Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (129)

Search Parameters:
Keywords = urban rail transit line

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5201 KiB  
Article
Construction Scheme Effects on Deformation Controls for Open-Top UBITs Underpassing Existing Stations
by Yanming Yao, Junhong Zhou, Mansheng Tan, Mingjie Jia and Honggui Di
Buildings 2025, 15(15), 2762; https://doi.org/10.3390/buildings15152762 - 5 Aug 2025
Abstract
Urban rail transit networks’ rapid expansions have led to increasing intersections between existing and new lines, particularly in dense urban areas where new stations must underpass existing infrastructure at zero distance. Deformation controls during construction are critical for maintaining the operational safety of [...] Read more.
Urban rail transit networks’ rapid expansions have led to increasing intersections between existing and new lines, particularly in dense urban areas where new stations must underpass existing infrastructure at zero distance. Deformation controls during construction are critical for maintaining the operational safety of existing stations, especially in soft soil conditions where construction-induced settlement poses significant risks to structural integrity. This study systematically investigates the influence mechanisms of different construction schemes on base plate deformation when an open-top UBIT (underground bundle composite pipe integrated by transverse pre-stressing) underpasses existing stations. Through precise numerical simulation using PLAXIS 3D, the research comparatively analyzed the effects of 12 pipe jacking sequences, 3 pre-stress levels (1116 MPa, 1395 MPa, 1674 MPa), and 3 soil chamber excavation schemes, revealing the mechanisms between the deformation evolution and soil unloading effects. The continuous jacking strategy of adjacent pipes forms an efficient support structure, limiting maximum settlement to 5.2 mm. Medium pre-stress level (1395 MPa) produces a balanced deformation pattern that optimizes structural performance, while excavating side chambers before the central chamber effectively utilizes soil unloading effects, achieving controlled settlement distribution with maximum values of −7.2 mm. The optimal construction combination demonstrates effective deformation control, ensuring the operational safety of existing station structures. These findings enable safer and more efficient urban underpassing construction. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

28 pages, 1146 KiB  
Article
Uncovering Hidden Risks: Non-Targeted Screening and Health Risk Assessment of Aromatic Compounds in Summer Metro Carriages
by Han Wang, Guangming Li, Cuifen Dong, Youyan Chi, Kwok Wai Tham, Mengsi Deng and Chunhui Li
Buildings 2025, 15(15), 2761; https://doi.org/10.3390/buildings15152761 - 5 Aug 2025
Abstract
Metro carriages, as enclosed transport microenvironments, have been understudied regarding pollution characteristics and health risks from ACs, especially during high-temperature summers that amplify exposure. This study applied NTS techniques for the first time across three major Chengdu metro lines, systematically identifying sixteen ACs, [...] Read more.
Metro carriages, as enclosed transport microenvironments, have been understudied regarding pollution characteristics and health risks from ACs, especially during high-temperature summers that amplify exposure. This study applied NTS techniques for the first time across three major Chengdu metro lines, systematically identifying sixteen ACs, including hazardous species such as acetophenone, benzonitrile, and benzoic acid that are often overlooked in conventional BTEX-focused monitoring. The TAC concentration reached 41.40 ± 5.20 µg/m3, with half of the compounds exhibiting significant increases during peak commuting periods. Source apportionment using diagnostic ratios and PMF identified five major contributors: carriage material emissions (36.62%), human sources (22.50%), traffic exhaust infiltration (16.67%), organic solvents (16.55%), and industrial emissions (7.66%). Although both non-cancer (HI) and cancer (TCR) risks for all population groups were below international thresholds, summer tourists experienced higher exposure than daily commuters. Notably, child tourists showed the greatest vulnerability, with a TCR of 5.83 × 10−7, far exceeding that of commuting children (1.88 × 10−7). Benzene was the dominant contributor, accounting for over 50% of HI and 70% of TCR. This study presents the first integrated NTS and quantitative risk assessment to characterise ACs in summer metro environments, revealing a broader range of hazardous compounds beyond BTEX. It quantifies population-specific risks, highlights children’s heightened vulnerability. The findings fill critical gaps in ACs exposure and provide a scientific basis for improved air quality management and pollution mitigation strategies in urban rail transit systems. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

