Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (189)

Search Parameters:
Keywords = urea transporter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3327 KiB  
Article
Development and Evaluation of Selenium-Enriched Compound Fertilizers for Remediation of Mercury-Contaminated Agricultural Soil
by Yuxin Li, Guangpeng Pei, Yanda Zhang, Shuyun Guan, Yingzhong Lv, Zhuo Li and Hua Li
Agronomy 2025, 15(8), 1842; https://doi.org/10.3390/agronomy15081842 - 30 Jul 2025
Viewed by 305
Abstract
Agricultural soil contaminated with mercury (Hg) poses a serious threat to ecosystems and human health. Although adding an appropriate amount of selenium (Se) can reduce the toxicity and mobility of Hg in soil, Se alone is prone to leaching into groundwater through soil [...] Read more.
Agricultural soil contaminated with mercury (Hg) poses a serious threat to ecosystems and human health. Although adding an appropriate amount of selenium (Se) can reduce the toxicity and mobility of Hg in soil, Se alone is prone to leaching into groundwater through soil runoff. Therefore, Se-enriched compound fertilizers were developed, and their remediation effect on Hg-contaminated agricultural soil was determined. The Se-enriched compound fertilizers were prepared by combining an organic fertilizer (vinegar residue, biochar, and potassium humate), inorganic fertilizer (urea, KH2PO4, ZnSO4, and Na2SeO3), and a binder (attapulgite and bentonite). A material proportioning experiment showed that the optimal granulation rate, organic matter content, and compressive strength were achieved when using 15% attapulgite (Formulation 1) and 10% bentonite (Formulation 2). An analysis of Se-enriched compound fertilizer particles showed that the two Se-enriched compound fertilizers complied with the standard for organic–inorganic compound fertilizers (China GB 18877-2002). Compared with the control, Formulation 1 and Formulation 2 significantly reduced the Hg content in bulk and rhizosphere soil following diethylenetriaminepentaacetic acid (DTPA) extraction by 40.1–47.3% and 53.8–56.0%, respectively. They also significantly reduced the Hg content in maize seedling roots and shoots by 26.4–29.0% and 57.3–58.7%, respectively, effectively limiting Hg uptake, transport, and enrichment. Under the Formulation 1 and Formulation 2 treatments, the total and DTPA-extractable Se contents in soil and maize seedlings were significantly increased. This study demonstrated that Se-enriched compound fertilizer effectively remediates Hg-contaminated agricultural soil and can promote the uptake of Se by maize. The results of this study are expected to positively contribute to the sustainable development of the agro-ecological environment. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

16 pages, 4154 KiB  
Article
Comparative Proteomics Identified Proteins in Mung Bean Sprouts Under Different Concentrations of Urea
by Lifeng Wu, Chunquan Chen, Xiaoyu Zhou, Kailun Zheng, Xiaohan Liang and Jing Wei
Molecules 2025, 30(15), 3176; https://doi.org/10.3390/molecules30153176 - 29 Jul 2025
Viewed by 230
Abstract
Mung bean (Vigna radiate) sprouts are a popular choice among sprouted vegetables in Asia. Currently, the impact of nitrogen sources on the growth of mung bean sprouts remains poorly understood, and the underlying biological mechanisms responsible for the observed nonlinear growth [...] Read more.
Mung bean (Vigna radiate) sprouts are a popular choice among sprouted vegetables in Asia. Currently, the impact of nitrogen sources on the growth of mung bean sprouts remains poorly understood, and the underlying biological mechanisms responsible for the observed nonlinear growth patterns at different nitrogen levels have yet to be elucidated. In this research, in addition to conventional growth monitoring and quality evaluation, a comparative proteomics method was applied to investigate the molecular mechanisms of mung bean in response to 0, 0.025, 0.05, 0.075, and 0.1% urea concentrations. Our results indicated that mung bean sprout height and yield increased with rising urea concentrations but were suppressed beyond the L3 level (0.075% urea). Nitrate nitrogen and free amino acid content rose steadily with urea levels, whereas protein content, nitrate reductase activity, and nitrite levels followed a peak-then-decline trend, peaking at intermediate concentrations. Differential expression protein analysis was conducted on mung bean sprouts treated with different concentrations of urea, and more differentially expressed proteins participated in the L3 urea concentration. Analysis of common differential proteins among comparison groups showed that the mung bean sprouts enhanced their adaptability to urea stress environments by upregulating chlorophyll a-b binding protein and cationic amino acid transporter and downregulating the levels of glycosyltransferase, L-ascorbic acid, and cytochrome P450. The proteomic analysis uncovered the regulatory mechanisms governing these metabolic pathways, identifying 47 differentially expressed proteins (DEPs) involved in the biosynthesis of proteins, free amino acids, and nitrogen-related metabolites. Full article
Show Figures

