Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = uricase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 1221 KB  
Brief Report
Use of Rituximab to Attempt Recapture of Immune Tolerance to Pegloticase
by John D. FitzGerald, Rita Kachru, Chen Xie and Veena K. Ranganath
Gout Urate Cryst. Depos. Dis. 2025, 3(3), 18; https://doi.org/10.3390/gucdd3030018 - 15 Sep 2025
Viewed by 528
Abstract
Patients suffering from erosive tophaceous gout who have failed oral urate-lowering therapies and pegloticase have few therapeutic options. Pegloticase failure (infusion reaction or lack of urate lowering) is primarily due to the development of anti-drug antibodies, and once present, retreating with pegloticase is [...] Read more.
Patients suffering from erosive tophaceous gout who have failed oral urate-lowering therapies and pegloticase have few therapeutic options. Pegloticase failure (infusion reaction or lack of urate lowering) is primarily due to the development of anti-drug antibodies, and once present, retreating with pegloticase is mostly unsuccessful. We postulated that rituximab pre-treatment might permit recapture of pegloticase immune tolerance. We conducted an open label, safety and feasibility study to test this hypothesis. Patients with tophaceous gout and prior pegloticase failure were recruited to receive rituximab 1000 mg (twice), methotrexate 15 mg by mouth for at least 6 weeks, and then pegloticase per standard protocol. Patients were observed for infusion reaction and serum urate lowering in response to pegloticase infusions. Two patients completed induction and received at least 1 dose of pegloticase. Patient 1 had a moderate infusion reaction, requiring treatment with oral prednisone. Patient 2 had failure to lower urate treatment after 2 infusions. Based on these 2 outcomes, the trial was stopped. With either 6- or 12-week pre-pegloticase conditioning with rituximab, we were unable to recapture immune tolerance. Future trials considering use of rituximab might consider measuring anti-uricase antibodies in real time to guide the reintroduction of pegloticase. Full article
17 pages, 3246 KB  
Article
Rosemary Extract Reduces Odor in Cats Through Nitrogen and Sulfur Metabolism by Gut Microbiota–Host Co-Modulation
by Ziming Huang, Miao Li, Zhiqin He, Xiliang Yan, Yinbao Wu, Peiqiang Mu, Jun Jiang, Xu Wang and Yan Wang
Animals 2025, 15(14), 2101; https://doi.org/10.3390/ani15142101 - 16 Jul 2025
Viewed by 1398
Abstract
Odors from pet cats can negatively affect the quality of life of cat owners. The diverse bioactive compounds in plant extracts make them a promising candidate for effective odor reduction. This study evaluated twelve plant extracts for deodorizing efficacy via in vitro fermentation [...] Read more.
Odors from pet cats can negatively affect the quality of life of cat owners. The diverse bioactive compounds in plant extracts make them a promising candidate for effective odor reduction. This study evaluated twelve plant extracts for deodorizing efficacy via in vitro fermentation tests. Rosemary extract and licorice extract exhibited better deodorizing effects, with fractions of rosemary extract below 100 Da demonstrating the most effective deodorizing performance. Based on these findings, subsequent feeding trials were conducted using rosemary extract and its fractions below 100 Da. In the feeding trial, adult British Shorthair cats were divided into three groups (Control Check, RE, and RE100) and housed in a controlled-environment respiration chamber for 30 days. Measurements included odor emissions, fecal and blood physicochemical parameters, immune parameters, microbiota composition based on 16S rRNA sequencing, and metabolome analysis. The results of the feeding trial indicated that rosemary extract significantly reduced ammonia and hydrogen sulfide emissions (46.84%, 41.64%), while fractions below 100 Da of rosemary extract achieved even greater reductions (55.62%, 53.87%). Rosemary extract regulated the intestinal microbial community, significantly increasing the relative abundance of the intestinal probiotic Bifidobacterium (p < 0.05) and reducing the population of sulfate-reducing bacteria (p < 0.05). It also significantly reduced urease and uricase activities (p < 0.05) to reduce ammonia production and inhibited the degradation of sulfur-containing proteins and sulfate reduction to reduce hydrogen sulfide emissions. Furthermore, rosemary extract significantly enhanced the immune function of British Shorthair cats (p < 0.05). This study suggests that rosemary extract, particularly its fractions below 100 Da, is a highly promising pet deodorizer. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Figure 1

