Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (171)

Search Parameters:
Keywords = urban rain flood

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6642 KiB  
Article
Flood Impact and Evacuation Behavior in Toyohashi City, Japan: A Case Study of the 2 June 2023 Heavy Rain Event
by Masaya Toyoda, Reo Minami, Ryoto Asakura and Shigeru Kato
Sustainability 2025, 17(15), 6999; https://doi.org/10.3390/su17156999 - 1 Aug 2025
Viewed by 185
Abstract
Recent years have seen frequent heavy rainfall events in Japan, often linked to Baiu fronts and typhoons. These events are exacerbated by global warming, leading to an increased frequency and intensity. As floods represent a serious threat to sustainable urban development and community [...] Read more.
Recent years have seen frequent heavy rainfall events in Japan, often linked to Baiu fronts and typhoons. These events are exacerbated by global warming, leading to an increased frequency and intensity. As floods represent a serious threat to sustainable urban development and community resilience, this study contributes to sustainability-focused risk reduction through integrated analysis. This study focuses on the 2 June 2023 heavy rain disaster in Toyohashi City, Japan, which caused extensive damage due to flooding from the Yagyu and Umeda Rivers. Using numerical models, this study accurately reproduces flooding patterns, revealing that high tides amplified the inundation area by 1.5 times at the Yagyu River. A resident questionnaire conducted in collaboration with Toyohashi City identifies key trends in evacuation behavior and disaster information usage. Traditional media such as TV remain dominant, but younger generations leverage electronic devices for disaster updates. These insights emphasize the need for targeted information dissemination and enhanced disaster preparedness strategies, including online materials and flexible training programs. The methods and findings presented in this study can inform local and regional governments in building adaptive disaster management policies, which contribute to a more sustainable society. Full article
Show Figures

Figure 1

18 pages, 8570 KiB  
Article
Exploring Urban Water Management Solutions for Mitigating Water Cycle Issues: Application to Bogotá, Colombia
by Yoonkyung Park, Inkyeong Sim, Changyeon Won, Jongpyo Park and Reeho Kim
Water 2025, 17(13), 1992; https://doi.org/10.3390/w17131992 - 2 Jul 2025
Viewed by 345
Abstract
Urbanization and climate change have disrupted natural water circulation by increasing impervious surfaces and altering rainfall patterns, leading to reduced groundwater infiltration, deteriorating water quality, and heightened flood risks. This study investigates the application of Low Impact Development (LID) and flood control facilities [...] Read more.
Urbanization and climate change have disrupted natural water circulation by increasing impervious surfaces and altering rainfall patterns, leading to reduced groundwater infiltration, deteriorating water quality, and heightened flood risks. This study investigates the application of Low Impact Development (LID) and flood control facilities as structural measures to address these challenges in the upper watershed of the Fucha River in Bogotá, Colombia. The methodology involved analyzing watershed characteristics, defining circulation problems, setting hydrological targets, selecting facility types and locations, evaluating performance, and conducting an economic analysis. To manage the target rainfall of 26.5mm under normal conditions, LID facilities such as vegetated swales, rain gardens, infiltration channels, and porous pavements were applied, managing approximately 2362 m3 of runoff. For flood control, five detention tanks were proposed, resulting in a 31.8% reduction in peak flow and a 7.3% decrease in total runoff volume. The flooded area downstream was reduced by 46.8ha, and the benefit–cost ratio was calculated at 1.02. These findings confirm that strategic application of LID and detention facilities can contribute to effective urban water cycle management and disaster risk reduction. While the current disaster management approach in Bogotá primarily focuses on post-event response, this study highlights the necessity of transitioning toward proactive disaster preparedness. In particular, the introduction and expansion of flood forecasting and warning systems are recommended as non-structural measures, especially in urban areas with complex infrastructure and climate-sensitive hydrology. Full article
(This article belongs to the Special Issue Urban Water Management: Challenges and Prospects)
Show Figures