Figure 1

21 pages, 20797 KiB  
Article
The Urate-Lowering Effects and Renal Protective Activity of Iridoid Glycosides from Paederia foetida in Rats with Hyperuricemia-Induced Kidney Injury: A Pharmacological and Molecular Docking Study
by Haifeng Zhou, Xinyi Yue, Longhai Shen, Lifeng Wu, Xiaobo Li and Tong Wu
Molecules 2025, 30(15), 3098; https://doi.org/10.3390/molecules30153098 - 24 Jul 2025
Viewed by 265
Abstract
(1) Background: The urate-lowering effects of three iridoid glycosides, which are paederosidic acid, paederosidic acid methyl ester, and paederoside, isolated from Paederia foetida and the protection they provide against hyperuricemia-induced kidney injury were investigated in a rat model. (2) Methods: A hyperuricemia (HUA) [...] Read more.
(1) Background: The urate-lowering effects of three iridoid glycosides, which are paederosidic acid, paederosidic acid methyl ester, and paederoside, isolated from Paederia foetida and the protection they provide against hyperuricemia-induced kidney injury were investigated in a rat model. (2) Methods: A hyperuricemia (HUA) rat model was established in Sprague-Dawley (SD) rats through intraperitoneal potassium oxonate (PO) and intragastrical adenine for 2 weeks. Subsequently, rats in the pharmaceutical intervention groups received corresponding drug treatments at a concentration of 40 mg/kg/day, maintained consistently for 7 days. (3) Results: The results showed that three compounds reduced serum urate (SU), creatinine (CRE), and blood urea nitrogen (BUN) levels and that the urinary excretion levels of uric acid, urine urea nitrogen, and creatinine increased. Furthermore, the administration of three iridoid glycosides enhanced renal filtration capacity, as demonstrated by the elevated 24 h creatinine clearance rate (CCR) and 24 h uric acid clearance rate (CUA); improved the fraction excretion of uric acid (FEUA); and attenuated renal damage. Finally, three iridoid glycosides promoted uric acid excretion in HUA rats by downregulating URAT1 and GLUT9 and upregulating ABCG2, OAT1, and OAT3. Moreover, the molecular docking results further corroborated the finding that the three compounds can bind to multiple sites of the uric acid transporter via hydrogen, P-π, and hydrophobic bonds. (4) Conclusions: The three iridoid glycosides were found to lower SU levels by increasing uric acid excretion. They are promising natural products for the prevention of HUA and HUA-induced kidney injury. Full article
Show Figures

Figure 1

22 pages, 3936 KiB  
Article
Impacts of 360 mg/kg Niacinamide Supplementation in Low-Protein Diets on Energy and Nitrogen Metabolism and Intestinal Microbiota in Growing–Finishing Pigs
by Xiaoyi Long, Haiyang Wei, Zhenyang Wang, Zhiru Tang, Yetong Xu, Xie Peng, Zhihong Sun and Liuting Wu
Animals 2025, 15(14), 2088; https://doi.org/10.3390/ani15142088 - 15 Jul 2025
Viewed by 377
Abstract
This study aimed to investigate the effects of adding 360 mg/kg niacinamide (NAM) to diets on nutrient metabolism, providing insights into how dietary NAM supplementation enhances nitrogen utilization and growth performance in pigs. Forty growing–finishing pigs were randomly assigned to one of four [...] Read more.
This study aimed to investigate the effects of adding 360 mg/kg niacinamide (NAM) to diets on nutrient metabolism, providing insights into how dietary NAM supplementation enhances nitrogen utilization and growth performance in pigs. Forty growing–finishing pigs were randomly assigned to one of four experimental diets as follows: basal diet + 30 mg/kg NAM (CON), basal diet + 360 mg/kg NAM (CON + NAM), low-protein diet + 30 mg/kg NAM (LP), and low-protein diet + 360 mg/kg NAM (LP + NAM). Results showed that supplementation of both the CON and LP diets with 360 mg/kg NAM resulted in decreased urea nitrogen concentrations and carbamyl phosphate synthetase-I activity (p < 0.05). The pyruvate dehydrogenase activity in the serum and liver, as well as the activity of pyruvate dehydrogenase, citrate synthase, and glutamate dehydrogenase 1 in the ileum mucosa, was increased by supplementing the LP diet with 360 mg/kg NAM (p < 0.05). The LP diet with 360 mg/kg NAM increased the villi length to crypt depth, mRNA expression of glucose transporters 1 and 2 and alanine-serine-cysteine transporter 1, and mRNA expression of mechanistic target of the rapamycin 1 in the ileum (p < 0.05). Additionally, 360 mg/kg NAM supplementation in the LP diet reduced ileal Lactobacillus abundance (LDA > 4) and increased ileal microbial nucleotide and purine metabolism (p < 0.05). Our findings suggest that addition of 360 mg/kg NAM to the LP diet reduced urea production in the liver, enhanced glucose and amino acid absorption and transport in the ileum, and improved glucose metabolism. Full article
(This article belongs to the Special Issue Impact of Genetics and Feeding on Growth Performance of Pigs)
Show Figures