16 pages, 1203 KB  
Article
Influence of Astragalus extract on Gut Microbiome Regulation and Ammonia Emission Mitigation in Laying Hens
by Shasha Xiao, Kunxian Feng, Shikai Li, Miao Li, Xiliang Yan, Yinbao Wu, Jiandui Mi, Xindi Liao and Yan Wang
Animals 2025, 15(5), 620; https://doi.org/10.3390/ani15050620 - 20 Feb 2025
Cited by 1 | Viewed by 1833
Abstract
Astragalus extract plays a dual role in gut microbiome regulation and ammonia (NH3) emission mitigation in laying hens. This study explored its effects through feeding experiments, with a focus on gut microbial metabolic pathways and NH3 reduction mechanisms. To achieve [...] Read more.
Astragalus extract plays a dual role in gut microbiome regulation and ammonia (NH3) emission mitigation in laying hens. This study explored its effects through feeding experiments, with a focus on gut microbial metabolic pathways and NH3 reduction mechanisms. To achieve this, both in vitro fermentation experiments and in vivo feeding trials were conducted. In the in vitro study, cecal contents from laying hens were incubated with different concentrations of AE and Yucca extract (YE) to evaluate NH3 production, while in the feeding trial, 58-week-old Lohmann Pink laying hens were allocated into three groups (control, 0.1% YE, and 0.1% AE) and housed in controlled-environment respiration chambers for 21 days. Measurements included NH3 emissions, serum biochemical indices, immune parameters, gut physicochemical properties, and 16S rRNA-based microbiota analysis. Results showed that Astragalus extract reduced NH3 emissions by 29.3%, achieved by lowering urease and uricase activities and promoting the conversion of ammonium nitrogen to nitrate nitrogen. Additionally, it significantly enhanced gut immune function by increasing intestinal immunoglobulin levels. Microbial community analysis revealed an increased relative abundance of Bacteroides, Muribaculaceae, and Faecalibacterium, which are negatively correlated with NH3 emissions. These microbial shifts improved ammonium nitrogen utilization via the upregulation of CTP synthase and GMP synthase activities, contributing to higher NH3 reduction efficiency. This study highlights Astragalus extract as a cost-effective and sustainable strategy to regulate gut microbiota, optimize nitrogen metabolism, and mitigate NH3 emissions in laying hens. Full article
(This article belongs to the Special Issue Sanitation and Waste Control in Poultry Farming)
Show Figures

Figure 1

19 pages, 4762 KB  
Article
Enzyme Biosensor Based on 3D-Printed Flow-Through Reactor Modified with Thiacalixarene-Functionalized Oligo (Lactic Acids)
by Dmitry Stoikov, Dominika Kappo, Alexey Ivanov, Vladimir Gorbachuk, Olga Mostovaya, Pavel Padnya, Ivan Stoikov and Gennady Evtugyn
Biosensors 2025, 15(2), 77; https://doi.org/10.3390/bios15020077 - 29 Jan 2025
Cited by 1 | Viewed by 1462
Abstract
Electrochemical enzyme biosensors are extensively utilized in clinical analysis and environmental monitoring, yet achieving effective enzyme immobilization while maintaining high activity remains a challenge. In this work, we developed a flow-through enzyme biosensor system using a 3D-printed flow-through electrochemical cell fabricated from commercially [...] Read more.
Electrochemical enzyme biosensors are extensively utilized in clinical analysis and environmental monitoring, yet achieving effective enzyme immobilization while maintaining high activity remains a challenge. In this work, we developed a flow-through enzyme biosensor system using a 3D-printed flow-through electrochemical cell fabricated from commercially available poly (lactic acid). After modification with thiacalixarene-functionalized oligo (lactic acids) (OLAs), the material enabled efficient immobilization of uricase on the inner surface of a replaceable reactor of the cell. Swelling and hydrolytic stability of OLAs in cone, partial cone, and 1,3-alternate conformations were studied, with 1,3-alernate conformation demonstrating superior stability and enzyme immobilization performance. The use of OLAs enhanced immobilization efficiency by over 30% and protected the reactor from swelling, hydrolytic degradation, and enzyme loss. The biosensor was validated for amperometric uric acid determination, with a screen-printed carbon electrode modified with carbon black and Prussian Blue. This modification reduced the cathodic potential for uric acid detection to –0.05 V. The biosensor exhibited a linear detection range of 10 nM to 30 μM with a detection limit of 7 nM, and it performed effectively in artificial urine and synthetic blood plasma. The novel cell design, featuring easy assembly and low-cost replaceable parts, makes this biosensor a promising candidate for routine clinical analysis and other practical applications. Full article
(This article belongs to the Special Issue Feature Paper in Biosensor and Bioelectronic Devices 2024)
Show Figures

