Yang Zhou, Zuying Zhou, Lin Zheng, Zipeng Gong, Yueting Li, Yang Jin, Yong Huang and Mingyan Chi
Int. J. Mol. Sci. 2023, 24(13), 10537; https://doi.org/10.3390/ijms241310537 - 23 Jun 2023
Cited by 106 | Viewed by 28329
Abstract
Urinary tract infections (UTIs) are common bacterial infections that represent a severe public health problem. They are often caused by Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumonia), Proteus mirabilis (P. mirabilis), Enterococcus faecalis (E. faecalis [...] Read more.
Urinary tract infections (UTIs) are common bacterial infections that represent a severe public health problem. They are often caused by Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumonia), Proteus mirabilis (P. mirabilis), Enterococcus faecalis (E. faecalis), and Staphylococcus saprophyticus (S. saprophyticus). Among these, uropathogenic E. coli (UPEC) are the most common causative agent in both uncomplicated and complicated UTIs. The adaptive evolution of UPEC has been observed in several ways, including changes in colonization, attachment, invasion, and intracellular replication to invade the urothelium and survive intracellularly. While antibiotic therapy has historically been very successful in controlling UTIs, high recurrence rates and increasing antimicrobial resistance among uropathogens threaten to greatly reduce the efficacy of these treatments. Furthermore, the gradual global emergence of multidrug-resistant UPEC has highlighted the need to further explore its pathogenesis and seek alternative therapeutic and preventative strategies. Therefore, a thorough understanding of the clinical status and pathogenesis of UTIs and the advantages and disadvantages of antibiotics as a conventional treatment option could spark a surge in the search for alternative treatment options, especially vaccines and medicinal plants. Such options targeting multiple pathogenic mechanisms of UPEC are expected to be a focus of UTI management in the future to help combat antibiotic resistance. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Graphical abstract

17 pages, 2005 KiB  
Review
Urinary Tract Infections: The Current Scenario and Future Prospects
by Giuseppe Mancuso, Angelina Midiri, Elisabetta Gerace, Maria Marra, Sebastiana Zummo and Carmelo Biondo
Pathogens 2023, 12(4), 623; https://doi.org/10.3390/pathogens12040623 - 20 Apr 2023
Cited by 155 | Viewed by 48072
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections worldwide, occurring in both community and healthcare settings. Although the clinical symptoms of UTIs are heterogeneous and range from uncomplicated (uUTIs) to complicated (cUTIs), most UTIs are usually treated empirically. Bacteria are [...] Read more.
Urinary tract infections (UTIs) are among the most common bacterial infections worldwide, occurring in both community and healthcare settings. Although the clinical symptoms of UTIs are heterogeneous and range from uncomplicated (uUTIs) to complicated (cUTIs), most UTIs are usually treated empirically. Bacteria are the main causative agents of these infections, although more rarely, other microorganisms, such as fungi and some viruses, have been reported to be responsible for UTIs. Uropathogenic Escherichia coli (UPEC) is the most common causative agent for both uUTIs and cUTIs, followed by other pathogenic microorganisms, such as Klebsiella pneumoniae, Proteus mirabilis, Enterococcus faecalis, and Staphylococcus spp. In addition, the incidence of UTIs caused by multidrug resistance (MDR) is increasing, resulting in a significant increase in the spread of antibiotic resistance and the economic burden of these infections. Here, we discuss the various factors associated with UTIs, including the mechanisms of pathogenicity related to the bacteria that cause UTIs and the emergence of increasing resistance in UTI pathogens. Full article
(This article belongs to the Special Issue Pathogens in 2023)
Show Figures

