Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,391)

Search Parameters:
Keywords = urban data processing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4185 KB  
Article
Spatiotemporal Correlation Hybrid Deep Learning Model for Dissolved Oxygen Prediction in Water
by Yajie Gu, Yin Zhao, Hao Wang and Fengliang Huang
Sustainability 2026, 18(2), 863; https://doi.org/10.3390/su18020863 - 14 Jan 2026
Abstract
Surface water is essential for sustaining ecosystems and supporting human socio-economic development, yet pollution from urbanization increasingly threatens its ecological sustainability. The accurate prediction of dissolved oxygen (DO), as an important indicator of water quality, is crucial for water resource protection. To address [...] Read more.
Surface water is essential for sustaining ecosystems and supporting human socio-economic development, yet pollution from urbanization increasingly threatens its ecological sustainability. The accurate prediction of dissolved oxygen (DO), as an important indicator of water quality, is crucial for water resource protection. To address the methodological gaps in current research, we propose a hybrid deep learning model (GCG) that integrates spatiotemporal correlations to enhance DO prediction accuracy through the systematic exploitation of latent data dependencies. This study proposes a three-stage modeling framework: (1) A novel adjacency matrix construction methodology based on Pearson correlation coefficients is developed to quantify spatial correlations between monitoring stations, enabling spatial feature aggregation via graph convolutional networks (GCNs); (2) the spatially enhanced features are subsequently processed through 1D convolutional neural networks (CNNs) to capture temporal local patterns; (3) model performance is comprehensively evaluated using four metrics: R2, RMSE, MAE, and MAPE. The proposed model was implemented for DO prediction in Lake Taihu, China. Experimental results demonstrate that compared to conventional adjacency matrix construction methods, the Pearson correlation-based adjacency matrix confers advantages, achieving at least a 5% reduction in RMSE and over 10% improvement in MAE and MAPE. Furthermore, the GCG model outperformed the comparison model, with an R2 enhancement of 8%, while reducing RMSE and MAE by over 70% and 60%, respectively. These results validate the model’s effectiveness in mining spatiotemporal correlations for regional water quality forecasting, offering a reliable tool toward sustainable water monitoring and ecosystem-based management. Full article
(This article belongs to the Section Sustainable Water Management)
27 pages, 3404 KB  
Article
Diversity, Growth Parameters, and Ecosystem Services of Urban Trees Under Climate-Change Conditions: A Case Study of Topčider Park
by Nevenka Galečić, Djurdja Petrov, Dejan Skočajić, Jelena Čukanović, Radenka Kolarov, Sara Đorđević and Mirjana Ocokoljić
Forests 2026, 17(1), 114; https://doi.org/10.3390/f17010114 - 14 Jan 2026
Abstract
Urban tree planting is widely promoted for its benefits, but the long-term condition of trees is poorly documented, especially as changing and often incompatible conditions, intensified by climate change, affect their ability to deliver those benefits. A case study in Topčider Park (since [...] Read more.
Urban tree planting is widely promoted for its benefits, but the long-term condition of trees is poorly documented, especially as changing and often incompatible conditions, intensified by climate change, affect their ability to deliver those benefits. A case study in Topčider Park (since 1836) was conducted during 2025 through the evaluation of diversity, growth parameters, ornamental value, vitality, and total fresh biomass and the identification of tree taxa with high carbon-sequestration potential in Belgrade (Serbia). The data were statistically processed using descriptive statistics, the Shannon diversity and the Pielou evenness index, PCA, Spearman rank and Chi-square tests. The results indicated a wide distribution and high homogeneity of taxa, greater stability within Angiospermae and moderate stability within Gymnospermae, with PCA showing no correlations between growth parameters, vitality, and ornamental value, confirming the close proximity of all taxa. At the taxon level, London plane, English oak, Ginkgo and Bald cypress stood out in growth parameters, while the assessment of total fresh biomass for all 51 taxa highlighted London plane, Scots pine and Bald cypress as particularly productive and adaptive. Carbon sequestration and CO2 reduction varied with total fresh biomass. The study offers evidence-based recommendations for selecting urban tree taxa to enhance ecosystem services and support climate-adaptation efforts in urban planning. Full article