Figure 1

10 pages, 2767 KB  
Article
Uricase-Expressing Engineered Macrophages Alleviate Murine Hyperuricemia
by Yu-Zhong Feng, Hao Cheng, Guo-Qing Xiong, Jia-Zhen Cui, Zhi-Li Chen, Yuan-Yuan Lu, Zhi-Xin Meng, Chen Zhu, Hao-Long Dong, Xiang-Hua Xiong, Gang Liu, Qing-Yang Wang and Hui-Peng Chen
Biomedicines 2024, 12(11), 2602; https://doi.org/10.3390/biomedicines12112602 - 14 Nov 2024
Cited by 1 | Viewed by 2285
Abstract
Background: Uricase, or urate oxidase (Uox) is a key enzyme in uric acid (UA) metabolism and has been applied in clinical treatment of human hyperuricemia (HUA). However, the current clinically applied uricases, despite their potent urate-lowering capacity, tend to form anti-drug antibodies [...] Read more.
Background: Uricase, or urate oxidase (Uox) is a key enzyme in uric acid (UA) metabolism and has been applied in clinical treatment of human hyperuricemia (HUA). However, the current clinically applied uricases, despite their potent urate-lowering capacity, tend to form anti-drug antibodies because of their immunogenicity, leading to increased risk of anaphylaxis, faster drug clearance and reduced or even complete loss of therapeutic effect, limiting their clinical application. In this study, we constructed engineered macrophages that stably expressed uricase, which might serve as a promising alternative to the direct injection of uricases. Materials and Methods: Engineered macrophages RAW264.7 cells were injected intravenously to treat hyperuricemic KM mice. Serum uric acid and bio-indicators for renal and hepatic functions were detected by an automatic biochemical analyzer; inflammatory cytokines were determined by ELISA; the livers and kidneys of the mice were sectioned for histological examination. Results: The uricase-expressing macrophages reduced UA levels from 300 ± 1.5 μmol/L to 101 ± 8.3 μmol/L in vitro. And in an HUA mouse model established by gavage with yeast extract, intravenous injection of the engineered macrophages could reduce the serum uric acid (sUA) of mice to normal level on the 14th day of modeling, with a decrease of 48.6%, and the urate-lowering effect was comparable to that of the first-line clinical drug allopurinol. In terms of safety, engineered macrophages did not cause liver or kidney dysfunction in mice, nor did they induce systemic immune response. Conclusions: Using macrophages as a chassis to deliver uricase might be a new, safe and effective strategy for the treatment and control of hyperuricemia. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