Figure 1

14 pages, 1523 KiB  
Article
Foliar Nitrogen Application Enhances Nitrogen Assimilation and Modulates Gene Expression in Spring Wheat Leaves
by Yanlin Yao, Wenyan Ma, Xin Jin, Guangrui Liu, Yun Li, Baolong Liu and Dong Cao
Agronomy 2025, 15(7), 1688; https://doi.org/10.3390/agronomy15071688 - 12 Jul 2025
Viewed by 253
Abstract
Nitrogen (N) critically regulates wheat growth and grain quality, yet the molecular mechanisms underlying foliar nitrogen application remain unclear. This study evaluated the effects of foliar nitrogen application (12.25 kg ha−1) on the growth, grain yield, and quality of spring wheat, [...] Read more.
Nitrogen (N) critically regulates wheat growth and grain quality, yet the molecular mechanisms underlying foliar nitrogen application remain unclear. This study evaluated the effects of foliar nitrogen application (12.25 kg ha−1) on the growth, grain yield, and quality of spring wheat, as well as its molecular mechanisms. The results indicated that N was absorbed within 3 h post-application, with leaf nitrogen concentration peaking at 12 h. The N treatment increased whole-plant dry matter accumulation and grain protein content by 11.34% and 6.8%, respectively. Amino acid content peaked 24 h post-application, increasing by 25.3% compared to the control. RNA-sequencing analysis identified 4559 and 3455 differentially expressed genes at 3 h and 24 h after urea treatment, respectively, these DEGs being primarily involved in nitrogen metabolism, photosynthetic carbon fixation, amino acid biosynthesis, antioxidant systems, and nucleotide biosynthesis. Notably, the plastidic glutamine synthetase gene (GS2) is crucial in the initial phase of urea application (3 h post-treatment). The pronounced downregulation of GS2 initiates a reconfiguration of nitrogen assimilation pathways. This downregulation impedes glutamine synthesis, resulting in a transient accumulation of free ammonia. In response to ammonia toxicity, the leaves promptly activate the GDH (glutamate dehydrogenase) pathway to facilitate the temporary translocation of ammonium. This compensatory mechanism suggests that GS2 downregulation may be a key switch that redirects nitrogen metabolism from the GS/GOGAT cycle to the GDH bypass. Additionally, the upregulation of the purine and pyrimidine metabolic routes channels nitrogen resources towards nucleic acid synthesis, and thereby supporting growth. Amino acids are then transported to the seeds, culminating in enhanced seed protein content. This research elucidates the molecular mechanisms underlying the foliar response to urea application, offering significant insights for further investigation. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