Figure 1

12 pages, 292 KiB  
Article
Prevalence, Resistance Patterns and Biofilm Production Ability of Bacterial Uropathogens from Cases of Community-Acquired Urinary Tract Infections in South Italy
by Angela Maione, Emilia Galdiero, Luigi Cirillo, Edvige Gambino, Maria Assunta Gallo, Francesca Paola Sasso, Arianna Petrillo, Marco Guida and Marilena Galdiero
Pathogens 2023, 12(4), 537; https://doi.org/10.3390/pathogens12040537 - 29 Mar 2023
Cited by 16 | Viewed by 4010
Abstract
Community-acquired urinary tract infections represent the most common infectious diseases in the community setting. Knowing the antibiotic resistance patterns of uropathogens is crucial for establishing empirical treatment. The aim of the current study is to determine the incidence of the causative agents of [...] Read more.
Community-acquired urinary tract infections represent the most common infectious diseases in the community setting. Knowing the antibiotic resistance patterns of uropathogens is crucial for establishing empirical treatment. The aim of the current study is to determine the incidence of the causative agents of UTIs and their resistance profiles. Patients of all ages and both sexes were enrolled in the study, and admitted to San Ciro Diagnostic Center in Naples between January 2019 and Jun 2020. Bacterial identification and antibiotic susceptibility testing were carried out using Vitek 2 system. Among the 2741 urine samples, 1702 (62.1%) and 1309 (37.9%) were negative and positive for bacterial growth, respectively. Of 1309 patients with infection, 760 (73.1%) were females and 279 (26.9%) were males. The greatest number of positive cases were found in the in the elderly (>61 years). Regarding uropathogens, 1000 (96.2%) were Gram-negative while 39 (3.8%) were Gram-positive strains. The three most isolated pathogenic strains were Escherichia coli (72.2%), Klebsiella pneumoniae (12.4%), and Proteus mirabilis (9.0%). Strong biofilm formation ability was observed in about 30% of the tested isolates. The low resistance rates recorded against nitrofurantoin, fosfomycin, piperacillin–tazobactam, and gentamicin could suggest them as the most appropriate therapies for CA-UTIs. Full article
Show Figures

Graphical abstract

14 pages, 897 KiB  
Review
Update on the Effect of the Urinary Microbiome on Urolithiasis
by Hae Do Jung, Seok Cho and Joo Yong Lee
Diagnostics 2023, 13(5), 951; https://doi.org/10.3390/diagnostics13050951 - 2 Mar 2023
Cited by 15 | Viewed by 4206
Abstract
Microbiota are ecological communities of commensal, symbiotic, and pathogenic microorganisms. The microbiome could be involved in kidney stone formation through hyperoxaluria and calcium oxalate supersaturation, biofilm formation and aggregation, and urothelial injury. Bacteria bind to calcium oxalate crystals, which causes pyelonephritis and leads [...] Read more.
Microbiota are ecological communities of commensal, symbiotic, and pathogenic microorganisms. The microbiome could be involved in kidney stone formation through hyperoxaluria and calcium oxalate supersaturation, biofilm formation and aggregation, and urothelial injury. Bacteria bind to calcium oxalate crystals, which causes pyelonephritis and leads to changes in nephrons to form Randall’s plaque. The urinary tract microbiome, but not the gut microbiome, can be distinguished between cohorts with urinary stone disease (USD) and those without a history of the disease. In the urine microbiome, the role is known of urease-producing bacteria (Proteus mirabilis, Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, Providencia stuartii, Serratia marcescens, and Morganella morganii) in stone formation. Calcium oxalate crystals were generated in the presence of two uropathogenic bacteria (Escherichia coli and K. pneumoniae). Non-uropathogenic bacteria (S. aureus and Streptococcus pneumoniae) exhibit calcium oxalate lithogenic effects. The taxa Lactobacilli and Enterobacteriaceae best distinguished the healthy cohort from the USD cohort, respectively. Standardization is needed in urine microbiome research for urolithiasis. Inadequate standardization and design of urinary microbiome research on urolithiasis have hampered the generalizability of results and diminished their impact on clinical practice. Full article
(This article belongs to the Special Issue Microbiome in Urological Diseases)
Show Figures