18 pages, 3004 KiB  
Article
A Spatiotemporal Convolutional Neural Network Model Based on Dual Attention Mechanism for Passenger Flow Prediction
by Jinlong Li, Haoran Chen, Qiuzi Lu, Xi Wang, Haifeng Song and Lunming Qin
Mathematics 2025, 13(14), 2316; https://doi.org/10.3390/math13142316 - 21 Jul 2025
Viewed by 302
Abstract
Establishing a high-precision passenger flow prediction model is a critical and complex task for the optimization of urban rail transit systems. With the development of artificial intelligence technology, the data-driven technology has been widely studied in the intelligent transportation system. In this study, [...] Read more.
Establishing a high-precision passenger flow prediction model is a critical and complex task for the optimization of urban rail transit systems. With the development of artificial intelligence technology, the data-driven technology has been widely studied in the intelligent transportation system. In this study, a neural network model based on the data-driven technology is established for the prediction of passenger flow in multiple urban rail transit stations to enable smart perception for optimizing urban railway transportation. The integration of network units with different specialities in the proposed model allows the network to capture passenger flow data, temporal correlation, spatial correlation, and spatiotemporal correlation with the dual attention mechanism, further improving the prediction accuracy. Experiments based on the actual passenger flow data of Beijing Metro Line 13 are conducted to compare the prediction performance of the proposed data-driven model with the other baseline models. The experimental results demonstrate that the proposed prediction model achieves lower MAE and RMSE in passenger flow prediction, and its fitted curve more closely aligns with the actual passenger flow data. This demonstrates the model’s practical potential to enhance intelligent transportation system management through more accurate passenger flow forecasting. Full article
Show Figures

Figure 1

16 pages, 5442 KiB  
Communication
Analysis of the Impact of Frog Wear on the Wheel–Rail Dynamic Performance in Turnout Zones of Urban Rail Transit Lines
by Yanlei Li, Dongliang Zeng, Xiuqi Wei, Xiaoyu Hu and Kaiyun Wang
Lubricants 2025, 13(7), 317; https://doi.org/10.3390/lubricants13070317 - 20 Jul 2025
Viewed by 330
Abstract
To investigate how severe wear at No. 12 turnout frogs in an urban rail transit line operating at speeds over 120 km/h on the dynamic performance of the vehicle, a vehicle–frog coupled dynamic model was established by employing the 2021 version of SIMPACK [...] Read more.
To investigate how severe wear at No. 12 turnout frogs in an urban rail transit line operating at speeds over 120 km/h on the dynamic performance of the vehicle, a vehicle–frog coupled dynamic model was established by employing the 2021 version of SIMPACK software. Profiles of No. 12 alloy steel frogs and metro wheel rims were measured to simulate wheel–rail interactions as the vehicle traverses the turnout, using both brand-new and worn frog conditions. The experimental results indicate that increased service life deepens frog wear, raises equivalent conicity, and intensifies wheel–rail forces. When a vehicle passes through the frog serviced for over 17 months at the speed of 120 km/h, the maximum derailment coefficient, lateral acceleration of the car body, and lateral and vertical wheel–rail forces increased by 0.14, 0.17 m/s2, 9.52 kN, and 105.76 kN, respectively. The maximum contact patch area grew by 35.73%, while peak contact pressure rose by 236 MPa. To prevent dynamic indicators from exceeding safety thresholds and ensure train operational safety, it is recommended that the frog maintenance cycle be limited to 12 to 16 months. Full article
Show Figures

Figure 1

21 pages, 1830 KiB  
Article
Optimization Model of Express–Local Train Schedules Under Cross-Line Operation of Suburban Railway
by Jingyi Zhu, Xin Guo and Jianju Pan
Appl. Sci. 2025, 15(14), 7853; https://doi.org/10.3390/app15147853 - 14 Jul 2025
Viewed by 224
Abstract
Cross-line operation and express–local train coordination are both crucial for enhancing the efficiency of multi-level urban rail transit systems. Most studies address suburban railway operations in isolation, overlooking coordination and inducing supply–demand mismatches that weaken system efficiency. This study addresses the joint optimization [...] Read more.
Cross-line operation and express–local train coordination are both crucial for enhancing the efficiency of multi-level urban rail transit systems. Most studies address suburban railway operations in isolation, overlooking coordination and inducing supply–demand mismatches that weaken system efficiency. This study addresses the joint optimization of cross-line operation and express–local scheduling by proposing a novel train timetable model. The model determines train service plans and departure times to minimize total system cost, including train operating and passenger travel costs. A space–time network represents integrated train–passenger interactions, and an extended adaptive large neighborhood search (E-ALNS) algorithm is developed to solve the model efficiently. Numerical experiments verify the effectiveness of the proposed approach. The E-ALNS achieves near-optimal solutions with less than 4% deviation from Gurobi. Comparative analysis shows that the proposed hybrid operation mode reduces total passenger travel cost by 6% and improves the cost efficiency ratio by 13% compared to independent operations. Sensitivity analyses further confirm the model’s robustness to variations in transfer walking time, passenger penalties, and waiting thresholds. This study provides a practical and scalable framework for optimizing train timetables in complex cross-line transit systems, offering insights for enhancing system coordination and passenger service quality. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