Figure 1

23 pages, 4743 KiB  
Article
Utilizing Remote Sensing for Sponge City Development: Enhancing Flood Management and Urban Resilience in Karachi
by Asifa Iqbal, Lubaina Soni, Ammad Waheed Qazi and Humaira Nazir
Remote Sens. 2025, 17(11), 1818; https://doi.org/10.3390/rs17111818 - 23 May 2025
Viewed by 2186
Abstract
Rapid urbanization in Karachi, Pakistan, has resulted in increased impervious surfaces, leading to significant challenges, such as frequent flooding, urban heat islands, and loss of vegetation. These issues pose challenges to urban resilience, livability, and sustainability, which further demand solutions that incorporate urban [...] Read more.
Rapid urbanization in Karachi, Pakistan, has resulted in increased impervious surfaces, leading to significant challenges, such as frequent flooding, urban heat islands, and loss of vegetation. These issues pose challenges to urban resilience, livability, and sustainability, which further demand solutions that incorporate urban greening and effective water management. This research uses remote sensing technologies and Geographic Information Systems (GISs), to analyze current surface treatments and their relationship to Karachi’s blue-green infrastructure. By following this approach, we evaluate flood risk and identify key flood-conditioning factors, including elevation, slope, rainfall distribution, drainage density, and land use/land cover changes. By utilizing the Analytical Hierarchy Process (AHP), we develop a flood risk assessment framework and a comprehensive flood risk map. Additionally, this research proposes an innovative Sponge City (SC) framework that integrates nature-based solutions (NBS) into urban planning, especially advocating for the establishment of green infrastructure, such as green roofs, rain gardens, and vegetated parks, to enhance water retention and drainage capacity. The findings highlight the urgent need for targeted policies and stakeholder engagement strategies to implement sustainable urban greening practices that address flooding and enhance the livability of Karachi. This work not only advances the theoretical understanding of Sponge Cities but also provides practical insights for policymakers, urban planners, and local communities facing similar sustainability challenges. Full article
Show Figures

Figure 1

24 pages, 58090 KiB  
Article
Flood Risk Assessment Under Climate Change Scenarios in the Wadi Ibrahim Watershed
by Asep Hidayatulloh and Jarbou Bahrawi
Hydrology 2025, 12(5), 120; https://doi.org/10.3390/hydrology12050120 - 14 May 2025
Viewed by 1006
Abstract
Flooding poses a significant hazard to urban areas, particularly under the pressures of climate change and rapid urbanization. This study evaluates the flood risk in the Wadi Ibrahim watershed, located in Makkah Al-Mukarramah City, Kingdom of Saudi Arabia (KSA), by analyzing the impacts [...] Read more.
Flooding poses a significant hazard to urban areas, particularly under the pressures of climate change and rapid urbanization. This study evaluates the flood risk in the Wadi Ibrahim watershed, located in Makkah Al-Mukarramah City, Kingdom of Saudi Arabia (KSA), by analyzing the impacts of climate change on flood hazards. The analysis incorporates projections from the Coordinated Regional Climate Downscaling Experiment (CORDEX) regional climate model (RCM) for three climate scenarios: representative concentration pathway (RCP) 2.6, RCP 4.5 and RCP 8.5. A novel aspect of this study is the integration of 2D HEC-RAS rain-on-grid (RoG) hydrodynamic modeling with climate change projection analysis, which has not been previously applied in this watershed. Flood risk maps are generated for each scenario at three return periods: 50, 100, and 200 years. The results indicate an increasing flood volume and depth under future climate scenarios. The flood risk mapping shows an expansion of medium- and high-risk zones compared to current conditions. Under the current climate, the low-risk areas (0–0.5 m) slightly decrease from 13.9 km2 (50 years) to 13.8 km2 (200 years), while the medium- (0.5–2 m) and high-risk areas (>2 m) increase from 6.5 km2 to 7.0 km2 and from 7.2 km2 to 9.8 km2, respectively. Under RCP 2.6, the low-risk zones decline from 13.6 km2 to 13.0 km2, the medium-risk zones grow from 14.5 km2 to 16.2 km2, and the high-risk zones rise from 4.3 km2 to 6.5 km2. The higher emissions scenarios show greater risk increases, with the high-risk areas expanding from 5.3 km2 to 12.0 km2 under RCP 4.5, and from 9.5 km2 to 16.6 km2 under RCP 8.5. These findings underscore the escalating flood risks due to climate change and highlight the need for mitigation in the Wadi Ibrahim watershed. Full article
Show Figures

