Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,430)

Search Parameters:
Keywords = urban development process

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1710 KiB  
Article
Application of Empirical Mode Decomposition to Land Surface Temperature Projection Under a Changing Climate
by Che-Wei Chang and Wen-Cheng Huang
Water 2025, 17(15), 2204; https://doi.org/10.3390/w17152204 - 23 Jul 2025
Abstract
This study takes the daily temperature series of Taipei City as an example and proposes a data projection method based on Empirical Mode Decomposition (EMD), which effectively resolves the challenge of modeling non-stationary sequences. According to the daily mean temperature records from 1971 [...] Read more.
This study takes the daily temperature series of Taipei City as an example and proposes a data projection method based on Empirical Mode Decomposition (EMD), which effectively resolves the challenge of modeling non-stationary sequences. According to the daily mean temperature records from 1971 to 2023, Taipei has experienced an average warming rate of 0.02 °C per year. After applying EMD, the data were decomposed into 12 intrinsic mode functions (IMFs) and one residual trend. Among them, IMF5, with a period of 352 days (approximately one year), contributes 78% of the total energy, representing the dominant climatic cycle component. In this study, daily temperatures were categorized into five thermal levels: Cold (<12 °C), Cool (12–18 °C), Moderate (18–27 °C), Warm (27–32 °C), and Hot (>32 °C). In addition, using a 5-year moving process based on the annual EMD results, the IMFs and residuals were recombined to generate 390,625 synthetic sequences per year. Results show that the monthly mean temperatures of each year’s simulations closely match the observations, capturing the non-stationary characteristics of temperature variations. The overall classification accuracy of simulated versus observed daily temperature categories ranges from 60% to 71%, with an average of 65.1%. In summary, the EMD combined with the 5-year moving process developed in this study demonstrates a helpful data projection approach with effective reconstruction of periodic structures and stable simulation accuracy. It offers practical value for reconstructing urban climate variability, conducting risk assessments, and analyzing long-term warming trends. Moreover, it serves as a vital tool for modeling non-stationary climate data and supporting future projections. Full article
20 pages, 2737 KiB  
Technical Note
Obtaining the Highest Quality from a Low-Cost Mobile Scanner: A Comparison of Several Pipelines with a New Scanning Device
by Marek Hrdina, Juan Alberto Molina-Valero, Karel Kuželka, Shinichi Tatsumi, Keiji Yamaguchi, Zlatica Melichová, Martin Mokroš and Peter Surový
Remote Sens. 2025, 17(15), 2564; https://doi.org/10.3390/rs17152564 - 23 Jul 2025
Abstract
The accurate measurement of the tree diameter is vital for forest inventories, urban tree quality assessments, the management of roadside and railway vegetation, and various other applications. It also plays a crucial role in evaluating tree growth dynamics, which are closely linked to [...] Read more.
The accurate measurement of the tree diameter is vital for forest inventories, urban tree quality assessments, the management of roadside and railway vegetation, and various other applications. It also plays a crucial role in evaluating tree growth dynamics, which are closely linked to tree health, structural stability, and vulnerability. Although a range of devices and methodologies are currently under investigation, the widespread adoption of laser scanners remains constrained by their high cost. This study therefore aimed to compare high-end laser scanners (Trimble TX8 and GeoSLAM ZEB Horizon) with cost-effective alternatives, represented by the Apple iPhone 14 Pro and the LA03 scanner developed by mapry Co., Ltd. (Tamba, Japan). It further sought to evaluate the feasibility of employing these more affordable devices, even for small-scale forest owners or managers. Given the growing availability of 3D-based forest inventory algorithms, a selection of such processing pipelines was used to assess the practical potential of the scanning devices. The tested low-cost device produced moderate results, achieving a tree detection rate of up to 78% and a relative root mean square error (rRMSE) of 19.7% in diameter at breast height (DBH) estimation. However, performance varied depending on the algorithms applied. In contrast, the high-end mobile laser scanning (MLS) and terrestrial laser scanning (TLS) systems outperformed the low-cost alternative across all metrics, with tree detection rates reaching up to 99% and DBH estimation rRMSEs as low as 5%. Nevertheless, the low-cost device may still be suitable for scanning small sample plots at a reduced cost and could potentially be deployed in larger quantities to support broader forest inventory initiatives. Full article
Show Figures