22 pages, 2334 KiB  
Article
Prediction of Surface Deformation Induced by Ultra-Shallow-Buried Pilot Tunnel Construction
by Caijun Liu, Xiangdong Li, Yang Yang, Xing Gao, Yupeng Shen and Peng Jing
Appl. Sci. 2025, 15(13), 7546; https://doi.org/10.3390/app15137546 - 4 Jul 2025
Viewed by 244
Abstract
The prediction of ground deformation during ultra-shallow-buried pilot tunnel construction is critical for urban rail transit projects in complex geological settings, yet existing cross-section models often lack accuracy. This study proposes an enhanced non-uniform convergence model based on stochastic medium theory, which decomposes [...] Read more.
The prediction of ground deformation during ultra-shallow-buried pilot tunnel construction is critical for urban rail transit projects in complex geological settings, yet existing cross-section models often lack accuracy. This study proposes an enhanced non-uniform convergence model based on stochastic medium theory, which decomposes surface settlement into uniform soil shrinkage and non-uniform initial support deformation. A computational formula for horseshoe-shaped sections is derived and validated through field data from Kunming Rail Transit Phase I, demonstrating a 59% improvement in maximum settlement prediction accuracy (reducing error from 7.5 mm to 3.1 mm) compared to traditional methods. Its application to Beijing Metro Line 13 reveals two distinct deformation patterns: significant ground heave occurs at 2.5 times the tunnel width from the centerline, while maximum settlement concentrates above the excavation center and diminishes radially. To mitigate heave, early strengthening of the secondary lining is recommended to control initial horizontal deformation. These findings enhance prediction reliability and provide actionable insights for deformation control in similar urban tunneling projects, particularly under ultra-shallow burial conditions. Full article
Show Figures

Figure 1

24 pages, 6088 KiB  
Article
Energy-Efficient Optimization Method for Timetable Adjusting in Urban Rail Transit
by Lianbo Deng, Shiyu Tang, Ming Chen, Ying Zhang, Yuanyuan Tian and Qun Chen
Mathematics 2025, 13(13), 2119; https://doi.org/10.3390/math13132119 - 28 Jun 2025
Viewed by 229
Abstract
For a given timetable in urban rail transit systems, this paper presents a practical energy efficiency optimization problem that carries out adjustments to the timetable, with the goal of energy saving. We propose two strategies to address this challenge, including adjusting the section [...] Read more.
For a given timetable in urban rail transit systems, this paper presents a practical energy efficiency optimization problem that carries out adjustments to the timetable, with the goal of energy saving. We propose two strategies to address this challenge, including adjusting the section running time by selecting a speed profile and improving the utilization of regenerative braking energy by adjusting the trains’ departure time. Constraints on the range of adjustment for energy-efficient time elements are constructed for maintaining the stability of elements of the given timetable. An energy efficiency optimization model is then established to minimize the total net energy consumption of the timetable, and a solution algorithm based on a genetic algorithm is proposed. We make small-scale adjustments to trains’ running trajectories to optimize the overlap time of braking and traction conditions among multiple trains. The case of the Guangzhou Metro Line 8 in China is presented to verify the effectiveness and practicality of our method. The results show that the consumption of traction energy is reduced by 0.95% and the use of regenerative braking energy is increased by 8.18%, with an improvement in energy efficiency of 6.78%. This method can achieve relatively significant energy efficiency results while ensuring the stable service quality of the train timetable and can provide support for an energy-efficient train timetable for urban rail transit operation enterprises. Full article
(This article belongs to the Special Issue Mathematical Optimization in Transportation Engineering: 2nd Edition)
Show Figures