Figure 1

24 pages, 7273 KiB  
Article
Study on the Risk of Urban Population Exposure to Waterlogging in Huang-Huai Area Based on Machine Learning Simulation Analysis—A Case Study of Xuzhou Urban Area
by Shuai Tong, Jiuxin Wang, Jiahui Qin, Xiang Ji and Zihan Wu
Land 2025, 14(5), 939; https://doi.org/10.3390/land14050939 - 25 Apr 2025
Viewed by 444
Abstract
With the acceleration of climate change and the increase of extreme rainfall, the risk of flooding has intensified in the Huang-Huai region, which is often hit by floods. Urban water accumulation is a complicated process, and the hydrological simulation analysis is highly accurate, [...] Read more.
With the acceleration of climate change and the increase of extreme rainfall, the risk of flooding has intensified in the Huang-Huai region, which is often hit by floods. Urban water accumulation is a complicated process, and the hydrological simulation analysis is highly accurate, but it is time-consuming and laborious. Machine learning is becoming an important new method because of its ability to analyze large areas with high precision. In this paper, a simulation analysis method based on machine learning is constructed by selecting 13 disaster factors, and the waterlogging point in Xuzhou city is predicted successfully. The following conclusions are found: (1) Among the five machine learning models, CatBoost has the highest accuracy rate, reaching 81.67%. (2) Temperature, elevation, and rainfall are relatively important influencing factors of waterlogging. (3) Machine learning can discover water accumulation areas that are easily overlooked except for the built-up areas. (4) The results of the coupling analysis show that the exposure risk of the population exposed to rainwater in the old urban area, the southern area, and the northwestern area is relatively high. This research is of great significance for reducing the risk of exposure to rain and flooding and promoting the safety and sustainable development of cities. Full article
Show Figures

Figure 1

19 pages, 8689 KiB  
Article
Enhancing Urban Flood Susceptibility Assessment by Capturing the Features of the Urban Environment
by Juwei Tian, Yinyin Chen, Linhan Yang, Dandan Li, Luo Liu, Jiufeng Li and Xianzhe Tang
Remote Sens. 2025, 17(8), 1347; https://doi.org/10.3390/rs17081347 - 10 Apr 2025
Cited by 1 | Viewed by 675
Abstract
The frequent occurrence of urban floods (UFs) poses significant threats to public safety and the national economy. Accurate estimation of urban flood susceptibility (UFS) and the identification of potential hotspots are critical for effective UF management. However, existing UFS studies often fall short [...] Read more.
The frequent occurrence of urban floods (UFs) poses significant threats to public safety and the national economy. Accurate estimation of urban flood susceptibility (UFS) and the identification of potential hotspots are critical for effective UF management. However, existing UFS studies often fall short due to a limited understanding of UFs’ nature, frequently relying on disaster factors analogous to those used for natural floods while neglecting key urban characteristics, limiting the accuracy of UFS estimates. To address these challenges, we propose a novel framework for UFS assessment. Unlike those studies that focus primarily on topographic and surface characteristics, our approach integrates urban-specific factors that capture the distinctive attributes of the urban environment, including Urban Heat Island Intensity, Urban Rain Island Intensity, Urban Resilience Index, and Impervious Surface Percentage. Guangzhou was selected as the study area, where machine learning methods were employed to calculate UFS, and Shapley Additive Explanation was utilized to quantify the contributions of employed factors. We evaluated the significance of urban factors from three perspectives: classifier performance, map accuracy, and factor importance. The results indicate that (1) urban factors hold significantly greater importance compared to other factors, and (2) the incorporation of urban factors markedly enhances both the performance of the trained classifier and the accuracy of the UFS map. These findings underscore the value of integrating urban factors into UFS assessments, thereby contributing to more precise UF management and supporting sustainable urban development. Full article
Show Figures