Figure 1

26 pages, 2204 KiB  
Article
A Qualitative Methodology for Identifying Governance Challenges and Advancements in Positive Energy District Labs
by Silvia Soutullo, Oscar Seco, María Nuria Sánchez, Ricardo Lima, Fabio Maria Montagnino, Gloria Pignatta, Ghazal Etminan, Viktor Bukovszki, Touraj Ashrafian, Maria Beatrice Andreucci and Daniele Vettorato
Urban Sci. 2025, 9(8), 288; https://doi.org/10.3390/urbansci9080288 - 23 Jul 2025
Abstract
Governance challenges, success factors, and stakeholder dynamics are central to the implementation of Positive Energy District (PED) Labs, which aim to develop energy-positive and sustainable urban areas. In this paper, a qualitative analysis combining expert surveys, participatory workshops with practitioners from the COST [...] Read more.
Governance challenges, success factors, and stakeholder dynamics are central to the implementation of Positive Energy District (PED) Labs, which aim to develop energy-positive and sustainable urban areas. In this paper, a qualitative analysis combining expert surveys, participatory workshops with practitioners from the COST Action PED-EU-NET network, and comparative case studies across Europe identifies key barriers, drivers, and stakeholder roles throughout the implementation process. Findings reveal that fragmented regulations, social inertia, and limited financial mechanisms are the main barriers to PED Lab development, while climate change mitigation goals, strong local networks, and supportive policy frameworks are critical drivers. The analysis maps stakeholder engagement across six development phases, showing how leadership shifts between governments, industry, planners, and local communities. PED Labs require intangible assets such as inclusive governance frameworks, education, and trust-building in the early phases, while tangible infrastructures become more relevant in later stages. The conclusions emphasize that robust, inclusive governance is not merely supportive but a key driver of PED Lab success. Adaptive planning, participatory decision-making, and digital coordination tools are essential for overcoming systemic barriers. Scaling PED Labs effectively requires regulatory harmonization and the integration of social and technological innovation to accelerate the transition toward energy-positive, climate-resilient cities. Full article
(This article belongs to the Collection Urban Agenda)
Show Figures

Figure 1

36 pages, 11148 KiB  
Article
Research on Construction of Suzhou’s Historical Architectural Heritage Corridors and Cultural Relics-Themed Trails Based on Current Effective Conductance (CEC) Model
by Yao Wu, Yonglan Wu, Mingrui Miao, Muxian Wang, Xiaobin Li and Antonio Candeias
Buildings 2025, 15(15), 2605; https://doi.org/10.3390/buildings15152605 (registering DOI) - 23 Jul 2025
Abstract
As the cradle of Jiangnan culture, Suzhou is home to a dense concentration of historical architectural heritage that is currently facing existential threats from rapid urbanization. This study aims to develop a spatial heritage corridor network for conservation and sustainable utilization. Using kernel [...] Read more.
As the cradle of Jiangnan culture, Suzhou is home to a dense concentration of historical architectural heritage that is currently facing existential threats from rapid urbanization. This study aims to develop a spatial heritage corridor network for conservation and sustainable utilization. Using kernel density estimation, this study identifies 15 kernel density groups, along with the Analytic Hierarchy Process (AHP), to pinpoint clusters of historical architectural heritage and assess the involved resistance factors. Current Effective Conductance (CEC) theory is further applied to model spatial flow relationships among heritage nodes, leading to the delineation of 27 heritage corridors and revealing a spatial structure characterized by one primary core, one secondary core, and multiple peripheral zones. Based on 15 source points, six cultural relics-themed routes are proposed—three land-based and three waterfront routes—connecting historical sites, towns, and ecological areas. The study further recommends a resource management strategy centered on departmental collaboration, digital integration, and community co-governance. By integrating historical architectural types, settlement forms, and ecological patterns, the research builds a multi-scale narrative and experience system that addresses fragmentation while improving coordination and sustainability. This framework delivers practical advice on heritage conservation and cultural tourism development in Suzhou and the broader Jiangnan region. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