Figure 1

37 pages, 12672 KiB  
Article
Optimized Design of Cultural Space in Wuhan Metro: Analysis and Reflection Based on Multi-Source Data
by Zhengcong Wei, Yangxue Hu, Yile Chen and Tianjia Wang
Buildings 2025, 15(13), 2201; https://doi.org/10.3390/buildings15132201 - 23 Jun 2025
Viewed by 667
Abstract
As urbanization has accelerated, rail transit has evolved from being a mere means of transportation to a public area that houses the city’s cultural memory and serves as a crucial portal for the public to understand the culture of the city. As an [...] Read more.
As urbanization has accelerated, rail transit has evolved from being a mere means of transportation to a public area that houses the city’s cultural memory and serves as a crucial portal for the public to understand the culture of the city. As an urban public space with huge passenger flow, the metro (or subway) cultural space has also become a public cultural space, serving communal welfare and representing the image of the city. It is currently attracting more and more attention from the academic community. Wuhan, located in central China, has many subway lines and its engineering construction has set several national firsts, which is a typical sample of urban subway development in China. In this study, we use Python 3.13.0 crawler technology to capture the public’s comments on cultural space of Wuhan metro in social media and adopt SnowNLP sentiment score and LDA thematic clustering analysis to explore the overall quality, distinct characteristics, and deficiencies of Wuhan metro cultural space construction, and propose targeted design optimization strategies based on this study. The main findings are as follows: (1) The metro cultural space is an important window for the public to perceive the city culture, and the public in general shows positive perception of emotions: among the 16,316 data samples, 47.7% are positive comments, 17.8% are neutral comments, and 34.5% are negative comments. (2) Based on the frequency of content in the sample data for metro station exit and entrance space, metro train space, metro concourse and platform space, they are ranked as weak cultural spaces (18%), medium cultural spaces (33%), and strong cultural spaces (49%) in terms of the public’s perception of urban culture. (3) At present, there are certain deficiencies in Wuhan metro cultural space: the circulation paths in concourses and platforms are overly dominant, leaving little space for rest or interaction; the cultural symbols of metro train space are fragmented; the way of articulation between cultural and functional space in the metro station exit and entrance space is weak, and the space is single in form. (4) Wuhan metro cultural space needs to be based on locality landscape expression, functional zoning reorganization, innovative scene creation to optimize the visual symbol system and behavioral symbol system in the space, to establish a good image of the space, and to strengthen the public’s cultural identity and emotional resonance. Full article
(This article belongs to the Special Issue Digital Management in Architectural Projects and Urban Environment)
Show Figures

Figure 1

17 pages, 3061 KiB  
Article
Safety Risk Assessment of Double-Line Tunnel Crossings Beneath Existing Tunnels in Complex Strata
by Bafeng Ren, Shengbin Hu, Min Hu, Zhi Chen and Hang Lin
Buildings 2025, 15(12), 2103; https://doi.org/10.3390/buildings15122103 - 17 Jun 2025
Viewed by 328
Abstract
With the acceleration of urbanization, the development of urban rail transit networks has become an essential component of modern urban transportation. The construction of new urban rail transit lines often involves crossing existing operational lines, posing significant safety risks and technical challenges. This [...] Read more.
With the acceleration of urbanization, the development of urban rail transit networks has become an essential component of modern urban transportation. The construction of new urban rail transit lines often involves crossing existing operational lines, posing significant safety risks and technical challenges. This paper presents a comprehensive study on the safety risk assessment and control measures for the construction of new double-line shield tunnels crossing beneath existing tunnels in complex strata, using the project of Line 5 of the Nanning Urban Rail Transit crossing beneath the existing Line 2 interval tunnel as a case study. This study employs methods such as status investigation, numerical simulation, and field measurement to analyze the construction risks. Key findings include the successful identification and control of major risk sources through refined risk assessment and comprehensive technical measurement. The maximum settlement of the existing tunnel was effectively controlled at −2.55 mm, well within the deformation monitoring control values. This study demonstrates that optimized shield machine selection, improved lining design, interlayer soil reinforcement, the dynamic adjustment of shield parameters, and the precise measurement of shield posture significantly enhance the efficiency of shield tunneling and construction safety. The results provide a valuable reference for the settlement and deformation control of similar projects. Full article
(This article belongs to the Special Issue Structural Analysis of Underground Space Construction)
Show Figures