19 pages, 5983 KiB  
Article
Fabrication of CoP@P, N-CNTs-Deposited Nickel Foam for Energy-Efficient Hydrogen Generation via Electrocatalytic Urea Oxidation
by Hany M. Youssef, Maged N. Shaddad, Saba A. Aladeemy and Abdullah M. Aldawsari
Catalysts 2025, 15(7), 652; https://doi.org/10.3390/catal15070652 - 4 Jul 2025
Viewed by 458
Abstract
The simultaneous generation of hydrogen fuel and wastewater remediation via electrocatalytic urea oxidation has emerged as a promising approach for sustainable energy and environmental solutions. However, the practical application of this process is hindered by the limited active sites and high charge-transfer resistance [...] Read more.
The simultaneous generation of hydrogen fuel and wastewater remediation via electrocatalytic urea oxidation has emerged as a promising approach for sustainable energy and environmental solutions. However, the practical application of this process is hindered by the limited active sites and high charge-transfer resistance of conventional anode materials. In this work, we introduce a novel CoP@P, N-CNTs/NF electrocatalyst, fabricated through a facile one-step thermal annealing technique. Comprehensive characterizations confirm the successful integration of CoP nanoparticles and phosphorus/nitrogen co-doped carbon nanotubes (P, N-CNTs) onto nickel foam, yielding a unique hierarchical structure that offers abundant active sites and accelerated electron transport. As a result, the CoP@P, N-CNTs/NF electrode achieves outstanding urea oxidation reaction (UOR) performance, delivering current densities of 158.5 mA cm−2 at 1.5 V and 232.95 mA cm−2 at 1.6 V versus RHE, along with exceptional operational stability exceeding 50 h with negligible performance loss. This innovative, multi-element-doped electrode design marks a significant advancement in the field, enabling highly efficient UOR and energy-efficient hydrogen production. Our approach paves the way for scalable, cost-effective solutions that couple renewable energy generation with effective wastewater treatment. Full article
Show Figures

Figure 1

21 pages, 1025 KiB  
Review
Amino Acid Metabolism in Liver Mitochondria: From Homeostasis to Disease
by Ranya Erdal, Kıvanç Birsoy and Gokhan Unlu
Metabolites 2025, 15(7), 446; https://doi.org/10.3390/metabo15070446 - 2 Jul 2025
Viewed by 769
Abstract
Hepatic mitochondria play critical roles in sustaining systemic nutrient balance, nitrogen detoxification, and cellular bioenergetics. These functions depend on tightly regulated mitochondrial processes, including amino acid catabolism, ammonia clearance via the urea cycle, and transport through specialized solute carriers. Genetic disruptions in these [...] Read more.
Hepatic mitochondria play critical roles in sustaining systemic nutrient balance, nitrogen detoxification, and cellular bioenergetics. These functions depend on tightly regulated mitochondrial processes, including amino acid catabolism, ammonia clearance via the urea cycle, and transport through specialized solute carriers. Genetic disruptions in these pathways underlie a range of inborn errors of metabolism, often resulting in systemic toxicity and neurological dysfunction. Here, we review the physiological functions of hepatic mitochondrial amino acid metabolism, with a focus on subcellular compartmentalization, disease mechanisms, and therapeutic strategies. We discuss how emerging genetic and metabolic interventions—including dietary modulation, cofactor replacement, and gene therapy—are reshaping treatment of liver-based metabolic disorders. Understanding these pathways offers mechanistic insights into metabolic homeostasis and reveals actionable vulnerabilities in metabolic disease and cancer. Full article
Show Figures

Figure 1

19 pages, 1514 KiB  
Review
Glutamate and Its Role in the Metabolism of Plants and Animals
by Maria Stolarz and Agnieszka Hanaka
Processes 2025, 13(7), 2084; https://doi.org/10.3390/pr13072084 - 1 Jul 2025
Viewed by 468
Abstract
Glutamate is one of the major naturally occurring non-essential amino acids. The aim of this review is to provide a comprehensive analysis of the role of glutamate as a key metabolite in the metabolism of plant and animal organisms. Its role in nutrition [...] Read more.
Glutamate is one of the major naturally occurring non-essential amino acids. The aim of this review is to provide a comprehensive analysis of the role of glutamate as a key metabolite in the metabolism of plant and animal organisms. Its role in nutrition and neurotransmission has intrigued researchers for many years. In both plants and animals, glutamate primarily exists in a monoanionic form characterised by unique physical and chemical properties. In plants, it is involved in the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle, while in animals, it plays a role in the glutamine/glutamate cycle, which is closely related to the urea cycle. Glutamate is also closely linked to the Krebs cycle in both groups of organisms through α-ketoglutarate. Glutamate is essential in both biosynthetic and catabolic pathways and participates in numerous physiological processes in plants and animals. Animals acquire glutamate from food, while plants acquire it from the soil; however, both also synthesise it de novo. Once present in the body, it is transported across cell membranes by specific transporters driven by ionic gradients (a mechanism known as secondary active transport). It is involved in cellular and systemic signalling pathways by interacting with ionotropic and metabotropic receptors. Additionally, glutamate is an important ‘building block’ of many proteins, including storage proteins. It also occurs in the form of monosodium glutamate (MSG), a flavour enhancer that is widely used but often criticised. Due to its important role in metabolism and signalling, the significance of glutamate in nutrition and its impact on human health are vital areas of research in food biochemistry. These investigations contribute to the development of nutritious food products and the design of effective pharmaceuticals. In this paper, we also address unresolved questions in glutamate research and consider its practical applications. Full article
(This article belongs to the Special Issue Food Biochemistry and Health: Recent Developments and Perspectives)
Show Figures