Graphical abstract

18 pages, 3180 KiB  
Article
Significance in Numerical Simulation and Optimization Method Based on Multi-Indicator Sensitivity Analysis for Low Impact Development Practice Strategy
by Qian Zhang, Mucheng Zhang, Wanjun Jiang, Yizhi Sheng, Yingwei Yuan and Meng Zhang
Appl. Sci. 2025, 15(8), 4165; https://doi.org/10.3390/app15084165 - 10 Apr 2025
Viewed by 402
Abstract
Evaluating the performance of sponge city practices under actual conditions is essential for managing urban stormwater. Existing studies in urban stormwater management have rarely employed numerical simulations to model hydrological processes under actual Three-Dimensional (3D) conditions. In this study, a numerical computational model [...] Read more.
Evaluating the performance of sponge city practices under actual conditions is essential for managing urban stormwater. Existing studies in urban stormwater management have rarely employed numerical simulations to model hydrological processes under actual Three-Dimensional (3D) conditions. In this study, a numerical computational model is developed to simulate the hydrological processes and reveal the temporal and spatial variation of runoff in relation to impervious surfaces and concave herbaceous fields. The applicability of the 3D modules was evaluated using the Chicago rain pattern formula under three recurrence periods: precipitation within one, five, and ten years. The results indicate that the thickness and slope of planting soil are the most sensitive factors regarding sponge city performance, with comprehensive factors of 0.754 and 0.461. The optimal structural parameters of the concave herbaceous field were obtained as follows: aquifer height, 200 mm; planting soil thickness, 600 mm; planting soil slope, 1.5%; planting soil porosity, 0.45; overflow pipeline porosity, 0.3. The flood peak reduction rate, delay rate, and total runoff control rate were the best in a recurrence period of 5a, with 88.93%, 51.11%, and 78.76%, respectively. This study offers technical and conformed methodological support for simulating water quantity processes in sponge cities, and for the control of waterlogging and the recycling of runoff. Full article
Show Figures

Figure 1

23 pages, 14765 KiB  
Article
Hydrologic Efficiency of Rain Gardens as Countermeasures to Overuse of Concrete in Historical Public Spaces
by Marcin K. Widomski and Anna Musz-Pomorska
Sustainability 2025, 17(6), 2527; https://doi.org/10.3390/su17062527 - 13 Mar 2025
Viewed by 853
Abstract
The overuse of concrete in historical areas, currently observed in various urban watersheds in Poland, may pose a significant threat to the water balance of catchments, leading even to pluvial flooding. The distorted water balance may be, to some extent, restored by sustainable [...] Read more.
The overuse of concrete in historical areas, currently observed in various urban watersheds in Poland, may pose a significant threat to the water balance of catchments, leading even to pluvial flooding. The distorted water balance may be, to some extent, restored by sustainable green architecture designs. This paper presents an attempt at the numerical assessment of changes in the water balance caused by revitalization in three main historical squares in cities in Lublin Voivodeship, Poland. A proposal for rain garden installation, allowing the partial restoration of the water balance, is also introduced. Numerical calculations of the runoff generation were performed in SWMM 5 software for real weather conditions recorded in Lublin during the period 1 June–31 August 2024. The performed simulations show that an increase in the imperviousness of the studied urban catchments results in a significant increase in runoff characteristics, with a 78.2–90.9% increase in volume and a 108–141.7% increase in peak flows. The introduction of the proposed rain gardens allows the partial reduction in the runoff volume and peak flows, down by 18.1–30.2% and 17.9–32.0%, respectively. Full article
(This article belongs to the Special Issue Sustainable Stormwater Management and Green Infrastructure)
Show Figures