17 pages, 1553 KB  
Article
Metabolic Pathways Affected in Patients Undergoing Hemodialysis and Their Relationship with Inflammation
by María Peris-Fernández, Marta Isabel Roca-Marugán, Julià L. Amengual, Ángel Balaguer-Timor, Iris Viejo-Boyano, Amparo Soldevila-Orient, Ramon Devesa-Such, Pilar Sánchez-Pérez and Julio Hernández-Jaras
Int. J. Mol. Sci. 2024, 25(17), 9364; https://doi.org/10.3390/ijms25179364 - 29 Aug 2024
Cited by 4 | Viewed by 2192
Abstract
Worldwide, 3.9 million individuals rely on kidney replacement therapy. They experience heightened susceptibility to cardiovascular diseases and mortality, alongside an increased risk of infections and malignancies, with inflammation being key to explaining this intensified risk. This study utilized semi-targeted metabolomics to explore novel [...] Read more.
Worldwide, 3.9 million individuals rely on kidney replacement therapy. They experience heightened susceptibility to cardiovascular diseases and mortality, alongside an increased risk of infections and malignancies, with inflammation being key to explaining this intensified risk. This study utilized semi-targeted metabolomics to explore novel metabolic pathways related to inflammation in this population. We collected pre- and post-session blood samples of patients who had already undergone one year of chronic hemodialysis and used liquid chromatography and high-resolution mass spectrometry to perform a metabolomic analysis. Afterwards, we employed both univariate (Mann–Whitney test) and multivariate (logistic regression with LASSO regularization) to identify metabolites associated with inflammation. In the univariate analysis, indole-3-acetaldehyde, 2-ketobutyric acid, and urocanic acid showed statistically significant decreases in median concentrations in the presence of inflammation. In the multivariate analysis, metabolites positively associated with inflammation included allantoin, taurodeoxycholic acid, norepinephrine, pyroglutamic acid, and L-hydroorotic acid. Conversely, metabolites showing negative associations with inflammation included benzoic acid, indole-3-acetaldehyde, methionine, citrulline, alphaketoglutarate, n-acetyl-ornithine, and 3-4-dihydroxibenzeneacetic acid. Non-inflamed patients exhibit preserved autophagy and reduced mitochondrial dysfunction. Understanding inflammation in this group hinges on the metabolism of arginine and the urea cycle. Additionally, the microbiota, particularly uricase-producing bacteria and those metabolizing tryptophan, play critical roles. Full article
(This article belongs to the Special Issue Renal Dysfunction, Uremic Compounds, and Other Factors (3rd Edition))
Show Figures

Figure 1

15 pages, 2750 KB  
Article
A Flow-Through Biosensor System Based on Pillar[3]Arene[2]Quinone and Ferrocene for Determination of Hydrogen Peroxide and Uric Acid
by Dmitry Stoikov, Insiya Shafigullina, Dmitry Shurpik, Ivan Stoikov and Gennady Evtugyn
Chemosensors 2024, 12(6), 98; https://doi.org/10.3390/chemosensors12060098 - 4 Jun 2024
Cited by 4 | Viewed by 1988
Abstract
Simple and reliable electrochemical sensors are highly demanded in medicine and pharmacy for the fast determination of metabolites and biomarkers of diseases. In this work, a flow-through biosensor system was developed on the base of a screen-printed carbon electrode modified with pillar[3]arene[2]quinone and [...] Read more.
Simple and reliable electrochemical sensors are highly demanded in medicine and pharmacy for the fast determination of metabolites and biomarkers of diseases. In this work, a flow-through biosensor system was developed on the base of a screen-printed carbon electrode modified with pillar[3]arene[2]quinone and ferrocene implemented in carbon black. The modification was performed in a single step and resulted in the formation of a stable layer with good operation characteristics. Uricase was immobilized on the inner walls of a replaceable reactor by carbodiimide binding. A flow-through cell was manufactured by 3D printing from poly(lactic acid). The flow-through system was first optimized on the hydrogen peroxide assay and then used for the determination of 1 nM–0.1 mM uric acid (limit of detection 0.3 nM, 20 measurements per hour). Implementation of ferrocene resulted in a synergetic increase in the cathodic current of H2O2 reduction measured by flow switching in chronoamperometric mode. The developed system was tested on the determination of uric acid in artificial urine and Ringer–Locke solution and showed a recovery rate of 96–112%. In addition, the possibility of determination of H2O2 in commercial disinfectants was shown. Easy assembly, fast and reliable signal and low consumption of the reagents make the system developed attractive for routine clinical analysis of metabolites. Full article
Show Figures