23 pages, 5784 KB  
Article
Urban Green Space Mapping from Sentinel-2 and OpenStreetMap via Weighted-Sample SVM Classification
by Bin Yuan, Zhiwei Wan, Liangqing Wu, Anhao Zhang, Xianfang Yang, Xiujuan Li and Chaoyun Chen
Remote Sens. 2026, 18(2), 272; https://doi.org/10.3390/rs18020272 - 14 Jan 2026
Abstract
The ongoing advance of urbanization has increased the need for accurate monitoring of urban green space (UGS). However, existing remote-sensing UGS mapping still struggles with inconsistent data quality, diverse urban forms, and limited cross-city generalization. This study focuses on China’s Guangdong-Hong Kong-Macao Greater [...] Read more.
The ongoing advance of urbanization has increased the need for accurate monitoring of urban green space (UGS). However, existing remote-sensing UGS mapping still struggles with inconsistent data quality, diverse urban forms, and limited cross-city generalization. This study focuses on China’s Guangdong-Hong Kong-Macao Greater Bay Area as its research region, establishing a fully automated UGS mapping framework based on Sentinel-2 time-series imagery and standardized OpenStreetMap (OSM) data. This process achieves UGS mapping at 10 m resolution for 16 cities within the metropolitan area through a dynamic standardized OSM tagging system, a Sentinel-2 satellite image sample generation mechanism integrating spectral and textural features, multidimensional sample quality assessment and weighting strategies, as well as balanced cross-city sampling and weighted SVM classification. The results demonstrate that this method exhibits stable performance across multiple urban environments, achieving an average overall accuracy of approximately 0.83 and an average F1 score of approximately 0.82. The highest recorded F1 score reaches 0.96, highlighting the method’s strong generalization capability under diverse urban conditions. The mapping results reveal significant disparities in UGS distribution within the Guangdong-Hong Kong-Macao Greater Bay Area, reflecting the combined effects of varying urban development patterns and ecological contexts. The unified workflow proposed in this study demonstrates strong applicability in handling heterogeneous urban structures and enhancing cross-regional comparability. It provides consistent, transparent, and reusable foundational data for regional eco-urban planning, urban green infrastructure development, and policy evaluation. Full article
(This article belongs to the Special Issue AI-Driven Mapping Using Remote Sensing Data)
19 pages, 2837 KB  
Article
An Open-Source System for Public Transport Route Data Curation Using OpenTripPlanner in Australia
by Kiki Adhinugraha, Yusuke Gotoh and David Taniar
Computers 2026, 15(1), 58; https://doi.org/10.3390/computers15010058 - 14 Jan 2026
Abstract
Access to large-scale public transport journey data is essential for analysing accessibility, equity, and urban mobility. Although digital platforms such as Google Maps provide detailed routing for individual users, their licensing and access restrictions prevent systematic data extraction for research purposes. Open-source routing [...] Read more.
Access to large-scale public transport journey data is essential for analysing accessibility, equity, and urban mobility. Although digital platforms such as Google Maps provide detailed routing for individual users, their licensing and access restrictions prevent systematic data extraction for research purposes. Open-source routing engines such as OpenTripPlanner offer a transparent alternative, but are often limited to local or technical deployments that restrict broader use. This study evaluates the feasibility of deploying a publicly accessible, open-source routing platform based on OpenTripPlanner to support large-scale public transport route simulation across multiple cities. Using Australian metropolitan areas as a case study, the platform integrates GTFS and OpenStreetMap data to enable repeatable journey queries through a web interface, an API, and bulk processing tools. Across eight metropolitan regions, the system achieved itinerary coverage above 90 percent and sustained approximately 3000 routing requests per minute under concurrent access. These results demonstrate that open-source routing infrastructure can support reliable, large-scale route simulation using open data. Beyond performance, the platform enables public transport accessibility studies that are not feasible with proprietary routing services, supporting reproducible research, transparent decision-making, and evidence-based transport planning across diverse urban contexts. Full article
(This article belongs to the Special Issue Computational Science and Its Applications 2025 (ICCSA 2025))
Show Figures