Figure 1

10 pages, 1360 KiB  
Article
Integrated Transcriptome and Metabolome Analysis of the Porcine Small Intestine During Weaning
by Jung Woong Yoon, Sangsu Shin, Tae Hyun Kim and Sang In Lee
Genes 2025, 16(7), 727; https://doi.org/10.3390/genes16070727 - 22 Jun 2025
Viewed by 435
Abstract
Background/Objectives: Intestinal dysfunction during weaning in piglets causes declines in growth through hindered absorption capacity and intestinal barrier function, equating to economic losses for the porcine industry. Established strategies for mitigating these negative issues are currently lacking. Methods: We evaluated biomolecular alterations induced [...] Read more.
Background/Objectives: Intestinal dysfunction during weaning in piglets causes declines in growth through hindered absorption capacity and intestinal barrier function, equating to economic losses for the porcine industry. Established strategies for mitigating these negative issues are currently lacking. Methods: We evaluated biomolecular alterations induced by weaning stress through gene expression profiling and metabolome analysis using intestinal samples collected from piglets before weaning, 1 week after weaning, and 2 weeks after weaning. Results: We identified 701 differentially expressed genes related to weaning stress, representing the enrichment of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with immune response; inflammatory response; cell proliferation; cell adhesion; and carbohydrate, lipid, and calcium ion binding. In the metabolome analysis, ABC transporter; purine, pyrimidine, and Gly-Ser-Thr metabolisms; and the urea cycle were clustered as enriched KEGG pathways. Our results suggest that energy metabolism, including protein metabolism, is involved in the repair of the structural damage occurring in the intestine during weaning. Conclusions: This study highlights the importance of integrated analyses synthesizing molecular and metabolic mechanisms in elucidating complex biological responses and provides insights into markers that can be used to develop strategies for mitigating weaning stress in the porcine industry. Full article
(This article belongs to the Section Toxicogenomics)
Show Figures

Figure 1

22 pages, 2794 KiB  
Article
Triple-Probiotic-Fermented Goji (Lycium barbarum L.) Ameliorates Metabolic Disorders Associated with Hyperuricemia in Mice
by Lu Ren, Yuechan Li, Shiting Liu, Xiaoke Jia, Hongpeng He, Feiliang Zhong, Fuping Lu and Xuegang Luo
Microorganisms 2025, 13(6), 1367; https://doi.org/10.3390/microorganisms13061367 - 12 Jun 2025
Viewed by 581
Abstract
Hyperuricemia (HUA) is a metabolic disorder characterized by excessive uric acid (UA) production and impaired excretion. Goji, as a representative medicinal food, holds significant research and development value, while probiotic fermentation technology is finding increasingly widespread applications in the functional food sector. This [...] Read more.
Hyperuricemia (HUA) is a metabolic disorder characterized by excessive uric acid (UA) production and impaired excretion. Goji, as a representative medicinal food, holds significant research and development value, while probiotic fermentation technology is finding increasingly widespread applications in the functional food sector. This study developed a novel goji fermented with three probiotic strains (Lactoplantibacillus plantarum CGMCC8198, Lactococcus lactis LTJ28, and Lactocaseibacillus casei YR2-2) and investigated its anti-HUA effects. Optimal fermentation conditions (7.913 material–liquid ratio, 3.92% inoculation, 7.49 h at 37 °C with 1:1:2 strain ratio) yielded a beverage with enhanced flavor profiles (19 aroma compounds) and high viable counts. In HUA cell models, the 15% fermented goji juice significantly reduced UA levels by 56% (p < 0.01). In potassium oxonate-induced HUA mice, the beverage effectively lowered serum UA, xanthine oxidase activity, and renal function markers (blood urea nitrogen and creatinine, p < 0.0001) while improving hepatic parameters (alanine aminotransferase, aspartate Aminotransferase). The goji-fermented juice significantly reduced the expression of renal UA transporters GLUT9 and URAT1 (p < 0.0001) while improving gut microbiota composition, as evidenced by increased beneficial SCFAs (acetic acid, butyric acid, p < 0.0001) and elevated Lactobacillus abundance 2.14-fold. Our findings demonstrate that this triple-probiotic-fermented goji beverage represents an effective dietary strategy for HUA management by simultaneously inhibiting UA production, enhancing excretion, and restoring gut microbiota homeostasis, providing a scientific basis for developing probiotic-based functional foods against HUA. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