Figure 1

13 pages, 1371 KB  
Article
Treatment with Rasburicase in Hospitalized Patients with Cardiorenal Syndrome: Old Treatment, New Scenario
by Rosa Melero, Beatriz Torroba-Sanz, Marian Goicoechea, Iago Sousa-Casasnovas, Jose María Barrio, Ana María García-Prieto, Patrocinio Rodriguez-Benitez, Xandra García-González and María Sanjurjo-Sáez
Int. J. Mol. Sci. 2024, 25(6), 3329; https://doi.org/10.3390/ijms25063329 - 15 Mar 2024
Viewed by 2511
Abstract
Cardiorenal syndrome (CRS) involves joint dysfunction of the heart and kidney. Acute forms share biochemical alterations like hyperuricaemia (HU) with tumour lysis syndrome (TLS). The mainstay treatment of acute CRS with systemic overload is diuretics, but rasburicase is used in TLS to prevent [...] Read more.
Cardiorenal syndrome (CRS) involves joint dysfunction of the heart and kidney. Acute forms share biochemical alterations like hyperuricaemia (HU) with tumour lysis syndrome (TLS). The mainstay treatment of acute CRS with systemic overload is diuretics, but rasburicase is used in TLS to prevent and treat hyperuricaemia. An observational, retrospective study was performed to assess the effectiveness and safety of a single dose of rasburicase in hospitalized patients with cardiorenal syndrome, worsening renal function and uric acid levels above 9 mg/dL. Rasburicase improved diuresis and systemic congestion in the 35 patients included. A total of 86% of patients did not need to undergo RRT, and early withdrawal was possible in the remaining five. Creatinine (Cr) decreased after treatment with rasburicase from a peak of 3.6 ± 1.27 to 1.79 ± 0.83 mg/dL, and the estimated glomerular filtration rate (eGFR) improved from 17 ± 8 to 41 ± 20 mL/min/1.73 m2 (p = 0.0001). The levels of N-terminal type B Brain Natriuretic Peptide (Nt-ProBNP) and C-reactive protein (CRP) were also significantly reduced. No relevant adverse events were detected. Our results show that early treatment with a dose of rasburicase in patients with CRS and severe HU is effective to improve renal function and systemic congestion, avoiding the need for sustained extrarenal clearance, regardless of comorbidities and ventricular function. Full article
(This article belongs to the Special Issue Renal Dysfunction, Uremic Compounds, and Other Factors 2.0)
Show Figures

Figure 1

14 pages, 2483 KB  
Article
Flow-Through Amperometric Biosensor System Based on Functionalized Aryl Derivative of Phenothiazine and PAMAM-Calix-Dendrimers for the Determination of Uric Acid
by Dmitry Stoikov, Alexey Ivanov, Insiya Shafigullina, Milena Gavrikova, Pavel Padnya, Igor Shiabiev, Ivan Stoikov and Gennady Evtugyn
Biosensors 2024, 14(3), 120; https://doi.org/10.3390/bios14030120 - 23 Feb 2024
Cited by 10 | Viewed by 2739
Abstract
A flow-through biosensor system for the determination of uric acid was developed on the platform of flow-through electrochemical cell manufactured by 3D printing from poly(lactic acid) and equipped with a modified screen-printed graphite electrode (SPE). Uricase was immobilized to the inner surface of [...] Read more.
A flow-through biosensor system for the determination of uric acid was developed on the platform of flow-through electrochemical cell manufactured by 3D printing from poly(lactic acid) and equipped with a modified screen-printed graphite electrode (SPE). Uricase was immobilized to the inner surface of a replaceable reactor chamber. Its working volume was reduced to 10 μL against a previously reported similar cell. SPE was modified independently of the enzyme reactor with carbon black, pillar[5]arene, poly(amidoamine) dendrimers based on the p-tert-butylthiacalix[4]arene (PAMAM-calix-dendrimers) platform and electropolymerized 3,7-bis(4-aminophenylamino) phenothiazin-5-ium chloride. Introduction of the PAMAM-calix-dendrimers into the electrode coating led to a fivefold increase in the redox currents of the electroactive polymer. It was found that higher generations of the PAMAM-calix-dendrimers led to a greater increase in the currents measured. Coatings consisted of products of the electropolymerization of the phenothiazine with implemented pillar[5]arene and PAMAM-calix-dendrimers showing high efficiency in the electrochemical reduction of hydrogen peroxide that was formed in the enzymatic oxidation of uric acid. The presence of PAMAM-calix-dendrimer G2 in the coating increased the redox signal related to the uric acid assay by more than 1.5 times. The biosensor system was successfully applied for the enzymatic determination of uric acid in chronoamperometric mode. The following optimal parameters for the chronoamperometric determination of uric acid in flow-through conditions were established: pH 8.0, flow rate 0.2 mL·min−1, 5 U of uricase per reactor. Under these conditions, the biosensor system made it possible to determine from 10 nM to 20 μM of uric acid with the limit of detection (LOD) of 4 nM. Glucose (up to 1 mM), dopamine (up to 0.5 mM), and ascorbic acid (up to 50 μM) did not affect the signal of the biosensor toward uric acid. The biosensor was tested on spiked artificial urine samples, and showed 101% recovery for tenfold diluted samples. The ease of assembly of the flow cell and the low cost of the replacement parts make for a promising future application of the biosensor system in routine clinical analyses. Full article
(This article belongs to the Special Issue Electrochemical Sensors and Biosensors for Biomedical Applications)
Show Figures