Figure 1

25 pages, 9821 KB  
Article
Potential Application of Machine Learning Techniques to Identify Prior Limiting Factors as a Basis for Eutrophication Assessment
by Irfan Ali, Elena Neverova-Dziopak, Tamas Buday and Zbigniew Kowalewski
Sustainability 2026, 18(2), 841; https://doi.org/10.3390/su18020841 - 14 Jan 2026
Abstract
The aim of this study was to determine the factors that influence eutrophication. The factors causing eutrophication are widely known, but identifying the primary threat for a specific water body remains challenging. The study objects were the warm monomictic urban Dal Lake in [...] Read more.
The aim of this study was to determine the factors that influence eutrophication. The factors causing eutrophication are widely known, but identifying the primary threat for a specific water body remains challenging. The study objects were the warm monomictic urban Dal Lake in Kashmir, India, and the artificial dam reservoir Dobczyce in Poland. Data analysis methods, including multiple regression and artificial neural networks (NNET and NeuralNet) from the R package [ver. 4.5.2], were used. Regarding Dal Lake, the factor most influencing the trophic change was total nitrogen. In contrast, for the Dobczyce dam reservoir, water temperature was the dominant factor. Although the regression method did not provide clear results, neural networks enabled the identification of the limiting factors; therefore, the proposed approach may be useful for determining the factors limiting the eutrophication process. The core novelty of this research lies in demonstrating the potential of artificial neural networks to identify key factors causing eutrophication, particularly under conditions of limited data. Full article
Show Figures

Figure 1

12 pages, 2700 KB  
Proceeding Paper
A Low-Cost and Reliable IoT-Based NFT Hydroponics System Using ESP32 and MING Stack
by Tolga Demir and İhsan Çiçek
Eng. Proc. 2026, 122(1), 3; https://doi.org/10.3390/engproc2026122003 - 14 Jan 2026
Abstract
This paper presents the design and implementation of an IoT-based automation system for indoor hydroponic plant cultivation using the Nutrient Film Technique. The system employs an ESP32-based controller with multiple sensors and actuators. These enable real-time monitoring and control of pH, TDS, temperature, [...] Read more.
This paper presents the design and implementation of an IoT-based automation system for indoor hydroponic plant cultivation using the Nutrient Film Technique. The system employs an ESP32-based controller with multiple sensors and actuators. These enable real-time monitoring and control of pH, TDS, temperature, humidity, light, tank level, and flow conditions. A modular five-layer architecture was developed. It combines the MING stack, which includes MQTT communication, InfluxDB time-series storage, Node-RED flow processing, and Grafana visualization. The system also includes a Flutter-based mobile app for remote access. Key features include temperature-compensated calibration, hysteresis-based control algorithms, dual-mode operation, TLS/ACL security, and automated alarm mechanisms. These features enhance reliability and safety. Experimental results showed stable pH/TDS regulation, dependable actuator and alarm responses, and secure long-term data logging. The proposed open-source and low-cost platform is scalable. It provides a solution for small-scale producers and urban farming, bridging the gap between academic prototypes and production-grade smart agriculture systems. In comparison to related works that mainly focus on monitoring, this study advances the state of the art. It combines continuous time-series logging, secure communication, flow verification, and integrated safety mechanisms to provide a reproducible testbed for future smart agriculture research. Full article
Show Figures