34 pages, 26037 KiB  
Article
Remote Sensing-Based Analysis of the Coupled Impacts of Climate and Land Use Changes on Future Ecosystem Resilience: A Case Study of the Beijing–Tianjin–Hebei Region
by Jingyuan Ni and Fang Xu
Remote Sens. 2025, 17(15), 2546; https://doi.org/10.3390/rs17152546 - 22 Jul 2025
Abstract
Urban and regional ecosystems are increasingly challenged by the compounded effects of climate change and intensive land use. In this study, a predictive assessment framework for ecosystem resilience in the Beijing–Tianjin–Hebei region was developed by integrating multi-source remote sensing data, with the aim [...] Read more.
Urban and regional ecosystems are increasingly challenged by the compounded effects of climate change and intensive land use. In this study, a predictive assessment framework for ecosystem resilience in the Beijing–Tianjin–Hebei region was developed by integrating multi-source remote sensing data, with the aim of quantitatively evaluating the coupled effects of climate change and land use change on future ecosystem resilience. In the first stage of the study, the SD-PLUS coupled modeling framework was employed to simulate land use patterns for the years 2030 and 2060 under three representative combinations of Shared Socioeconomic Pathways and Representative Concentration Pathways (SSP1-2.6, SSP2-4.5, and SSP5-8.5). Building upon these simulations, ecosystem resilience was comprehensively evaluated and predicted on the basis of three key attributes: resistance, adaptability, and recovery. This enabled a quantitative investigation of the spatio-temporal dynamics of ecosystem resilience under each scenario. The results reveal the following: (1) Temporally, ecosystem resilience exhibited a staged pattern of change. From 2020 to 2030, an increasing trend was observed only under the SSP1-2.6 scenario, whereas, from 2030 to 2060, resilience generally increased in all scenarios. (2) In terms of scenario comparison, ecosystem resilience typically followed a gradient pattern of SSP1-2.6 > SSP2-4.5 > SSP5-8.5. However, in 2060, a notable reversal occurred, with the highest resilience recorded under the SSP5-8.5 scenario. (3) Spatially, areas with high ecosystem resilience were primarily distributed in mountainous regions, while the southeastern plains and coastal zones consistently exhibited lower resilience levels. The results indicate that climate and land use changes jointly influence ecosystem resilience. Rainfall and temperature, as key climate drivers, not only affect land use dynamics but also play a crucial role in regulating ecosystem services and ecological processes. Under extreme scenarios such as SSP5-8.5, these factors may trigger nonlinear responses in ecosystem resilience. Meanwhile, land use restructuring further shapes resilience patterns by altering landscape configurations and recovery mechanisms. Our findings highlight the role of climate and land use in reshaping ecological structure, function, and services. This study offers scientific support for assessing and managing regional ecosystem resilience and informs adaptive urban governance in the face of future climate and land use uncertainty, promotes the sustainable development of ecosystems, and expands the applicability of remote sensing in dynamic ecological monitoring and predictive analysis. Full article
Show Figures

Figure 1

24 pages, 2758 KiB  
Article
A Techno-Economic Analysis of Integrating an Urban Biorefinery Process Within a Wastewater Treatment Plant to Produce Sustainable Wood Adhesives
by Blake Foret, William M. Chirdon, Rafael Hernandez, Dhan Lord B. Fortela, Emmanuel Revellame, Daniel Gang, Jalel Ben Hmida, William E. Holmes and Mark E. Zappi
Sustainability 2025, 17(15), 6679; https://doi.org/10.3390/su17156679 - 22 Jul 2025
Viewed by 33
Abstract
Societies are aiming to have a higher ecological consciousness in wastewater treatment operations and achieve a more sustainable future. With this said, global demands for larger quantities of resources and the consequent waste generated will inevitably lead to the exhaustion of current municipal [...] Read more.
Societies are aiming to have a higher ecological consciousness in wastewater treatment operations and achieve a more sustainable future. With this said, global demands for larger quantities of resources and the consequent waste generated will inevitably lead to the exhaustion of current municipal wastewater treatment works. The utilization of biosolids (particularly microbial proteins) from wastewater treatment operations could generate a sustainable bio-adhesive for the wood industry, reduce carbon footprint, mitigate health concerns related to the use of carcinogenic components, and support a more circular economic option for wastewater treatment. A techno-economic analysis for three 10 MGD wastewater treatment operations producing roughly 11,300 dry pounds of biosolids per day, in conjunction with co-feedstock defatted soy flour protein at varying ratios (i.e., 0%, 15%, and 50% wet weight), was conducted. Aspen Capital Cost Estimator V12 was used to design and estimate installed equipment additions for wastewater treatment plant integration into an urban biorefinery process. Due to the mechanical attributes and market competition, the chosen selling prices of each adhesive per pound were set for analysis as USD 0.75 for Plant Option P1, USD 0.85 for Plant Option P2, and USD 1.00 for Plant Option P3. Over a 20-year life, each plant option demonstrated economic viability with high NPVs of USD 107.9M, USD 178.7M, and USD 502.2M and internal rates of return (IRRs) of 24.0%, 29.0%, and 44.2% respectively. The options examined have low production costs of USD 0.14 and USD 0.19 per pound, minimum selling prices of USD 0.42–USD 0.51 per pound, resulting in between 2- and 4-year payback periods. Sensitivity analysis shows the effects biosolid production fluctuations, raw material market price, and adhesive selling price have on economics. The results proved profitable even with large variations in the feedstock and raw material prices, requiring low market selling prices to reach the hurdle rate of examination. This technology is economically enticing, and the positive environmental impact of waste utilization encourages further development and analysis of the bio-adhesive process. Full article
Show Figures