Figure 1

17 pages, 1947 KB  
Review
The Role of Uric Acid in Human Health: Insights from the Uricase Gene
by Youssef M. Roman
J. Pers. Med. 2023, 13(9), 1409; https://doi.org/10.3390/jpm13091409 - 20 Sep 2023
Cited by 33 | Viewed by 17179
Abstract
Uric acid is the final product of purine metabolism and is converted to allantoin in most mammals via the uricase enzyme. The accumulation of loss of function mutations in the uricase gene rendered hominoids (apes and humans) to have higher urate concentrations compared [...] Read more.
Uric acid is the final product of purine metabolism and is converted to allantoin in most mammals via the uricase enzyme. The accumulation of loss of function mutations in the uricase gene rendered hominoids (apes and humans) to have higher urate concentrations compared to other mammals. The loss of human uricase activity may have allowed humans to survive environmental stressors, evolution bottlenecks, and life-threatening pathogens. While high urate levels may contribute to developing gout and cardiometabolic disorders such as hypertension and insulin resistance, low urate levels may increase the risk for neurodegenerative diseases. The double-edged sword effect of uric acid has resurrected a growing interest in urate’s antioxidant role and the uricase enzyme’s role in modulating the risk of obesity. Characterizing both the effect of uric acid levels and the uricase enzyme in different animal models may provide new insights into the potential therapeutic benefits of uric acid and novel uricase-based therapy. Full article
Show Figures

Graphical abstract

15 pages, 3641 KB  
Article
Chinese Herbal Extracts Mitigate Ammonia Generation in the Cecum of Laying Hens: An In Vitro Study
by Miao Li, Kunxian Feng, Jingyi Chen, Tianxu Liu, Yinbao Wu, Jiandui Mi and Yan Wang
Animals 2023, 13(18), 2969; https://doi.org/10.3390/ani13182969 - 20 Sep 2023
Cited by 3 | Viewed by 2680
Abstract
The objectives of the study were to screen one or several Chinese herbal extracts with good ammonia emission reduction effects using an in vitro gas production study. The study consisted of a control (without Chinese herbal extract), and 11 experimental groups with added [...] Read more.
The objectives of the study were to screen one or several Chinese herbal extracts with good ammonia emission reduction effects using an in vitro gas production study. The study consisted of a control (without Chinese herbal extract), and 11 experimental groups with added cinnamon extract (CE), Osmanthus extract (OE), tangerine peel extract (TPE), dandelion extract (DE), Coptis chinensis extract (CCE), honeysuckle extract (HE), Pulsatilla root extract (PRE), yucca extract (YE), licorice extract (LE), Ginkgo biloba extract (GBE), or astragalus extract (AE). The results showed that HE, PRE, YE, LE, GBE, and AE significantly reduced ammonia production (p ≤ 0.05). The most significant ammonia inhibition was achieved via AE, resulting in a 26.76% reduction. In all treatments, Chinese herbal extracts had no significant effect on pH, conductivity, or uric acid, urea, and nitrate-nitrogen concentrations (p > 0.05). However, AE significantly reduced urease activity and the relative activity of uricase (p ≤ 0.05). AE significantly increased the relative abundance of Bacteroides and decreased the relative abundance of Clostridium, Desulfovibrio, and Prevotell (p ≤ 0.05). Astragalus extract inhibited ammonia emission from laying hens by changing the gut microbial community structure, reducing the relative abundance of ammonia-producing bacteria, and reducing microorganisms’ uricase and urease activities. Full article
(This article belongs to the Collection Current Advances in Poultry Research)
Show Figures