Figure 1

18 pages, 1310 KB  
Article
Microplastics in River Water: Features of Analytical Methods for Quantitative Determination
by Yulia S. Sotnikova, Elena V. Karpova, Inna K. Shundrina, Aleksandra E. Osechkova, Dae Il Song, Andrey A. Nefedov, Aleksandr V. Sotnikov, Dmitriy N. Polovyanenko and Elena G. Bagryanskaya
Environments 2026, 13(1), 50; https://doi.org/10.3390/environments13010050 - 14 Jan 2026
Abstract
Microplastics, defined as particles up to 5 mm in size, present a significant environmental and health concern due to their ubiquity, capacity to accumulate in organisms, and potential to cause toxic effects, inflammation, and endocrine disruption. A major challenge in addressing this issue [...] Read more.
Microplastics, defined as particles up to 5 mm in size, present a significant environmental and health concern due to their ubiquity, capacity to accumulate in organisms, and potential to cause toxic effects, inflammation, and endocrine disruption. A major challenge in addressing this issue is the lack of a universal method for sample preparation and analysis across different environmental matrices. This study addresses this gap by applying a custom-developed method for isolating microplastics from freshwater, followed by a comparative analysis of their abundance using three techniques: spectral (μ-FTIR) and thermal (TGA and pyro-GC-MS). The study was conducted on water samples from the Ob River near Novosibirsk, a major industrial center in Siberia. Field processing entailed filtering 20 L water volumes through a polyamide fabric with a nominal 100 µm pore size. Subsequent characterization established that the entire population of detected particles fell within the 100 to 500 µm interval. The results revealed microplastic concentrations of 0–10,000 particles/m3 (μ-FTIR), 6–19 mg/m3 (TGA), and 0.47–2.96 mg/m3 (pyro-GC-MS). Critically, the data showed spatially variable contamination, with higher microplastic levels identified near industrial wastewater discharge stations and urban recreational areas. Full article
Show Figures

Graphical abstract

19 pages, 3070 KB  
Article
Evaluating the Feasibility of Emission-Aware Routing in Urban Bus Systems: A Case Study in Osnabrück
by Rebecca Kose, Sina-Marie Anker, Mathias Heiker and Sandra Rosenberger
Appl. Sci. 2026, 16(2), 822; https://doi.org/10.3390/app16020822 - 13 Jan 2026
Abstract
This study quantifies energy consumption and tank-to-wheel (TTW) emissions of urban buses under varying traffic conditions and passenger loads in Osnabrück, Germany, to support emission-aware route assessment in sustainable mobility applications. Exemplary bus trajectories were modeled on a representative 6.17 km route of [...] Read more.
This study quantifies energy consumption and tank-to-wheel (TTW) emissions of urban buses under varying traffic conditions and passenger loads in Osnabrück, Germany, to support emission-aware route assessment in sustainable mobility applications. Exemplary bus trajectories were modeled on a representative 6.17 km route of line M5 (18 m articulated bus; diesel and battery-electric) within a 22.31 km2 traffic net using the Simulation of Urban MObility (SUMO) software, and were calibrated with traffic sensor data. To assess the influence of trajectories in different traffic situations, three different 90 min scenarios were compared (morning peak, noon, night). Trajectory-based energy consumption and greenhouse gas emissions were compared by using the SUMO-implemented emission models HBEFA and PHEMlight, as well as data from the literature. Both diesel and electric buses showed variations in energy consumption depending on the traffic conditions, with generally lower energy consumption for electric propulsion. Temporal differences in the TTW emissions of the diesel bus were modest, with slightly higher morning values, while spatial analysis showed PM peaks in pedestrian zones, NOx peaks during acceleration phases, and CO2 increases after stops and in low-speed areas. The results provide spatially resolved TTW factors for integration into routing applications, excluding upstream and non-exhaust processes in line with the defined system boundary. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