Figure 1

29 pages, 32010 KiB  
Article
Assessing Environmental Sustainability in the Eastern Mediterranean Under Anthropogenic Air Pollution Risks Through Remote Sensing and Google Earth Engine Integration
by Mohannad Ali Loho, Almustafa Abd Elkader Ayek, Wafa Saleh Alkhuraiji, Safieh Eid, Nazih Y. Rebouh, Mahmoud E. Abd-Elmaboud and Youssef M. Youssef
Atmosphere 2025, 16(8), 894; https://doi.org/10.3390/atmos16080894 - 22 Jul 2025
Viewed by 223
Abstract
Air pollution monitoring in ungauged zones presents unique challenges yet remains critical for understanding environmental health impacts and socioeconomic dynamics in the Eastern Mediterranean region. This study investigates air pollution patterns in northwestern Syria during 2019–2024, analyzing NO2 and CO concentrations using [...] Read more.
Air pollution monitoring in ungauged zones presents unique challenges yet remains critical for understanding environmental health impacts and socioeconomic dynamics in the Eastern Mediterranean region. This study investigates air pollution patterns in northwestern Syria during 2019–2024, analyzing NO2 and CO concentrations using Sentinel-5P TROPOMI satellite data processed through Google Earth Engine. Monthly concentration averages were examined across eight key locations using linear regression analysis to determine temporal trends, with Spearman’s rank correlation coefficients calculated between pollutant levels and five meteorological parameters (temperature, humidity, wind speed, atmospheric pressure, and precipitation) to determine the influence of political governance, economic conditions, and environmental sustainability factors on pollution dynamics. Quality assurance filtering retained only measurements with values ≥ 0.75, and statistical significance was assessed at a p < 0.05 level. The findings reveal distinctive spatiotemporal patterns that reflect the region’s complex political-economic landscape. NO2 concentrations exhibited clear political signatures, with opposition-controlled territories showing upward trends (Al-Rai: 6.18 × 10−8 mol/m2) and weak correlations with climatic variables (<0.20), indicating consistent industrial operations. In contrast, government-controlled areas demonstrated significant downward trends (Hessia: −2.6 × 10−7 mol/m2) with stronger climate–pollutant correlations (0.30–0.45), reflecting the impact of economic sanctions on industrial activities. CO concentrations showed uniform downward trends across all locations regardless of political control. This study contributes significantly to multiple Sustainable Development Goals (SDGs), providing critical baseline data for SDG 3 (Health and Well-being), mapping urban pollution hotspots for SDG 11 (Sustainable Cities), demonstrating climate–pollution correlations for SDG 13 (Climate Action), revealing governance impacts on environmental patterns for SDG 16 (Peace and Justice), and developing transferable methodologies for SDG 17 (Partnerships). These findings underscore the importance of incorporating environmental safeguards into post-conflict reconstruction planning to ensure sustainable development. Full article
(This article belongs to the Special Issue Study of Air Pollution Based on Remote Sensing (2nd Edition))
Show Figures