Figure 1

22 pages, 739 KiB  
Review
Natural Polyphenols for Prevention and Treatment of Urinary Tract Infections
by Maria Maisto, Fortuna Iannuzzo, Ettore Novellino, Elisabetta Schiano, Vincenzo Piccolo and Gian Carlo Tenore
Int. J. Mol. Sci. 2023, 24(4), 3277; https://doi.org/10.3390/ijms24043277 - 7 Feb 2023
Cited by 9 | Viewed by 8015
Abstract
Urinary tract infections (UTIs) are the second most common type of bacterial infection worldwide. UTIs are gender-specific diseases, with a higher incidence in women. This type of infection could occur in the upper part of the urogenital tract, leading to pyelonephritis and kidney [...] Read more.
Urinary tract infections (UTIs) are the second most common type of bacterial infection worldwide. UTIs are gender-specific diseases, with a higher incidence in women. This type of infection could occur in the upper part of the urogenital tract, leading to pyelonephritis and kidney infections, or in the lower part of the urinary tract, leading to less serious pathologies, mainly cystitis and urethritis. The most common etiological agent is uropathogenic E. coli (UPEC), followed by Pseudomonas aeruginosa and Proteus mirabilis. Conventional therapeutic treatment involves the use of antimicrobial agents, but due to the dramatic increase in antimicrobial resistance (AMR), this strategy has partially lost its therapeutic efficacy. For this reason, the search for natural alternatives for UTI treatment represents a current research topic. Therefore, this review summarized the results of in vitro and animal- or human-based in vivo studies aimed to assess the potential therapeutic anti-UTI effects of natural polyphenol-based nutraceuticals and foods. In particular, the main in vitro studies were reported, describing the principal molecular therapeutic targets and the mechanism of action of the different polyphenols studied. Furthermore, the results of the most relevant clinical trials for the treatment of urinary tract health were described. Future research is needed to confirm and validate the potential of polyphenols in the clinical prophylaxis of UTIs. Full article
(This article belongs to the Special Issue Polyphenols and Their Impact on Human Health)
Show Figures

Figure 1

24 pages, 1101 KiB  
Review
Antimicrobial Activity of Spices Popularly Used in Mexico against Urinary Tract Infections
by Ariadna Jazmín Ortega-Lozano, Estefani Yaquelin Hernández-Cruz, Tania Gómez-Sierra and José Pedraza-Chaverri
Antibiotics 2023, 12(2), 325; https://doi.org/10.3390/antibiotics12020325 - 3 Feb 2023
Cited by 18 | Viewed by 7502
Abstract
Urinary tract infections (UTIs) are the most common infectious diseases worldwide. These infections are common in all people; however, they are more prevalent in women than in men. The main microorganism that causes 80–90% of UTIs is Escherichia coli. However, other bacteria [...] Read more.
Urinary tract infections (UTIs) are the most common infectious diseases worldwide. These infections are common in all people; however, they are more prevalent in women than in men. The main microorganism that causes 80–90% of UTIs is Escherichia coli. However, other bacteria such as Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Proteus mirabilis, and Klebsiella pneumoniae cause UTIs, and antibiotics are required to treat them. However, UTI treatment can be complicated by antibiotic resistance and biofilm formation. Therefore, medicinal plants, such as spices generally added to foods, can be a therapeutic alternative due to the variety of phytochemicals such as polyphenols, saponins, alkaloids, and terpenes present in their extracts that exert antimicrobial activity. Essential oils extracted from spices have been used to demonstrate their antimicrobial efficacy against strains of pathogens isolated from UTI patients and their synergistic effect with antibiotics. This article summarizes relevant findings on the antimicrobial activity of cinnamon, clove, cumin, oregano, pepper, and rosemary, spices popularly used in Mexico against the uropathogens responsible for UTIs. Full article
(This article belongs to the Special Issue Antimicrobial Activity of Plant Extracts)
Show Figures