Figure 1

19 pages, 2883 KiB  
Article
Practical Steps for Urban Flood Risk Mitigation Using Nature-Based Solutions—A Case Study in New Cairo, Egypt
by Walaa S. E. Ismaeel and Nada Ali Mustafa
Land 2025, 14(3), 586; https://doi.org/10.3390/land14030586 - 10 Mar 2025
Viewed by 1497
Abstract
This study investigated the effectiveness of nature-based solutions (NBSs) as a resilient strategy for mitigating urban flood risks in a developing hot arid country. The research method included the following steps: (a) performing a flood hazard risk assessment for the Fifth Settlement district [...] Read more.
This study investigated the effectiveness of nature-based solutions (NBSs) as a resilient strategy for mitigating urban flood risks in a developing hot arid country. The research method included the following steps: (a) performing a flood hazard risk assessment for the Fifth Settlement district in New Cairo, Egypt, (b) selecting best-fit NBSs, and (c) performance assessment. The process started with flood hazard analysis using hydrological data, topographical maps, urban planning, and land use maps, in addition to the history of storm events. This step defined the urban areas located in flood depth zones and categorized their flood hazard level. Exposure assessment considered the number and characteristics of population and buildings exposed to flood hazards. Vulnerability assessment determined the vulnerable characteristics of exposed populations and buildings to flood risk. The result of this assessment step indicated that there were 2000 buildings distributed in almost twenty neighborhood areas facing high flood risk. One of these urban areas with 72 building units, including residential, public, and services buildings, was selected to test the potential of integrating NBSs for flood-resilient land use planning and disaster preparedness. The selection of best-fit NBSs was based on a weighted-average sum matrix considering their climatic and contextual suitability and applicability. As a final step, numerical simulation models helped assess the efficiency of the selected NBSs for stormwater runoff reduction and the percentage of the volume capture goal. Five simulation models tested the efficiency of each NBS individually. Rain gardens achieved the highest stormwater capture percentage, while green roofs performed the least effectively, with capture rates of 43.6% and 9.9%, respectively. Two more simulation models were developed to evaluate the efficiency of NBSs when implemented in combination compared to the base case of using no NBSs. Permeable paving demonstrated the highest effectiveness in volume capture. The result indicated that applying combined measures of NBSs over 54.1% of the total site area was able to capture 8% more than the required volume capture goal. Consequently, this study underscores the necessity of adopting tailored solutions and integrated approaches using NBSs for flood risk mitigation. This necessitates testing their performance under site-specific conditions and future climate projections. Full article
(This article belongs to the Section Land Systems and Global Change)
Show Figures

Figure 1

24 pages, 3811 KiB  
Article
Optimization Study of Drainage Network Systems Based on the SWMM for the Wujin District, Changzhou City, Jiangsu Province, China
by Yi Pan and Xungui Li
Appl. Sci. 2025, 15(3), 1276; https://doi.org/10.3390/app15031276 - 26 Jan 2025
Viewed by 1153
Abstract
This study addresses the persistent issue of urban waterlogging in Wujin District, Changzhou City, Jiangsu Province, using a comprehensive approach integrating an optimized drainage network and low-impact development (LID) measures. Utilizing the Storm Water Management Model (SWMM), calibrated with extensive hydrological and hydraulic [...] Read more.
This study addresses the persistent issue of urban waterlogging in Wujin District, Changzhou City, Jiangsu Province, using a comprehensive approach integrating an optimized drainage network and low-impact development (LID) measures. Utilizing the Storm Water Management Model (SWMM), calibrated with extensive hydrological and hydraulic data, the model was refined through genetic algorithm-based optimization to enhance drainage efficiency. Key results indicate a substantial reduction in the average duration of waterlogging from 7.43 h to 3.12 h and a decrease in average floodwater depth from 21.27 cm to 8.65 cm. Improvements in the drainage network layout, such as the construction of new stormwater mains, branch drains, and rainwater storage facilities, combined with LID interventions like permeable pavements and rain gardens, have led to a 56.82% increase in drainage efficiency and a 63.88% reduction in system failure rates. The implementation effectively minimized peak flood flow by 25.38%, reduced runoff, and improved groundwater recharge and rainwater utilization. The proposed solutions offer a replicable, sustainable framework for mitigating flooding in urban environments, enhancing ecological resilience, and ensuring the safety and quality of urban life in densely populated areas. Full article
Show Figures

Figure 1

25 pages, 4423 KiB  
Article
Evaluation of the Social Performance of Urban Stormwater Parks: A Case Study in Jinhua, Zhejiang
by Yaohui Su and Lingxiao Shu
Sustainability 2025, 17(1), 259; https://doi.org/10.3390/su17010259 - 2 Jan 2025
Cited by 1 | Viewed by 1130
Abstract
An urban rain flood park refers to a park built with ecological function as the guide. The aim of this study is to examine the social benefits of urban stormwater landscapes. By establishing an evaluation model, conducting field research and analysis, comparing parks, [...] Read more.
An urban rain flood park refers to a park built with ecological function as the guide. The aim of this study is to examine the social benefits of urban stormwater landscapes. By establishing an evaluation model, conducting field research and analysis, comparing parks, and applying mathematical model analysis, the feedback from various user groups is assessed. The purpose is to explore whether ecologically oriented urban stormwater parks offer superior social benefits and to provide references for optimizing the benefits of urban stormwater park design. The paper selects Yanweizhou Park, Zhejiang Jinhua, a representative of innovative design practices in an urban rainwater park in China, as a case study for evaluation research and introduces the traditional park, Wuzhou Park, for comparison. The results show that Yanweizhou Park, which is designed based on ecology as the first principle, is still highly evaluated in terms of social performance. People think that ecological parks are more representative of the urban image. The eco-park is more popular with young people and more dispersed in activities. Both types of parks suffer from insufficient infrastructure construction. Full article
Show Figures