44 pages, 891 KiB  
Review
Aquaporins in Acute Brain Injury: Insights from Clinical and Experimental Studies
by Stelios Kokkoris, Charikleia S. Vrettou, Nikolaos S. Lotsios, Vasileios Issaris, Chrysi Keskinidou, Kostas A. Papavassiliou, Athanasios G. Papavassiliou, Anastasia Kotanidou, Ioanna Dimopoulou and Alice G. Vassiliou
Biomedicines 2025, 13(6), 1406; https://doi.org/10.3390/biomedicines13061406 - 7 Jun 2025
Viewed by 1030
Abstract
Aquaporins (AQPs) are a family of transmembrane water channel proteins facilitating the transport of water and, in some cases, small solutes such as glycerol, lactate, and urea. In the central nervous system (CNS), several aquaporins play crucial roles in maintaining water homeostasis, modulating [...] Read more.
Aquaporins (AQPs) are a family of transmembrane water channel proteins facilitating the transport of water and, in some cases, small solutes such as glycerol, lactate, and urea. In the central nervous system (CNS), several aquaporins play crucial roles in maintaining water homeostasis, modulating cerebrospinal fluid (CSF) circulation, regulating energy metabolism, and facilitating neuroprotection under pathological conditions. Among them, AQP2, AQP4, AQP9, and AQP11 have been implicated in traumatic and non-traumatic brain injuries. The most abundant aquaporin (AQP) in the brain, AQP4, is essential for fluid regulation, facilitating water transport across the blood–brain barrier and glymphatic clearance. AQP2 is primarily known for its function in the kidneys, but it is also expressed in brain regions related to vasopressin signaling and CSF dynamics. AQP9 acts as a channel for glycerol and lactate, thus playing a role in metabolic adaptation during brain injury. AQP11, an intracellular aquaporin, is involved in oxidative stress responses and cellular homeostasis, with emerging evidence suggesting its role in neuroprotection. Aquaporins play a dual role in brain injury; while they help maintain homeostasis, their dysregulation can exacerbate cerebral edema, metabolic dysfunction, and inflammation. In traumatic brain injury (TBI), aquaporins regulate the formation and resolution of cerebral edema. In non-traumatic brain injuries, including ischemic stroke, aneurysmal subarachnoid hemorrhage (aSAH), and intracerebral hemorrhage (ICH), aquaporins influence fluid balance, energy metabolism, and oxidative stress responses. Understanding the specific roles of AQP2, AQP4, AQP9, and AQP11 in these brain injuries may lead to new therapeutic strategies to mitigate secondary damage and improve neurological outcomes. This review explores the function of the above aquaporins in both traumatic and non-traumatic brain injuries, highlighting their potential and limitations as therapeutic targets for neuroprotection and recovery. Full article
Show Figures