15 pages, 2396 KB  
Article
A Study on Perception Differences in Sustainable Non-Motorized Transportation Assessment Based on Female Perspectives and Machine Scoring: A Case Study of Changsha
by Ziyun Ye, Jiawei Zhu, Yaming Ren and Jiachuan Wang
Sustainability 2026, 18(2), 810; https://doi.org/10.3390/su18020810 - 13 Jan 2026
Abstract
Against the backdrop of rising global carbon emissions, promoting active transportation modes such as walking and cycling has become a key strategy for countries worldwide to meet carbon reduction targets and advance the goals of sustainable development. In China, the concept of low-carbon [...] Read more.
Against the backdrop of rising global carbon emissions, promoting active transportation modes such as walking and cycling has become a key strategy for countries worldwide to meet carbon reduction targets and advance the goals of sustainable development. In China, the concept of low-carbon mobility has gained rapid traction, leading to a significant increase in public demand for non-motorized travel options like walking and cycling. From the perspective of inclusive urban development, gender imbalances in sample representation during design and evaluation processes have contributed to homogenization and a lack of diversity in urban slow-traffic environments. To address this issue, this study adopts a problem-oriented approach. First, we collect street scene images of slow-traffic environments through self-conducted field surveys. Concurrently, we gather satisfaction survey responses from 511 urban residents regarding existing slow-traffic streets, identifying three key environmental evaluation indicators: safety, liveliness, and beauty. Second, an experimental analysis is conducted to compare machine-generated assessments based on self-collected street view data with manual evaluations performed by 27 female participants. The findings reveal significant perceptual differences between genders in the assessment of slow-moving environments, particularly regarding attention to environmental elements, challenges in utilizing non-motorized lanes, and overall environmental satisfaction. Moreover, notable discrepancies are observed between machine scores and manual assessments performed by women. Based on these findings, this study investigates the underlying causes of such perceptual disparities and the mechanisms influencing them. Finally, it proposes female-inclusive strategies aimed at enhancing the quality of slow-traffic environments, thereby addressing the current absence of gender considerations in their design. This research seeks to provide a robust female perspective and empirical evidence to support improvements in the quality of slow-moving environments and to inform strategic advancements in their design. The findings of this study can provide a theoretical and empirical basis for the optimization of gender-inclusive non-motorized transportation environment design, policy formulation, and subsequent interdisciplinary research. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

34 pages, 12645 KB  
Article
Multimodal Intelligent Perception at an Intersection: Pedestrian and Vehicle Flow Dynamics Using a Pipeline-Based Traffic Analysis System
by Bao Rong Chang, Hsiu-Fen Tsai and Chen-Chia Chen
Electronics 2026, 15(2), 353; https://doi.org/10.3390/electronics15020353 - 13 Jan 2026
Abstract
Traditional automated monitoring systems adopted for Intersection Traffic Control still face challenges, including high costs, maintenance difficulties, insufficient coverage, poor multimodal data integration, and limited traffic information analysis. To address these issues, the study proposes a sovereign AI-driven Smart Transportation governance approach, developing [...] Read more.
Traditional automated monitoring systems adopted for Intersection Traffic Control still face challenges, including high costs, maintenance difficulties, insufficient coverage, poor multimodal data integration, and limited traffic information analysis. To address these issues, the study proposes a sovereign AI-driven Smart Transportation governance approach, developing a mobile AI solution equipped with multimodal perception, task decomposition, memory, reasoning, and multi-agent collaboration capabilities. The proposed system integrates computer vision, multi-object tracking, natural language processing, Retrieval-Augmented Generation (RAG), and Large Language Models (LLMs) to construct a Pipeline-based Traffic Analysis System (PTAS). The PTAS can produce real-time statistics on pedestrian and vehicle flows at intersections, incorporating potential risk factors such as traffic accidents, construction activities, and weather conditions for multimodal data fusion analysis, thereby providing forward-looking traffic insights. Experimental results demonstrate that the enhanced DuCRG-YOLOv11n pre-trained model, equipped with our proposed new activation function βsilu, can accurately identify various vehicle types in object detection, achieving a frame rate of 68.25 FPS and a precision of 91.4%. Combined with ByteTrack, it can track over 90% of vehicles in medium- to low-density traffic scenarios, obtaining a 0.719 in MOTA and a 0.08735 in MOTP. In traffic flow analysis, the RAG of Vertex AI, combined with Claude Sonnet 4 LLMs, provides a more comprehensive view, precisely interpreting the causes of peak-hour congestion and effectively compensating for missing data through contextual explanations. The proposed method can enhance the efficiency of urban traffic regulation and optimizes decision support in intelligent transportation systems. Full article
(This article belongs to the Special Issue Interactive Design for Autonomous Driving Vehicles)
Show Figures