Figure 1

24 pages, 319 KiB  
Article
Improving City Centre Project Delivery in Small Cities: Developer Perspectives on Public Authority Conduct
by Aud Tennøy and Oddrun Helen Hagen
Buildings 2025, 15(14), 2578; https://doi.org/10.3390/buildings15142578 - 21 Jul 2025
Viewed by 96
Abstract
Urban development through property development in central parts of cities rather than through sprawl is key to achieving sustainable future cities. However, realising desired projects in complex city centre environments is challenging and risky due to the involvement of numerous actors. This paper [...] Read more.
Urban development through property development in central parts of cities rather than through sprawl is key to achieving sustainable future cities. However, realising desired projects in complex city centre environments is challenging and risky due to the involvement of numerous actors. This paper offers novel insights into developers’ perspectives on how the conduct of public authorities influences city centre zoning plan processes. Based on interviews with 11 employees of property development firms, working on mixed-use city centre projects ranging from 1100 to 112,000 m2 Gross Floor Area in small and medium-sized Norwegian cities, the study identifies key challenges developers experience in their interactions with public authorities across sectors and administrative levels during planning processes and analyses how these challenges relate to goals, knowledge and power among key actors. The study finds that public authorities can improve the efficiency of zoning plan processes and enhance city centre project delivery by altering their conduct. First, by more explicitly clarifying that the realisation of desired city centre property developments is a primary policy objective, maintaining this focus throughout the processes and taking responsibility for reconciling conflicts in ways that enable feasible projects. Second, by improving their knowledge of the fundamental need for projects to be profitable in order to be realised, and the impact of authorities’ requirements on project viability. Third, by exercising their agenda-setting power more constructively and flexibly throughout the zoning plan process. The paper examines underexplored perspectives in planning research and yields actionable recommendations for planning practice. Full article
(This article belongs to the Special Issue Future Cities and Their Downtowns: Urban Studies and Planning)
30 pages, 4839 KiB  
Article
Acceptability of a Colorectal Cancer-Preventive Diet Promoting Red Meat Reduction and Increased Fiber and Micronutrient Intake: A Cross-Sectional Study in Romanian Adults
by Marius-Cătălin Belean, Teodor-Andrei Maghiar, Anca-Maria Căpraru, Andreea-Adriana Neamțu, Dan Iliescu, Valentin-Cristian Iovin, Flaviu-Ionuț Faur, Meda-Ada Bugi, Alina Totorean, Sorina Tăban, Sorin Dema, Cristina-Adriana Dehelean, Bogdan Dan Totolici, Ovidiu Laurian Pop, Octavian Crețu and Carmen Neamțu
Nutrients 2025, 17(14), 2386; https://doi.org/10.3390/nu17142386 - 21 Jul 2025
Viewed by 226
Abstract
Background/Objectives: Colorectal cancer is a leading cause of cancer-related death worldwide, with rising incidence in younger adults. Unhealthy diets high in red and processed meat and low in fiber are key modifiable risk factors, highlighting the need for preventive nutritional strategies targeting [...] Read more.
Background/Objectives: Colorectal cancer is a leading cause of cancer-related death worldwide, with rising incidence in younger adults. Unhealthy diets high in red and processed meat and low in fiber are key modifiable risk factors, highlighting the need for preventive nutritional strategies targeting CRC through dietary interventions. Methods: A one-day sample diet for colorectal cancer prevention, consisting of fiber-rich meals excluding red meat and incorporating whole grains, legumes, vegetables, fruits, nuts, and lean protein alternatives (such as fish and poultry), was developed. Its acceptability was assessed in a cross-sectional study using an online questionnaire among healthy Romanian adults aged 18–50, with a total of 395 included participants. Results: Of the 395 respondents meeting the inclusion criteria (aged 18–50, no cancer or chronic gastrointestinal disorders), 63.5% were females, predominantly urban (90.1%), and highly educated. Mean age was 32.4 years; mean BMI was 25.07 kg/m2. The proposed colorectal cancer-preventive diet was rated as “quite attractive” and “very attractive” by 74.9% of participants. All meals received high ratings, with dinner and the first snack being most favored. Most respondents (77.2%) found the diet satisfying and the satiety level and energy adequate, and 90.4% were willing to adopt it at least a few times per week. Financial accessibility was affirmed by 77.2% of the respondents. However, 61.8% reported difficulty eliminating red meat consumption. Female participants rated the diet significantly more attractive than males did (p = 0.041). Willingness to adopt the diet strongly correlated with higher acceptability (p < 0.0001), while BMI and education level showed no significant effect. Conclusions: The proposed colorectal cancer-preventive diet was well accepted by Romanian adults aged 18–50, with higher receptivity among women and those with higher education; willingness to adopt the diet at least a few days per week was high, especially among those psychologically ready for dietary change, while key barriers included red meat reduction and perceived cost, underscoring the need for gender-sensitive, culturally adapted interventions and further research on long-term adherence and clinical impact. Full article
(This article belongs to the Special Issue Nutrition and Dietary Guidelines for Colorectal Cancer Patients)
Show Figures