Figure 1

32 pages, 5808 KiB  
Article
Spatiotemporal Evolution of 3D Spatial Compactness in High-Speed Railway Station Areas: A Case Study of Chengdu-Chongqing North–South Line Stations (2015–2025)
by Tijin Gui, Hong Yuan and Ziyi Liu
Land 2025, 14(6), 1275; https://doi.org/10.3390/land14061275 - 13 Jun 2025
Viewed by 409
Abstract
As a pivotal node in urban spatial restructuring, the evolution of three-dimensional (3D) compactness in high-speed rail station areas is crucial for sustainable development. However, the existing research predominantly focuses on two-dimensional forms and lacks dynamic analysis and models that are adaptable to [...] Read more.
As a pivotal node in urban spatial restructuring, the evolution of three-dimensional (3D) compactness in high-speed rail station areas is crucial for sustainable development. However, the existing research predominantly focuses on two-dimensional forms and lacks dynamic analysis and models that are adaptable to complex terrains. This study develops an enhanced 3D gravitational model that integrates satellite imagery and Gaode building data to quantify the spatiotemporal heterogeneity and carry out multidimensional classification of the compactness across 16 stations in the Chengdu-Chongqing urban agglomeration (2015–2025), with driving factors being identified through correlation and regression analyses. The key findings reveal the following: (1) The mean compactness increased by 22.41%, exhibiting nonlinear heterogeneity characterized by high initial values with low growth rates versus low initial values with high growth rates. Spatially, the southern line evolved from a dual-core pattern at the terminals to multigradient development, while the northern line maintained stable growth despite gradient discontinuities. These spatial differentiations resulted from synergistic effects of urban sizes (station hierarchy), terrain features, administrative divisions, and the line affiliation. (2) The built-up land area (under equal study conditions) and vertical development emerged as key drivers, with the building height diversity demonstrating dual spatial effects (enhancing both compactness and aesthetic richness). Complex terrain characteristics were found to promote clustered urban land use and compact efficiency during initial development phases. This study proposes a planning framework that integrates morphology-adaptive zoning control, ecology-responsive compactness principles, and urban–rural integrated settlement patterns, providing quantitative tools for mountainous station development. These findings offer theoretical and practical support for achieving urban sustainability goals and meeting the 3D compactness and transit-oriented development requirements in territorial spatial planning. Full article
Show Figures

Figure 1

34 pages, 2554 KiB  
Article
An Improved Whale Optimization Algorithm via Angle Penalized Distance for Automatic Train Operation
by Longda Wang, Yanjie Ju, Long Guo, Gang Liu, Chunlin Li and Yan Chen
Biomimetics 2025, 10(6), 384; https://doi.org/10.3390/biomimetics10060384 - 9 Jun 2025
Viewed by 389
Abstract
This study proposes a novel effective improved whale optimization algorithm via angle penalized distance (IWOA-APD) for automatic train operation (ATO) to effectively improve the ATO quality. Specifically, aiming at the high-quality target speed curve of urban rail trains, a target speed curve multi-objective [...] Read more.
This study proposes a novel effective improved whale optimization algorithm via angle penalized distance (IWOA-APD) for automatic train operation (ATO) to effectively improve the ATO quality. Specifically, aiming at the high-quality target speed curve of urban rail trains, a target speed curve multi-objective optimization model for ATO is established with energy saving, punctuality, accurate stopping, and comfort as the indexes; and the comprehensive evaluation strategy utilizing angle-penalized distance as the evaluation index is proposed to enhance the assessment’s rationality and applicability. On this basis, the IWOA-APD is proposed using strategies of non-linear decreasing convergence factor, solutions of out-of-bounds eliminating via combination of reflection and refraction, mechanisms of genetic evolution with variable probability, and elite maintenance based on fusion distance and crowding degree distance. In addition, the detailed design scheme of IWOA-APD is given. The test results show that the proposed IWOA-APD achieves significant performance improvements compared to traditional MOWOA. In the optimization scenario from Lvshun New Port Station to Tieshan Town Station of Dalian urban rail transit line No.12, the IGD value shows a remarkable 69.1% reduction, while energy consumption decreases by 12.5%. The system achieves a 64.6% improvement in punctuality and a 76.5% enhancement in parking accuracy. Additionally, comfort level improves by 15.9%. Full article
Show Figures