Figure 1

38 pages, 1391 KB  
Article
Trustworthy AI-IoT for Citizen-Centric Smart Cities: The IMTPS Framework for Intelligent Multimodal Crowd Sensing
by Wei Li, Ke Li, Zixuan Xu, Mengjie Wu, Yang Wu, Yang Xiong, Shijie Huang, Yijie Yin, Yiping Ma and Haitao Zhang
Sensors 2026, 26(2), 500; https://doi.org/10.3390/s26020500 - 12 Jan 2026
Viewed by 72
Abstract
The fusion of Artificial Intelligence and the Internet of Things (AI-IoT, also widely referred to as AIoT) offers transformative potential for smart cities, yet presents a critical challenge: how to process heterogeneous data streams from intelligent sensing—particularly crowd sensing data derived from citizen [...] Read more.
The fusion of Artificial Intelligence and the Internet of Things (AI-IoT, also widely referred to as AIoT) offers transformative potential for smart cities, yet presents a critical challenge: how to process heterogeneous data streams from intelligent sensing—particularly crowd sensing data derived from citizen interactions like text, voice, and system logs—into reliable intelligence for sustainable urban governance. To address this challenge, we introduce the Intelligent Multimodal Ticket Processing System (IMTPS), a novel AI-IoT smart system. Unlike ad hoc solutions, the novelty of IMTPS resides in its theoretically grounded architecture, which orchestrates Information Theory and Game Theory for efficient, verifiable extraction, and employs Causal Inference and Meta-Learning for robust reasoning, thereby synergistically converting noisy, heterogeneous data streams into reliable governance intelligence. This principled design endows IMTPS with four foundational capabilities essential for modern smart city applications: Sustainable and Efficient AI-IoT Operations: Guided by Information Theory, the IMTPS compression module achieves provably efficient semantic-preserving compression, drastically reducing data storage and energy costs. Trustworthy Data Extraction: A Game Theory-based adversarial verification network ensures high reliability in extracting critical information, mitigating the risk of model hallucination in high-stakes citizen services. Robust Multimodal Fusion: The fusion engine leverages Causal Inference to distinguish true causality from spurious correlations, enabling trustworthy integration of complex, multi-source urban data. Adaptive Intelligent System: A Meta-Learning-based retrieval mechanism allows the system to rapidly adapt to new and evolving query patterns, ensuring long-term effectiveness in dynamic urban environments. We validate IMTPS on a large-scale, publicly released benchmark dataset of 14,230 multimodal records. IMTPS demonstrates state-of-the-art performance, achieving a 96.9% reduction in storage footprint and a 47% decrease in critical data extraction errors. By open-sourcing our implementation, we aim to provide a replicable blueprint for building the next generation of trustworthy and sustainable AI-IoT systems for citizen-centric smart cities. Full article
(This article belongs to the Special Issue AI-IoT for New Challenges in Smart Cities)
27 pages, 1843 KB  
Article
AI-Driven Modeling of Near-Mid-Air Collisions Using Machine Learning and Natural Language Processing Techniques
by Dothang Truong
Aerospace 2026, 13(1), 80; https://doi.org/10.3390/aerospace13010080 - 12 Jan 2026
Viewed by 48
Abstract
As global airspace operations grow increasingly complex, the risk of near-mid-air collisions (NMACs) poses a persistent and critical challenge to aviation safety. Traditional collision-avoidance systems, while effective in many scenarios, are limited by rule-based logic and reliance on transponder data, particularly in environments [...] Read more.
As global airspace operations grow increasingly complex, the risk of near-mid-air collisions (NMACs) poses a persistent and critical challenge to aviation safety. Traditional collision-avoidance systems, while effective in many scenarios, are limited by rule-based logic and reliance on transponder data, particularly in environments featuring diverse aircraft types, unmanned aerial systems (UAS), and evolving urban air mobility platforms. This paper introduces a novel, integrative machine learning framework designed to analyze NMAC incidents using the rich, contextual information contained within the NASA Aviation Safety Reporting System (ASRS) database. The methodology is structured around three pillars: (1) natural language processing (NLP) techniques are applied to extract latent topics and semantic features from pilot and crew incident narratives; (2) cluster analysis is conducted on both textual and structured incident features to empirically define distinct typologies of NMAC events; and (3) supervised machine learning models are developed to predict pilot decision outcomes (evasive action vs. no action) based on integrated data sources. The analysis reveals seven operationally coherent topics that reflect communication demands, pattern geometry, visibility challenges, airspace transitions, and advisory-driven interactions. A four-cluster solution further distinguishes incident contexts ranging from tower-directed approaches to general aviation pattern and cruise operations. The Random Forest model produces the strongest predictive performance, with topic-based indicators, miss distance, altitude, and operating rule emerging as influential features. The results show that narrative semantics provide measurable signals of coordination load and acquisition difficulty, and that integrating text with structured variables enhances the prediction of maneuvering decisions in NMAC situations. These findings highlight opportunities to strengthen radio practice, manage pattern spacing, improve mixed equipage awareness, and refine alerting in short-range airport area encounters. Full article
(This article belongs to the Section Air Traffic and Transportation)
Show Figures