Figure 1

18 pages, 3171 KiB  
Review
Challenges and Innovations in Urban Drainage Systems: Sustainable Drainage Systems Focus
by Anna Pia Monachese, María Teresa Gómez-Villarino, Jesús López-Santiago, Ernesto Sanz, Andrés F. Almeida-Ñauñay and Sergio Zubelzu
Water 2025, 17(1), 76; https://doi.org/10.3390/w17010076 - 31 Dec 2024
Cited by 10 | Viewed by 9109
Abstract
Sustainable Urban Drainage Systems (SUDS) represent a paradigm shift in stormwater management, offering holistic solutions to urban water challenges. This review examines SUDS principles, design strategies, effectiveness and barriers to implementation. SUDS prioritize infiltration and mimic natural hydrological processes to reduce flood risk, [...] Read more.
Sustainable Urban Drainage Systems (SUDS) represent a paradigm shift in stormwater management, offering holistic solutions to urban water challenges. This review examines SUDS principles, design strategies, effectiveness and barriers to implementation. SUDS prioritize infiltration and mimic natural hydrological processes to reduce flood risk, improve water quality and support ecosystems in urban environments. Effective SUDS design integrates different components such as permeable pavements, green roofs, and rain gardens, tailored to the local context. Evidence suggests that well-designed SUDS can mitigate peak flows, reduce runoff volumes, and purify water. However, barriers to widespread adoption include lack of awareness, upfront costs, and regulatory complexity. Overcoming these will require collaborative stakeholder action to prioritize education, policy support, and funding opportunities. Future research should focus on optimizing SUDS design, assessing long-term performance, and quantifying socio-economic benefits. By integrating SUDS into urban landscapes, cities can strengthen hydrological resilience, promote sustainability, and enrich urban life. Full article
Show Figures

Figure 1

19 pages, 11658 KiB  
Article
Study on Multi-Scenario Rain-Flood Disturbance Simulation and Resilient Blue-Green Space Optimization in the Pearl River Delta
by Wei Dai and Yang Tan
Buildings 2024, 14(12), 3797; https://doi.org/10.3390/buildings14123797 - 27 Nov 2024
Cited by 3 | Viewed by 1118
Abstract
In the face of global climate change and rapid urbanization, the Pearl River Delta is confronted with frequent river floods and heavy rainfall, which leads to substantial economic losses and casualties. Enhancing the role of blue-green space in rain-flood resilience is crucial for [...] Read more.
In the face of global climate change and rapid urbanization, the Pearl River Delta is confronted with frequent river floods and heavy rainfall, which leads to substantial economic losses and casualties. Enhancing the role of blue-green space in rain-flood resilience is crucial for mitigating such damages in this new era. Firstly, based on an analysis of the current status quo of blue-green space in the Pearl River Delta and the identification of potential areas at risk from rain and floods, this paper elucidates that resilient blue-green space in the Pearl River Delta should be guided by a systematic, bottom-line, and forward-looking orientation while considering spatial characteristics such as multi-scale network connectivity, redundancy and diversity/multi-functionality. Secondly, an optimization route is proposed based on steps of analysis of existing blue-green space, identification of inundated areas prone to rain and flood damage and optimization of blue-green spaces. Strategies for optimizing blue-green space are put forth including enhancing water corridor connectivity, optimizing ecological barriers and corridors, as well as constructing water gates to control hydrological flow direction. Simulation results demonstrate that under similar rain-flood disaster conditions, optimized blue-green space exhibits smaller sizes and lower depths of potential inundated areas compared to the original ones. Full article
Show Figures