Figure 1

19 pages, 6855 KiB  
Article
Selective Inhibition of the ABCG2 Transporter by Primaquine Derivatives Reverses the Multidrug Resistance of Tumor Cells
by Marija Mioč, Maja Beus, Karla Carević, Zrinka Rajić, Balázs Sarkadi, Ágnes Telbisz and Marijeta Kralj
Int. J. Mol. Sci. 2025, 26(11), 5367; https://doi.org/10.3390/ijms26115367 - 3 Jun 2025
Viewed by 509
Abstract
Multidrug resistance (MDR) poses a significant challenge in cancer therapy, often leading to treatment failure and relapse. ATP-binding cassette (ABC) transporters, particularly ABCG2, play a pivotal role in MDR development by actively expelling chemotherapeutic agents from cancer cells. This study investigates the effects [...] Read more.
Multidrug resistance (MDR) poses a significant challenge in cancer therapy, often leading to treatment failure and relapse. ATP-binding cassette (ABC) transporters, particularly ABCG2, play a pivotal role in MDR development by actively expelling chemotherapeutic agents from cancer cells. This study investigates the effects of two groups of primaquine derivatives—fumardiamides (1ad) and bis-ureas (2a, b), both bearing halogenated benzene rings—on the activity of P-glycoprotein (P-gp) and ABCG2. Their potential to reverse MDR was evaluated through a series of functional assays aimed at comparing transporter–compound interactions. The results indicated that fumardiamide derivatives, specifically 1a, 1b, and 1d, exhibited potent inhibition of ABCG2 while having no effect on P-gp, demonstrating a selective mode of action. The tested derivatives displayed low to moderate cytotoxicity and did not affect ABCG2 expression or localization. Moreover, these compounds enhanced the sensitivity of drug-resistant cancer cell lines to mitoxantrone, underscoring their potential to overcome ABCG2-mediated MDR. These findings suggest that chemical modifications of primaquine, particularly the incorporation of fumardiamide moieties, confer novel biological properties, providing promising leads for the development of selective ABCG2 inhibitors. Full article
Show Figures

Graphical abstract

16 pages, 3329 KiB  
Article
Deep Fertilization Enhances Crude Protein Content in Forage Maize by Modulating Key Enzymes of Protein Synthesis Across Plant Organs in Semi-Arid Regions of China
by Hongli Wang, Guoping Zhang, Sicun Yang, Mingsheng Ma, Yanjie Fang, Huizhi Hou, Kangning Lei and Jiade Yin
Biology 2025, 14(5), 535; https://doi.org/10.3390/biology14050535 - 12 May 2025
Viewed by 401
Abstract
Appropriate fertilization depth promotes the absorption and transport of nutrients, crop growth and yield. However, little is known about whether deep fertilization improves crude protein synthesis and how to regulate it. A two-year field experiment was conducted with various fertilization depths: (1) conventional [...] Read more.
Appropriate fertilization depth promotes the absorption and transport of nutrients, crop growth and yield. However, little is known about whether deep fertilization improves crude protein synthesis and how to regulate it. A two-year field experiment was conducted with various fertilization depths: (1) conventional fertilization (CF), (2) fertilization application depth at 30 cm (DF), and (3) fertilizer average application at depths of 15 cm and 30 cm (AF). The fertilization rates under all treatments were 300 kg N ha−1 nitrogen fertilizer (urea, 46% N), 150 kg P2O5 ha−1 calcium superphosphate (16% P2O5), and 135 kg K2O ha−1 potassium sulfate (51% K2O). The nitrogen/potassium (N/K) ratio, the activities of nitrate reductase [NR], glutamine synthetase [GS], and glutamic pyruvic transaminase [GPT], crude protein content in leaves, stems, and grains, as well as the relationships among the parameters were explored. The result showed that deep fertilization (DF) significantly improved the N/K ratio. NR activity in DF increased by 26.30%, 35.56%, and 57.30% in leaves, stems, and grains, respectively, when compared to conventional fertilization (CF), and by 54.22%, 43.27%, and 28.44% when compared to average fertilization (AF). GS activity in DF increased by 29.67%, 47.96%, and 47.46% in leaves, stems, and grains when compared to CF, and by 40.05%, 31.51%, and 40.62% when compared to AF. GPT activity in DF was significantly higher than CF and AF in grains, and differences between treatments were significant. Crude protein content was significantly correlated with NR and GS activities in leaves, GPT activity in stems, as well as GS and GPT activities in grains. The crude protein content of leaves and grains in DF was significantly higher than in CF and AF. In conclusion, DF significantly improved crude protein synthesis and increased the crude protein content of forage maize by increasing the whole plant N/K ratio, NR and GS activities in leaves, as well as GS and GPT activities in grains. It is a highly efficient cultivation technology that significantly improves the quality of forage maize. Full article
Show Figures