Figure 1

15 pages, 2453 KB  
Article
Hyperuricaemia Does Not Interfere with Aortopathy in a Murine Model of Marfan Syndrome
by Isaac Rodríguez-Rovira, Angela López-Sainz, Maria Encarnación Palomo-Buitrago, Belen Pérez, Francesc Jiménez-Altayó, Victoria Campuzano and Gustavo Egea
Int. J. Mol. Sci. 2023, 24(14), 11293; https://doi.org/10.3390/ijms241411293 - 10 Jul 2023
Cited by 1 | Viewed by 2343
Abstract
Redox stress is involved in the aortic aneurysm pathogenesis in Marfan syndrome (MFS). We recently reported that allopurinol, a xanthine oxidoreductase inhibitor, blocked aortopathy in a MFS mouse model acting as an antioxidant without altering uric acid (UA) plasma levels. Hyperuricaemia is ambiguously [...] Read more.
Redox stress is involved in the aortic aneurysm pathogenesis in Marfan syndrome (MFS). We recently reported that allopurinol, a xanthine oxidoreductase inhibitor, blocked aortopathy in a MFS mouse model acting as an antioxidant without altering uric acid (UA) plasma levels. Hyperuricaemia is ambiguously associated with cardiovascular injuries as UA, having antioxidant or pro-oxidant properties depending on the concentration and accumulation site. We aimed to evaluate whether hyperuricaemia causes harm or relief in MFS aortopathy pathogenesis. Two-month-old male wild-type (WT) and MFS mice (Fbn1C1041G/+) were injected intraperitoneally for several weeks with potassium oxonate (PO), an inhibitor of uricase (an enzyme that catabolises UA to allantoin). Plasma UA and allantoin levels were measured via several techniques, aortic root diameter and cardiac parameters by ultrasonography, aortic wall structure by histopathology, and pNRF2 and 3-NT levels by immunofluorescence. PO induced a significant increase in UA in blood plasma both in WT and MFS mice, reaching a peak at three and four months of age but decaying at six months. Hyperuricaemic MFS mice showed no change in the characteristic aortic aneurysm progression or aortic wall disarray evidenced by large elastic laminae ruptures. There were no changes in cardiac parameters or the redox stress-induced nuclear translocation of pNRF2 in the aortic tunica media. Altogether, the results suggest that hyperuricaemia interferes neither with aortopathy nor cardiopathy in MFS mice. Full article
(This article belongs to the Special Issue New Advances in Rare Genetic Disorder)
Show Figures

Figure 1

7 pages, 871 KB  
Review
Urate Biology and Biochemistry: A Year in Review 2022
by Rachel D. King and Eric E. Kelley
Gout Urate Cryst. Depos. Dis. 2023, 1(3), 115-121; https://doi.org/10.3390/gucdd1030011 - 23 Jun 2023
Cited by 1 | Viewed by 2661
Abstract
The past year generated significant change and advancement of the urate field with novel insights regarding the role of uric acid (UA) in multiple pathophysiologic processes from gout to COVID-19. While these contributions continue to move the field forward, the basic biochemistry and [...] Read more.
The past year generated significant change and advancement of the urate field with novel insights regarding the role of uric acid (UA) in multiple pathophysiologic processes from gout to COVID-19. While these contributions continue to move the field forward, the basic biochemistry and biology of UA is often overlooked, being lost in the shadow of clinical associations and omics. However, the seminal impact of UA begins with biochemistry and the associated interplay with cell biology. In these basic reactions and resultant impacts on physiology, UA mediates its influence on clinical outcomes. As such, this review focuses on published advances in UA biochemistry and biology in 2022 and associates these advances with downstream consequences. Full article
Show Figures