Figure 1

15 pages, 2542 KiB  
Article
Flood Risk Analysis of Urban Agglomerations in the Yangtze River Basin Under Extreme Precipitation Based on Remote Sensing Technology
by Haichao Li, Dawen Yang, Zhenduo Zhu, Yanqi Wei, Yuliang Zhou, Hiroshi Ishidaira, Nii Amarquaye Commey and Han Cheng
Remote Sens. 2024, 16(22), 4289; https://doi.org/10.3390/rs16224289 - 17 Nov 2024
Cited by 1 | Viewed by 1710
Abstract
Flooding is the most pervasive hydrological disaster globally. This study presents a comprehensive analysis of torrential rain and flood characteristics across three major urban agglomerations (CY, MRYR, and YRD) in the Yangtze River Basin from 1991 to 2020. Utilizing satellite-derived microwave SSM/I data [...] Read more.
Flooding is the most pervasive hydrological disaster globally. This study presents a comprehensive analysis of torrential rain and flood characteristics across three major urban agglomerations (CY, MRYR, and YRD) in the Yangtze River Basin from 1991 to 2020. Utilizing satellite-derived microwave SSM/I data and CHIRPS precipitation datasets, this study examines the impacts of urbanization and climate change on flood risk patterns. The results showed: (1) In 1998, the MRYR had the highest flood risk due to heavy rainfall and poor flood control, but by 2020, risk shifted to the CY with rapid urbanization and more rainfall, while the YRD maintained the lowest risk due to advanced flood control. (2) The relationship between impervious surface area and flood risk varied by region. The CY showed a negative correlation (−0.41), suggesting effective flood mitigation through topography and infrastructure; the MRYR had a slight positive correlation (0.12), indicating increased risks from urban expansion; and the YRD’s weak negative correlation (−0.18) reflected strong flood control systems. This research underscores the imperative of strategic urban planning and effective water resource management to mitigate future flood risks and contributes valuable insights to ongoing efforts in flood disaster prevention and control within the Yangtze River Basin. Full article
(This article belongs to the Special Issue Remote Sensing in Hydrometeorology and Natural Hazards)
Show Figures

Figure 1

23 pages, 1667 KiB  
Article
Assessment of Water Disaster Resilience in Mountainous Urban Metro Stations by Combination Weighting Method and Extension Cloud Model
by Yiyang Wang, Yunyan Li and Rong Wan
Water 2024, 16(22), 3266; https://doi.org/10.3390/w16223266 - 13 Nov 2024
Cited by 1 | Viewed by 1444
Abstract
Studying the resilience of metro stations in mountainous cities to heavy rain and flooding is of significant importance for enhancing the stability and safety of metro station operations. Considering the topographical and climatic characteristics of mountainous urban areas, this study analyzes the mechanisms [...] Read more.
Studying the resilience of metro stations in mountainous cities to heavy rain and flooding is of significant importance for enhancing the stability and safety of metro station operations. Considering the topographical and climatic characteristics of mountainous urban areas, this study analyzes the mechanisms through which heavy rain and flooding affect metro station resilience. Based on this analysis, 27 factors, influencing metro station resilience, are identified across 4 dimensions: absorptive capacity, resistance capacity, recovery capacity, and adaptive capacity. A water disaster resilience evaluation index system and corresponding rating standards are established for metro stations in mountainous cities. By combining the advantages of objective and subjective weighting, the combination weights of evaluation indicators are calculated using game theory. The extension theory is combined with the cloud model to establish a model for assessing the water disaster resilience of metro stations in mountainous urban areas. The applicability and feasibility of the model are validated through its implementation at Shapingba Station within Chongqing Rail Transit. The evaluation results obtained from the established model indicate a resilience level of IV for Shapingba metro station, reflecting a high level of resilience that aligns with real-world conditions. These findings further validate the proposed evaluation standards and the method for assessing the water disaster resilience of metro stations based on the combination weighting method and extension cloud model. This evaluation method considers the uncertainty in the evaluation process, demonstrating good feasibility and reliability. It offers a new perspective and methodology for assessing and analyzing the resilience of similar metro stations in mountainous cities. Full article
Show Figures

Figure 1

Back to TopTop