Figure 1

27 pages, 3495 KB  
Article
Artificial Intelligence and Spatial Optimization: Evaluation of the Economic and Social Value of UGS in Vračar (Belgrade)
by Slađana Milovanović, Ivan Cvitković, Katarina Stojanović and Miljenko Mustapić
Sustainability 2026, 18(2), 745; https://doi.org/10.3390/su18020745 - 12 Jan 2026
Viewed by 66
Abstract
This paper examines the growing field of AI-assisted urban planning within the context of sustainable urban development, with a particular focus on spatial optimization of urban green spaces under conditions of scarcity, density, and economic pressure. While the economic, ecological, and social values [...] Read more.
This paper examines the growing field of AI-assisted urban planning within the context of sustainable urban development, with a particular focus on spatial optimization of urban green spaces under conditions of scarcity, density, and economic pressure. While the economic, ecological, and social values of UGS are widely acknowledged, urban planners lack a cohesive, data-driven framework to quantify and spatially optimize these often-conflicting values for effective land-use optimization. To address this gap, we propose a methodology that combines Geographic Information Systems (GISs), the Analytic Hierarchy Process (AHP), and an Artificial Intelligence-Based Genetic Algorithm (AI-GA). Vračar was chosen as the case study area. Our approach evaluates (1) the economic value of UGS through housing prices; (2) the ecological value through UGS density; and (3) the social value by measuring access to urban green pockets. The integrated method simulates environmental scenarios and optimizes UGS placement for resilient urban areas. Results demonstrate that properties in mixed-use green areas proximate to urban parks have the highest economic and social value. Additionally, higher densities of UGS correlate with higher housing prices, highlighting the economic impact of green space distribution. The methodology enables planners to make decisions based on evidence that integrates statistical modeling, expert judgment, and artificial intelligence into one cohesive platform. Full article
(This article belongs to the Special Issue Impact of AI on Business Sustainability and Efficiency)
Show Figures