Figure 1

16 pages, 3848 KiB  
Article
Residential Location Preferences in a Post-Conflict Context: An Agent-Based Modeling Approach to Assess High-Demand Areas in Kabul New City, Afghanistan
by Vineet Chaturvedi and Walter Timo de Vries
Land 2025, 14(7), 1502; https://doi.org/10.3390/land14071502 - 21 Jul 2025
Viewed by 197
Abstract
As part of the post-conflict reconstruction and recovery, the development of Kabul New City aims to bring relief to the existing capital city, Kabul, which has experienced exponential population growth, putting heavy pressure on its existing resources. Kabul New City is divided into [...] Read more.
As part of the post-conflict reconstruction and recovery, the development of Kabul New City aims to bring relief to the existing capital city, Kabul, which has experienced exponential population growth, putting heavy pressure on its existing resources. Kabul New City is divided into four subsectors, and each of them is being developed and is expected to reach a target population by 2025, as defined by the master plan. The study’s objective is to determine which of the four zones are in demand and need to be prioritized for development, as per the model results. The data collection involves an online questionnaire, and the responses are collected from residents of Kabul and Herat. Agent-based modeling (ABM) is an emerging method of simulating urban dynamics. Cities are evolving continuously and are forming unique spatial patterns that result from the movement of residents in search of new locations that accommodate their needs and preferences. An agent-based model is developed using the weighted random selection process based on household size and income levels. The agents are the residents of Kabul and Herat, and the environment is the land use classification image using the Sentinel 2 image of Kabul New City. The barren class is treated as the developable area and is divided into four sub-sectors. The model simulates three alternative growth rate scenarios, i.e., ambitious, moderate, and steady. The results of the simulation reveal that the sub-sector Dehsabz South, being closer to Kabul city, is in higher demand. Barikab is another sub-sector high in demand, which has connectivity through the highway and is an upcoming industrial hub. Full article
(This article belongs to the Special Issue Spatial-Temporal Evolution Analysis of Land Use)
Show Figures

Figure 1

26 pages, 3953 KiB  
Article
Enhancing Sense of Place Through Form-Based Design Codes: Lived Experience in Elmwood Village Under Buffalo’s Green Code
by Duygu Gökce
Urban Sci. 2025, 9(7), 285; https://doi.org/10.3390/urbansci9070285 - 21 Jul 2025
Viewed by 163
Abstract
Form-based design codes have emerged as a planning tool aimed at shaping the physical form of neighborhoods to reinforce local character and enhance sense of place (SoP). However, their effectiveness in delivering these outcomes remains underexplored. This study investigates the extent to which [...] Read more.
Form-based design codes have emerged as a planning tool aimed at shaping the physical form of neighborhoods to reinforce local character and enhance sense of place (SoP). However, their effectiveness in delivering these outcomes remains underexplored. This study investigates the extent to which Buffalo’s Green Code—a form-based zoning ordinance—enhances SoP in residential environments, using Elmwood Village as a case study. A multi-scalar analytical framework assesses SoP at the building, street, and neighborhood levels. Empirical data were gathered through an online survey, while the neighborhood was systematically mapped into street segment blocks categorized by Green Code zoning. The study consolidates six Green Code classifications into three overarching categories: mixed-use, residential, and single-family. SoP satisfaction is analyzed through a two-step process: first, comparative assessments are conducted across the three zoning groups; second, k-means clustering is applied to spatially map satisfaction levels and evaluate SoP at different scales. Findings indicate that mixed-use areas are most closely associated with place identity, while residential and single-family zones (as defined by the Buffalo Green Code) yield higher satisfaction overall—though satisfaction varies significantly across spatial scales. These results suggest that while form-based codes can strengthen SoP, their impact is uneven, and more scale-sensitive zoning strategies may be needed to optimize their effectiveness in diverse urban contexts. This research overall offers an empirically grounded, multi-scalar assessment of zoning impacts on lived experience—addressing a notable gap in the planning literature regarding how form-based codes perform in established, rather than newly developed, neighborhoods. Full article
Show Figures