Figure 1

7 pages, 2524 KB  
Proceeding Paper
Self-Assembled Monolayers for Uricase Enzyme Absorption Immobilization on Screen-Printed Gold Electrodes Modified
by Héctor David Hernández, Rocio B. Dominguez and Juan Manuel Gutiérrez
Eng. Proc. 2023, 35(1), 1; https://doi.org/10.3390/IECB2023-14575 - 8 May 2023
Cited by 1 | Viewed by 1781
Abstract
Miniaturized and integrated devices for fast determination of clinical biomarkers are in high demand in the current healthcare environment. In this work, we present a functionalized self-assembled monolayer (SAM) on the gold surface of a screen-printed electrode (Au-SPE). The device was applied for [...] Read more.
Miniaturized and integrated devices for fast determination of clinical biomarkers are in high demand in the current healthcare environment. In this work, we present a functionalized self-assembled monolayer (SAM) on the gold surface of a screen-printed electrode (Au-SPE). The device was applied for uric acid (UA) detection, a biomarker associated with arthritis, diabetes mellitus, and kidney function. Prior to SAM formation, AuSPE was subjected to pretreatment with KOH and Au electrodeposition to provide additional roughness to the substrate. The SAM was formed in the AuSPE/KOH/AuNP surface by the cysteamine method—carried out for working surface dipping in the cysteamine (CYS) solution at 20 mM for 24 h (rinsed with ethanol and milli-Q water). Then, the uricase enzyme was immobilized through physical absorption at room temperature for 1 h to obtain the AuSPE/KOH/AuNPs/SAM/Uox biosensor. The physical and electrochemical characterization of AuSPE modification was carried out by scanning electron microscopy (SEM) and cyclic voltammetry (CV). The calibrated data of the Au/KOH/AuNPs/SAM/Uox biosensor showed a linear relation in the range of 50–1000 µM, a sensibility of 0.1449 µA/[(µM)cm2], and a limit of detection (LOD) of 4.4669 µM. The Au/KOH/AuNPs/SAM/Uox also exhibited good selectivity for UA in the presence of ascorbic acid. Moreover, the methodology showed good reproducibility, stability, and sensitive detection of UA. This performance of the proposed biosensor is in good accordance with clinical needs and can be compared with previous biosensors based on nanostructured surfaces of high-fabrication complexity. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Biosensors)
Show Figures

Figure 1

15 pages, 4193 KB  
Article
Highly Selective Uricase-Based Quantification of Uric Acid Using Hydrogen Peroxide Sensitive Poly-(vinylpyrrolidone) Templated Copper Nanoclusters as a Fluorescence Probe
by Ramar Rajamanikandan, Malaichamy Ilanchelian and Heongkyu Ju
Chemosensors 2023, 11(5), 268; https://doi.org/10.3390/chemosensors11050268 - 1 May 2023
Cited by 13 | Viewed by 4128
Abstract
We reported on uric acid (UA) detection using a new fluorescence-based assay: poly-(vinylpyrrolidone) templated copper nanoclusters (PVP-CuNCs) with uricase in an aqueous medium, such as human urine with uricase. These nanoclusters were synthesized in a simple wet chemical method and their morphological and [...] Read more.
We reported on uric acid (UA) detection using a new fluorescence-based assay: poly-(vinylpyrrolidone) templated copper nanoclusters (PVP-CuNCs) with uricase in an aqueous medium, such as human urine with uricase. These nanoclusters were synthesized in a simple wet chemical method and their morphological and optical properties were examined with the aid of high-resolution transmission electron microscopy and optical absorbance/emission spectroscopy. The PVP-CuNCs acted as the fluorescence indicators that used the enzyme-catalyzed oxidation of UA with uricase. Adding UA into the hybrid PVP-CuNCs/uricase solution caused enzyme-catalyzed oxidation to occur, producing hydrogen peroxide (H2O2), allantoin, and carbon dioxide. The fluorescence intensity of PVP-CuNCs is decreased by this biocatalytically generated H2O2, and this decrease is proportional to the UA level. A calibration plot showed the linear relationship with the negative slope between fluorescence intensity and UA in the range of 5–100 × 10−7 mol/L. The limit of detection (LOD) of UA was estimated as 113 × 10−9 mol/L. This fluorescent probe turned out to be highly specific for UA over other biologically relevant molecules. The demonstrated capability of the PVP-CuNCs as the nanoprobes for quantification of the UA levels in human urine samples could potentially pave the way toward medical applications where a super-sensitive, cost-effective, and UA-specific diagnosis was required. Full article
Show Figures

Figure 1

Back to TopTop