Graphical abstract

13 pages, 701 KiB  
Article
Resistance to Some New Drugs and Prevalence of ESBL- and MBL-Producing Enterobacteriaceae Uropathogens Isolated from Diabetic Patients
by Othman M. Alzahrani, Fakhur Uddin, Samy F. Mahmoud, Amal S. Alswat, Muhammad Sohail and Mona Youssef
Life 2022, 12(12), 2125; https://doi.org/10.3390/life12122125 - 16 Dec 2022
Cited by 5 | Viewed by 2775
Abstract
Diabetes is a leading non-communicable disease and a risk factor for relapsing infections. The current study was aimed at investigating the prevalence and antibiotic susceptibility of carbapenem-resistant (CR) uropathogens of the family Enterobacteriaceae in diabetic patients. The data of 910 bacterial isolates was [...] Read more.
Diabetes is a leading non-communicable disease and a risk factor for relapsing infections. The current study was aimed at investigating the prevalence and antibiotic susceptibility of carbapenem-resistant (CR) uropathogens of the family Enterobacteriaceae in diabetic patients. The data of 910 bacterial isolates was collected from diagnostic laboratories during January 2018 to December 2018. The bacterial isolates were identified using traditional methods including colonial characteristics, biochemical tests, and API (20E). Antimicrobial susceptibility and phenotypic characterization of ESBL, MBLs, and KPC was determined by utilizing CLSI recommended methods. The phenotypically positive isolates were further analyzed for resistance-encoding genes by manual PCR and Check-MDR CT103XL microarray. Susceptibility to colistin and cefiderocol was tested in accordance with CLSI guidelines. The data revealed that most of the patients were suffering from type 2 diabetes for a duration of more than a year and with uncontrolled blood sugar levels. Escherichia coli and Klebsiella pneumoniae were the most frequently encountered pathogens, followed by Enterobacter cloacae and Proteus mirabilis. More than 50% of the isolates showed resistance to 22 antibiotics, with the highest resistance (>80%) against tetracycline, ampicillin, and cefazolin. The uropathogens showed less resistance to non-β-lactam antibiotics, including amikacin, fosfomycin, and nitrofurantoin. In the phenotypic assays, 495 (54.3%) isolates were found to be ESBL producers, while ESBL-TEM and -PER were the most prevalent ESBL types. The resistance to carbapenems was slightly less (250; 27.5%) than ESBL producers, yet more common amongst E. coli isolates. MBL production was a common feature in carbapenem-resistant isolates (71.2%); genotypic characterization also validated this trend. The isolates were found to be sensitive against the new drugs, cefiderocol and eravacycline. with 7–28% resistance, except for P. mirabilis which had 100% resistance against eravacycline. This study concludes that a few types of ESBL and carbapenemases are common in the uropathogens isolated from the diabetic patients, and antibiotic stewardship programs need to be revisited, particularly to cure UTIs in diabetic patients. Full article
(This article belongs to the Collection Feature Papers in Microbiology)
Show Figures

Figure 1

25 pages, 2267 KiB  
Article
Combined Application of Aminoglycosides and Ascorbic Acid in the Elimination of Proteus mirabilis Rods Responsible for Causing Catheter-Associated Urinary Tract Infections (CAUTIs)—A Molecular Approach
by Paulina Stolarek, Przemysław Bernat and Antoni Różalski
Int. J. Mol. Sci. 2022, 23(21), 13069; https://doi.org/10.3390/ijms232113069 - 28 Oct 2022
Cited by 5 | Viewed by 2827
Abstract
Proteus mirabilis is a common cause of catheter-associated urinary tract infections (CAUTIs). In this study, we verified the effectiveness of amikacin or gentamicin and ascorbic acid (AA) co-therapy in eliminating uropathogenic cells, as well as searched for the molecular basis of AA activity [...] Read more.
Proteus mirabilis is a common cause of catheter-associated urinary tract infections (CAUTIs). In this study, we verified the effectiveness of amikacin or gentamicin and ascorbic acid (AA) co-therapy in eliminating uropathogenic cells, as well as searched for the molecular basis of AA activity by applying chromatographic and fluorescent techniques. Under simulated physiological conditions, a combined activity of the antibiotic and AA supported the growth (threefold) of the P. mirabilis C12 strain, but reduced catheter colonization (≤30%) in comparison to the drug monotherapy. Slight modifications in the phospholipid and fatty acid profiles, as well as limited (≤62%) 2’,7’-dichlorofluorescein fluorescence, corresponding to the hydroxyl radical level, allowed for the exclusion of the hypothesis that the anti-biofilm effect of AA was related to membrane perturbations of the C12 strain. However, the reduced (≤20%) fluorescence intensity of propidium iodide, as a result of a decrease in membrane permeability, may be evidence of P. mirabilis cell defense against AA activity. Quantitative analyses of ascorbic acid over time with a simultaneous measurement of the pH values proved that AA can be an effective urine acidifier, provided that it is devoid of the presence of urease-positive cells. Therefore, it could be useful in a prevention of recurrent CAUTIs, rather than in their treatment. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

Back to TopTop