Figure 1

21 pages, 2797 KB  
Article
Visual Quality Assessment on the Vista Landscape of Beijing Central Axis Using VR Panoramic Technology
by Xiaomin Hu, Yifei Liu, Gang Yu, Mengyao Xu and Xingyan Ge
Buildings 2026, 16(2), 315; https://doi.org/10.3390/buildings16020315 - 12 Jan 2026
Viewed by 60
Abstract
Vista landscapes of historic cities embody unique spatial order and cultural memory, and the scientific quantification of their visual quality presents a common challenge for both heritage conservation and urban renewal. Focusing on the Beijing Central Axis, this study integrates VR panoramic technology [...] Read more.
Vista landscapes of historic cities embody unique spatial order and cultural memory, and the scientific quantification of their visual quality presents a common challenge for both heritage conservation and urban renewal. Focusing on the Beijing Central Axis, this study integrates VR panoramic technology with the SBE-SD evaluation method to develop a visual quality assessment framework suitable for vista landscapes of historic cities, systematically evaluating sectional differences in scenic beauty and identifying their key influencing factors. Thirteen typical viewing places and 17 assessment points were selected, and panoramic images were captured at each point. The evaluation framework comprising 3 first-level factors, 11 secondary factors, and 24 third-level factors was established, and a corresponding scoring table was designed through which students from related disciplines were recruited to conduct the evaluation. After obtaining valid data, scenic beauty values and landscape factor scores were analyzed, followed by correlation tests and backward stepwise regression. The results show the following: (1) The scenic beauty of the vista landscapes along the Central Axis shows sectional differentiation, with the middle section achieving the highest scenic beauty value, followed by the northern section, with the southern section scoring the lowest; specifically, Wanchunting Pavilion South scored the highest, while Tianqiao Bridge scored the lowest. (2) In terms of landscape factor scores, within spatial form, color scored the highest, followed by texture and scale, with volume scoring the lowest; within marginal profile, integrity scored higher than visual dominance; within visual structure, visual organization scored the highest, followed by visual patches, with visual hierarchy scoring the lowest. (3) Regression analysis identified six key influencing factors, ranked in descending order of significance as follows: color coordination degree of traditional buildings, spatial openness, spatial symmetry, hierarchy sense of buildings, texture regularity of traditional buildings, and visual dominance of historical landmark buildings. This study establishes a quantitative assessment pathway that connects subjective perception and objective environment with a replicable process, providing methodological support for the refined conservation and optimization of vista landscapes in historic cities while demonstrating the application potential of VR panoramic technology in urban landscape evaluation. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

29 pages, 18465 KB  
Review
Optimizing Urban Green Space Ecosystem Services for Resilient and Sustainable Cities: Research Landscape, Evolutionary Trajectories, and Future Directions
by Junhui Sun, Jun Xia and Luling Qu
Forests 2026, 17(1), 97; https://doi.org/10.3390/f17010097 - 11 Jan 2026
Viewed by 79
Abstract
Urban forests and green spaces are increasingly promoted as Nature-Based Solutions (NbS) to mitigate climate risks, enhance human well-being, and support resilient and sustainable cities. Focusing on the theme of optimizing urban green space ecosystem services to foster resilient and sustainable cities, this [...] Read more.
Urban forests and green spaces are increasingly promoted as Nature-Based Solutions (NbS) to mitigate climate risks, enhance human well-being, and support resilient and sustainable cities. Focusing on the theme of optimizing urban green space ecosystem services to foster resilient and sustainable cities, this study systematically analyzes 861 relevant publications indexed in the Web of Science Core Collection from 2005 to 2025. Using bibliometric analysis and scientific knowledge mapping methods, the research examines publication characteristics, spatial distribution patterns, collaboration networks, knowledge bases, research hotspots, and thematic evolution trajectories. The results reveal a rapid upward trend in this field over the past two decades, with the gradual formation of a multidisciplinary knowledge system centered on environmental science and urban research. China, the United States, and several European countries have emerged as key nodes in global knowledge production and collaboration networks. Keyword co-occurrence and cluster analyses indicate that research themes are mainly concentrated in four clusters: (1) ecological foundations and green process orientation, (2) nature-based solutions and blue–green infrastructure configuration, (3) social needs and environmental justice, and (4) macro-level policies and the sustainable development agenda. Overall, the field has evolved from a focus on ecological processes and individual service functions toward a comprehensive transition emphasizing climate resilience, human well-being, and multi-actor governance. Based on these findings, this study constructs a knowledge ecosystem framework encompassing knowledge base, knowledge structure, research hotspots, frontier trends, and future pathways. It further identifies prospective research directions, including climate change adaptation, integrated planning of blue–green infrastructure, refined monitoring driven by remote sensing and spatial big data, and the embedding of urban green space ecosystem services into the Sustainable Development Goals and multi-level governance systems. These insights provide data support and decision-making references for deepening theoretical understanding of Urban Green Space Ecosystem Services (UGSES), improving urban green infrastructure planning, and enhancing urban resilience governance capacity. Full article
(This article belongs to the Special Issue Sustainable Urban Forests and Green Environments in a Changing World)
Back to TopTop