Figure 1

29 pages, 1372 KiB  
Article
Whether Digital Villages Can Alleviate Towns–Rural Clean Energy Consumption Inequality in China?
by Xin Wen, Jiaxin Wen and Zhibo Yu
Sustainability 2025, 17(14), 6599; https://doi.org/10.3390/su17146599 - 19 Jul 2025
Viewed by 338
Abstract
The equitable allocation of clean energy access across towns–rural divides is a critical benchmark of modernization in developing economies. This is because it is intricately linked to the realization of strategic goals such as shared prosperity, ecological civilization advancement, and national energy security [...] Read more.
The equitable allocation of clean energy access across towns–rural divides is a critical benchmark of modernization in developing economies. This is because it is intricately linked to the realization of strategic goals such as shared prosperity, ecological civilization advancement, and national energy security reinforcement. This research examines the impact of China’s digital village (DV) construction in reducing the urban–rural disparity in household clean energy access, evaluates the effect on towns–rural clean energy consumption inequality (CEI), explores the mediating mechanisms, and considers regional heterogeneity. It is an innovative approach to test the influence of digital village construction on clean energy consumption inequality between urban and rural areas, beyond which conventional research is limited to infrastructure investment and policy considerations. We can reach the following three results: (1) With the continuous improvement of digital village construction, CEI between towns and rural areas shows an “inverted U-shaped” change. (2) From the perspective of the intermediary mechanism, agricultural technological progress (ATP) and industrial structure upgrading (IND) can facilitate digital village construction and reduce the disparity in clean energy consumption between towns and rural regions. (3) From the perspective of heterogeneity analysis, digital village construction in areas with low urbanization levels, high terrain undulation, and non-clean energy demonstration provinces can significantly alleviate CEI. It is on this basis that the present paper proposes a policy recommendation for the Chinese government to effectively reduce the gap between towns and rural clean energy consumption in the process of digital village construction. Full article
Show Figures

Figure 1

25 pages, 5547 KiB  
Article
Urban Expansion and Landscape Transformation in Năvodari, Romania: An Integrated Geospatial and Socio-Economic Perspective
by Cristina-Elena Mihalache and Monica Dumitrașcu
Land 2025, 14(7), 1496; https://doi.org/10.3390/land14071496 - 19 Jul 2025
Viewed by 266
Abstract
Urban growth often surpasses the actual needs of the population, leading to inefficient land use and long-term environmental challenges. This study provides an integrated perspective on urban landscape transformation by linking socio-demographic dynamics with ecological consequences, notably vegetation loss and increased impervious surfaces. [...] Read more.
Urban growth often surpasses the actual needs of the population, leading to inefficient land use and long-term environmental challenges. This study provides an integrated perspective on urban landscape transformation by linking socio-demographic dynamics with ecological consequences, notably vegetation loss and increased impervious surfaces. The study area is Năvodari Administrative-Territorial Unit (ATU), a coastal tourist city located along the Black Sea in Romania. By integrating geospatial datasets such as Urban Atlas and Corine Land Cover with population- and construction-related statistics, the analysis reveals a disproportionate increase in urbanized land compared to population growth. Time-series analyses based on the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Built-up Index (NDBI) from 1990 to 2022 highlight significant ecological degradation, including vegetation loss and increased built-up density. The findings suggest that real estate investment and tourism-driven development play a more substantial role than demographic dynamics in shaping land use change. Understanding urban expansion as a coupled social–ecological process is essential for promoting sustainable planning and enhancing environmental resilience. While this study is focused on the coastal city of Năvodari, its insights are relevant to a broader international context, particularly for rapidly developing tourist destinations facing similar urban and ecological pressures. The findings support efforts toward more inclusive, balanced, and environmentally responsible urban development, aligning with the core principles of Sustainable Development Goal 11, particularly Target 11.3, which emphasizes sustainable urbanization and efficient land use. Full article
Show Figures