Figure 1

24 pages, 27040 KiB  
Article
POI-Based Assessment of Sustainable Commercial Development: Spatial Distribution Characteristics and Influencing Factors of Commercial Facilities Around Urumqi Metro Line 1 Stations
by Aishanjiang Abudurexiti, Zulihuma Abulikemu and Maimaitizunong Keyimu
Sustainability 2025, 17(12), 5270; https://doi.org/10.3390/su17125270 - 6 Jun 2025
Viewed by 533
Abstract
Against the backdrop of rapid rail transit development, this study takes Urumqi Metro Line 1 as a case, using geographic information system (GIS) spatial analysis and space syntax Pearson correlation coefficient methods. Focusing on an 800 m radius around station areas, the research [...] Read more.
Against the backdrop of rapid rail transit development, this study takes Urumqi Metro Line 1 as a case, using geographic information system (GIS) spatial analysis and space syntax Pearson correlation coefficient methods. Focusing on an 800 m radius around station areas, the research investigates the distribution characteristics of commercial facilities and the impact of metro development on commercial patterns through the quantitative analysis and distribution trends of points of interest (POI) data across different historical periods. The study reveals that following the opening of Urumqi Metro Line 1, commercial facilities have predominantly clustered around stations including Erdaoqiao, Nanmen, Beimen, Nanhu Square, Nanhu Beilu, Daxigou, and Sports Center, with kernel density values surging by 28–39%, indicating significantly enhanced commercial agglomeration. Metro construction has promoted commercial POI quantity growth and commercial sector enrichment. Surrounding commercial areas have developed rapidly after metro construction, with the most significant impacts observed in the catering, shopping, and residential-oriented living commercial sectors. After the construction of the subway, the distribution pattern of commercial facilities presents two kinds of aggregation patterns: one is the original centripetal aggregation layout before construction and further strengthened after construction; the other is the centripetal aggregation layout before construction and further weakened after construction, tending to the site level of face-like aggregation. The clustering characteristics of different business types vary. Factors such as subway accessibility, population density, and living infrastructure all impact the distribution of businesses around the subway. The impact of subway accessibility on commercial facilities varies by station infrastructure and urban area. The findings demonstrate how transit infrastructure development can catalyze sustainable urban form evolution by optimizing spatial resource allocation and fostering transportation–commerce synergy. It provides empirical support for applying the theory of transit-oriented development (TOD) in the urban planning of western developing regions. The research not only fills a research gap concerning the commercial space differentiation law of metro systems in megacities in arid areas but also provides a scientific decision-making basis for optimizing the spatial resource allocation of stations and realizing the synergistic development of transportation and commerce in the node cities along the “Belt and Road”. Full article
Show Figures

Figure 1

23 pages, 25069 KiB  
Article
Urban Renewal Strategy Guided by Rail Transit Development Based on the “Node–Place–Revenue” Model: Case Study of Shenyang Metro Line 1
by Xu Lu, Mengqin Zhu, Zeting Li, Qingyu Li and Shan Huang
Land 2025, 14(6), 1214; https://doi.org/10.3390/land14061214 - 5 Jun 2025
Viewed by 640
Abstract
Under the backdrop of urban renewal, harmonizing transit-oriented development (TOD) with urban renewal to maximize rail value has emerged as a critical focus in contemporary planning. Based on this, this paper proposes the node–place–revenue (NPR) model, which constructs evaluation indexes from the three [...] Read more.
Under the backdrop of urban renewal, harmonizing transit-oriented development (TOD) with urban renewal to maximize rail value has emerged as a critical focus in contemporary planning. Based on this, this paper proposes the node–place–revenue (NPR) model, which constructs evaluation indexes from the three dimensions of the node, place, and revenue. It determines the weights of each index by using expert scoring and the Analytic Hierarchy Process (AHP). Taking Shenyang Metro Line 1 as an example, the study first used the model to measure the node value, place value, and revenue value of each sample TOD station area. Secondly, K-means clustering analysis was used to form a spatial classification of five station areas. Finally, this paper proposes one differentiated urban renewal strategy for each type of station area. It is found that (1) the NPR model classifies stations into five categories: stress and high revenue, balanced, unbalanced node, unbalanced place, and dependence and low revenue and (2) the differentiated urban renewal strategies for each type of station area can be explored in terms of precise decongestion, node upgrading, function expansion, endogenous optimization, and infill quality improvement. This paper examines the economic driving effect of Shenyang Metro Line 1 stations on the renewal of the surrounding areas from the perspective of the economic balance of payments, providing a new reference for Shenyang-rail-transit-guided urban renewal work. Full article
(This article belongs to the Special Issue Territorial Space and Transportation Coordinated Development)
Show Figures