Figure 1

13 pages, 2355 KiB  
Article
Anti-Hyperuricemic and Nephroprotective Effects of Hydrolysate Derived from Silkworm Pupae (Bombyx mori): In Vitro and In Vivo Study
by Yuting Fan, Zhencong Yang, Xiao Lin, Zhoujin Xu, Lixia Mu, Qingrong Li and Xuli Wu
Nutrients 2025, 17(9), 1596; https://doi.org/10.3390/nu17091596 - 6 May 2025
Viewed by 758
Abstract
Background: Hyperuricemia is a prevalent metabolic disorder characterized by elevated serum uric acid (UA) levels. Methods: In this study, hydrolysate (SPP) derived from silkworm pupae protein was isolated and identified, demonstrating anti-hyperuricemic activity. The research aimed to investigate its anti-hyperuricemic and nephroprotective effects, [...] Read more.
Background: Hyperuricemia is a prevalent metabolic disorder characterized by elevated serum uric acid (UA) levels. Methods: In this study, hydrolysate (SPP) derived from silkworm pupae protein was isolated and identified, demonstrating anti-hyperuricemic activity. The research aimed to investigate its anti-hyperuricemic and nephroprotective effects, along with potential mechanisms, through in vitro assays and in vivo experiments using potassium oxonate/hypoxanthine-induced hyperuricemic mice. Results: The SPP exhibited significant xanthine oxidase (XOD) inhibitory activity, with an IC50 value of 7.41 mg/mL. Furthermore, SPP administration effectively reduced serum UA, blood urea nitrogen (BUN), creatinine levels, and renal pro-inflammatory cytokines in hyperuricemic mice. Mechanistic studies revealed that the anti-hyperuricemic effects of SPP may involve XOD inhibition and the modulation of renal UA transporters, specifically upregulating organic anion transporter 1 (OAT1) and ATP-binding cassette subfamily G member 2 (ABCG2) expression. Histopathological analysis and inflammatory cytokine profiling further demonstrated that SPP alleviated renal inflammation and pathological damage. Conclusions: These findings suggest that SPP possesses a notable urate-lowering efficacy and renal protective properties, highlighting its potential as a therapeutic agent for the management and prevention of hyperuricemia (HUA). Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

18 pages, 5425 KiB  
Article
Physiological and Transcriptome Analyses of Gill and Hepatopancreas of Potamocorbula ustulata Under Ammonia Exposure
by Jing He, Xinhui Wang, Mingyu Wu, Zhihua Lin, Lin He and Xiafei Zheng
Fishes 2025, 10(5), 200; https://doi.org/10.3390/fishes10050200 - 27 Apr 2025
Viewed by 324
Abstract
Excessive ammonia accumulation poses a significant threat to aquatic species. Potamocorbula ustulata, known for its burrowing behavior and high population density, may experience elevated ammonia levels in its environment. However, its ammonia stress response mechanisms remain unclear. This study investigates the physiological [...] Read more.
Excessive ammonia accumulation poses a significant threat to aquatic species. Potamocorbula ustulata, known for its burrowing behavior and high population density, may experience elevated ammonia levels in its environment. However, its ammonia stress response mechanisms remain unclear. This study investigates the physiological and molecular responses of P. ustulata to acute ammonia exposure. Antioxidant enzyme activity was significantly altered in the gills and hepatopancreas, with GS, GDH, and ARG levels markedly increasing in the hepatopancreas. Transcriptome analysis revealed that after 24 h of exposure, differentially expressed genes (DEGs) were enriched in apoptosis and inflammation-related pathways (MAPK, NF-kB, NOD-like receptor signaling). By 96 h, DEGs in the gills were associated with nitrogen metabolism and transport, while those in the hepatopancreas were linked to oxidative phosphorylation and amino acid metabolism. Key ammonia transport and excretion genes, including V-type H+-ATPase, Ammonium transporter Rh, and Na+/K+-ATPase, were significantly upregulated in the gills, while glutamine synthetase and glutamate dehydrogenase were upregulated in the hepatopancreas (p < 0.05). These findings suggest that ammonia stress disrupts antioxidant defense, triggers inflammation and apoptosis, and enhances ammonia tolerance through excretion, glutamine conversion, and urea synthesis. This study provides insights into the molecular mechanisms underlying ammonia tolerance in bivalves. Full article
(This article belongs to the Section Genetics and Biotechnology)
Show Figures

Figure 1

Back to TopTop