Figure 1

29 pages, 584 KiB  
Article
How Green Data Center Establishment Drives Carbon Emission Reduction: Double-Edged Sword or Equilibrium Effect?
by Jing Luo, Hengyuan Li and Jian Liu
Sustainability 2025, 17(14), 6598; https://doi.org/10.3390/su17146598 - 19 Jul 2025
Viewed by 268
Abstract
As inevitable outcomes of the digital economy’s low-carbon development, green data centers play a crucial role in environmental impact and underlying mechanisms. This study focuses on green data center establishment as a representative practice, utilizing Chinese A-share listed companies and urban data from [...] Read more.
As inevitable outcomes of the digital economy’s low-carbon development, green data centers play a crucial role in environmental impact and underlying mechanisms. This study focuses on green data center establishment as a representative practice, utilizing Chinese A-share listed companies and urban data from 2009 to 2023 to construct a multi-period difference-in-differences model. From a supply chain perspective, we investigate the impact of green data centers on corporate carbon emissions and their mechanisms. The results demonstrate that regional establishment of green data centers significantly promotes corporate carbon emission reduction, with conclusions remaining robust after a series of comprehensive robustness and endogeneity tests. This process primarily operates through two channels: green total factor energy efficiency and green attention. Green data center establishment significantly enhances green total factor energy efficiency and corporate green attention. The more developed the regional digital infrastructure and the higher the computing power development levels, the stronger the incentive effect on corporate carbon reduction. Heterogeneity analysis reveals that green data centers have more significant promoting effects on carbon emission reduction in state-owned enterprises and high-tech enterprises. This research contributes to a deeper understanding of the effects, mechanisms, and regional variations related to green data centers in facilitating corporate carbon emission reduction. Full article
Show Figures

Figure 1

21 pages, 3532 KiB  
Review
Climate Hazards Management of Historic Urban Centers: The Case of Kaštela Bay in Croatia
by Jure Margeta
Climate 2025, 13(7), 153; https://doi.org/10.3390/cli13070153 - 19 Jul 2025
Viewed by 238
Abstract
The preservation and protection of historic urban centers in climate-sensitive coastal areas contributes to the promotion of culture as a driver and enabler of achieving temporal and spatial sustainability, as it is recognized that urban heritage is an integral part of the urban [...] Read more.
The preservation and protection of historic urban centers in climate-sensitive coastal areas contributes to the promotion of culture as a driver and enabler of achieving temporal and spatial sustainability, as it is recognized that urban heritage is an integral part of the urban landscape, culture, and economy. The aim of this study was to enhance the resilience and protection of cultural heritage and historic urban centers (HUCs) in the coastal area of Kaštela, Croatia, by providing recommendations and action guidelines in response to climate change impacts, including rising temperatures, sea levels, storms, droughts, and flooding. Preserving HUCs is essential to maintain their cultural values, original structures, and appearance. Many ancient coastal Roman HUCs lie partially or entirely below mean sea level, while low-lying medieval castles, urban areas, and modern developments are increasingly at risk. Based on vulnerability assessments, targeted mitigation and adaptation measures were proposed to address HUC vulnerability sources. The Historical Urban Landscape Approach tool was used to transition and manage HUCs, linking past, present, and future hazard contexts to enable rational, comprehensive, and sustainable solutions. The effective protection of HUCs requires a deeper understanding of the evolution of urban development, climate dynamics, and the natural environments, including both tangible and intangible urban heritage elements. The “hazard-specific” vulnerability assessment framework, which incorporates hazard-relevant indicators of sensitivity and adaptive capacity, was a practical tool for risk reduction. This method relies on analyzing the historical performance and physical characteristics of the system, without necessitating additional simulations of transformation processes. Full article
(This article belongs to the Special Issue Coastal Hazards under Climate Change)
Show Figures

Figure 1

Back to TopTop