Figure 1

19 pages, 1728 KiB  
Article
A Scheduling-Optimization Model with Multi-Objective Constraints for Low-Carbon Urban Rail Transit Considering the Built Environment and Travel Demand: A Case Study of Hangzhou
by Jinrui Zang, Yuan Liu, Kun Qie, Yue Chen, Suli Wang and Xu Sun
Sustainability 2025, 17(11), 5061; https://doi.org/10.3390/su17115061 - 31 May 2025
Viewed by 604
Abstract
Urban rail transit, a crucial component of urban public transportation, often experiences increased operational costs and carbon emissions due to low-load operations being conducted during off-peak passenger flow periods. This study aims to develop an optimization method for the daily scheduling of rail [...] Read more.
Urban rail transit, a crucial component of urban public transportation, often experiences increased operational costs and carbon emissions due to low-load operations being conducted during off-peak passenger flow periods. This study aims to develop an optimization method for the daily scheduling of rail train operations with the goal of carbon emission reduction, while comprehensively considering the built environment and travel demand. Firstly, the influence of the urban built environment on residents’ travel demand is analyzed using an XGBoost model. Secondly, a time convolutional travel demand prediction model, Built Environment-Weighted Temporal Convolutional Network (BE-TCN), weighted by built environment factors, is constructed. Finally, an optimization method for rail train operation schedules based on the built environment and travel demand is proposed, with the objective of carbon emission reduction. A case study is conducted using the Hangzhou urban rail transit system as an example. The results indicate that the optimization method proposed in this study can achieve monthly carbon emission reductions of 1524.58 tons, 1181.94 tons, and 520.84 tons for Lines 1, 2, and 4 of the Hangzhou urban rail transit system, respectively. The research findings contribute to enhancing the economic efficiency and environmental sustainability of urban rail transit systems. Full article
Show Figures

Figure 1

18 pages, 11901 KiB  
Article
Deformation Monitoring Along Beijing Metro Line 22 Using PS-InSAR Technology
by Fenze Guo, Mingyuan Lyu, Xiaojuan Li, Jiyi Jiang, Lan Wang, Lin Guo, Ke Zhang, Huan Luo and Fengzhou Wang
Land 2025, 14(5), 1098; https://doi.org/10.3390/land14051098 - 18 May 2025
Viewed by 697
Abstract
The construction of subways exacerbates the non-uniformity of surface deformation, which in turn poses a potential threat to the safe construction and stable operation of urban rail transit systems. Beijing, the city with the most extensive subway network in China, has long been [...] Read more.
The construction of subways exacerbates the non-uniformity of surface deformation, which in turn poses a potential threat to the safe construction and stable operation of urban rail transit systems. Beijing, the city with the most extensive subway network in China, has long been affected by land subsidence. Utilizing data from Envisat ASAR, Radarsat-2, and Sentinel-1 satellites, this study employs PS-InSAR technology to monitor and analyze land subsidence within a 2 km buffer zone along Beijing Metro Line 22 over a span of 20 years (from January 2004 to November 2024). The results indicate that land subsidence at Guanzhuang Station and Yanjiao Station along Metro Line 22 is particularly pronounced, forming two distinct subsidence zones. After 2016, the overall rate of subsidence along the subway line began to stabilize, with noticeable ground rebound emerging around 2020. This study further reveals a strong correlation between land subsidence and confined groundwater levels, while geological structures and building construction also exert a significant influence on subsidence development. These findings provide a crucial scientific foundation for the formulation of effective prevention and mitigation strategies for land subsidence along urban rail transit lines. Full article
(This article belongs to the Special Issue Assessing Land Subsidence Using Remote Sensing Data)
Show Figures

Figure 1

Back to TopTop