Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,506)

Search Parameters:
Keywords = urban assessment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 12670 KiB  
Article
Risk Assessment of Flood Disasters with Multi-Source Data and Its Spatial Differentiation Characteristics
by Wenxia Jing, Yinghua Song, Wei Lv and Junyi Yang
Sustainability 2025, 17(15), 7149; https://doi.org/10.3390/su17157149 (registering DOI) - 7 Aug 2025
Abstract
The changing global climate and rapid urbanization make extreme rainstorm events frequent, and the flood disaster caused by rainstorm has become a prominent problem of urban public safety in China, which severely restricts the healthy and sustainable development of social economy. The weight [...] Read more.
The changing global climate and rapid urbanization make extreme rainstorm events frequent, and the flood disaster caused by rainstorm has become a prominent problem of urban public safety in China, which severely restricts the healthy and sustainable development of social economy. The weight calculation method of traditional risk assessment model is single and ignores the difference of multi-dimensional information space involved in risk analysis. This study constructs a flood risk assessment model by incorporating natural, social, and economic factors into an indicator system structured around four dimensions: hazard, exposure, vulnerability, and disaster prevention and mitigation capacity. A combination of the Analytic Hierarchy Process (AHP) and the entropy weight method is employed to optimize both subjective and objective weights. Taking the central urban area of Wuhan with a high flood risk as an example, based on the risk assessment values, spatial autocorrelation analysis, cluster analysis, outlier analysis, and hotspot analysis are applied to explore the spatial clustering characteristics of risks. The results show that the overall assessment level of flood hazard in central urban area of Wuhan is medium, the overall assessment level of exposure and vulnerability is low, and the overall disaster prevention and mitigation capability is medium. The overall flood risk levels in Wuchang and Jianghan are the highest, while some areas in Qingshan and Hanyang have the lowest levels. The spatial characteristics of each dimension evaluation index show obvious autocorrelation and spatial differentiation. These findings aim to provide valuable suggestions and references for reducing urban disaster risks and achieving sustainable urban development. Full article
(This article belongs to the Special Issue Sustainable Transport and Land Use for a Sustainable Future)
Show Figures

Figure 1

15 pages, 788 KiB  
Article
Energy and Nutrient Intakes of Public Health Concern by Rural and Urban Ghanaian Mothers Assessed by Weighed Food Compared to Recommended Intakes
by Prince K. Osei, Megan A. McCrory, Matilda Steiner-Asiedu, Edward Sazonov, Mingui Sun, Wenyan Jia, Tom Baranowski, Gary Frost, Benny Lo, Christabel A. Domfe and Alex K. Anderson
Nutrients 2025, 17(15), 2567; https://doi.org/10.3390/nu17152567 (registering DOI) - 7 Aug 2025
Abstract
Background/Objectives: Previous studies assessing dietary intake have used self-report methods, prone to misreporting. Using researcher-conducted weighed food records, we assessed rural and urban mothers’ energy and nutrient intakes of concern and compared them to recommended nutrient intakes (RNIs). Methods: This cross-sectional study was [...] Read more.
Background/Objectives: Previous studies assessing dietary intake have used self-report methods, prone to misreporting. Using researcher-conducted weighed food records, we assessed rural and urban mothers’ energy and nutrient intakes of concern and compared them to recommended nutrient intakes (RNIs). Methods: This cross-sectional study was conducted in rural (Asaase Kokoo) and urban (University of Ghana Staff Village) communities. Dietary data were collected from fifty-four mothers (26 rural, 28 urban) on 2 weekdays and 1 weekend day, analyzed with software, and programmed with West African, FNDDS, Kenyan, Ugandan, and USDA food composition databases. Results: Mean (SD) ages (years) were 35.8 (11.6) and 44.4 (7.6), and mean energy intakes (kcal) were 2026 (461) and 1669 (385) for rural and urban mothers, respectively. Mean percentage contributions of macronutrients to energy intake were within recommended ranges for rural and urban mothers. All participants met or exceeded vitamin A RNI, irrespective of location. While all rural mothers met or exceeded iron RNI, some urban mothers (14.3%) did not. Few rural (7.7%) and urban mothers (10.7%) did not meet zinc RNI. About half of rural (46.2%) and urban mothers (53.6%) did not meet folate RNI. Most rural (96.1%) and urban mothers (92.8%) met or exceeded fiber RNI. Conclusions: Overall, rural mothers had higher energy and nutrient intakes than urban mothers. While most met RNIs, there were some micronutrient inadequacies, particularly folate, where almost half of rural and urban mothers consumed below RNI. Our findings indicate the need for tailored interventions to prevent nutrient deficiencies or excesses in Ghanaian mothers. Full article
(This article belongs to the Special Issue Diet, Maternal Nutrition and Reproductive Health)
Show Figures

Figure 1

16 pages, 469 KiB  
Article
An Adaptation of the Quality–Loyalty Model to Study Green Consumer Loyalty
by Thi Hoang Ha Tran and Tuan Le-Anh
Sustainability 2025, 17(15), 7144; https://doi.org/10.3390/su17157144 (registering DOI) - 6 Aug 2025
Abstract
This research proposes an adaptation of the quality–loyalty model in which affective commitment is integrated as a key factor in the proposed framework. The study presented a comprehensive framework encompassing 11 hypotheses formulated from an extensive literature review. Empirical data collected from 679 [...] Read more.
This research proposes an adaptation of the quality–loyalty model in which affective commitment is integrated as a key factor in the proposed framework. The study presented a comprehensive framework encompassing 11 hypotheses formulated from an extensive literature review. Empirical data collected from 679 environmentally conscious consumers predominantly residing in Vietnam’s three principal urban centers were employed to evaluate these hypotheses. The assessment was executed utilizing the partial least squares structural equation modeling technique. The results of this research authenticate the appropriateness of the integrated model in studying green consumption, verify the critical role of affective commitment in the newly introduced model, and identify the high impact of affective commitment on green loyalty intention and green purchase behavior. This research also shows that other factors of the quality–loyalty model have significant influences on affective commitment and green loyalty intention. Moreover, this study signifies the crucial role of green perceived quality in fostering affective commitment and green loyalty intention. Green perceived quality was identified as a key factor influencing green loyalty intention and played a crucial role in encouraging customers to purchase environmentally friendly products. Full article
(This article belongs to the Section Psychology of Sustainability and Sustainable Development)
Show Figures

Figure 1

22 pages, 481 KiB  
Article
Early Childhood Education Quality for Toddlers: Understanding Structural and Process Quality in Chilean Classrooms
by Felipe Godoy, Marigen Narea, Pamela Soto-Ramirez, Camila Ayala and María Jesús López
Educ. Sci. 2025, 15(8), 1009; https://doi.org/10.3390/educsci15081009 (registering DOI) - 6 Aug 2025
Abstract
Despite extensive research on early childhood education (ECE) quality at the preschool level, toddler settings remain comparatively understudied, particularly in Chile and Latin America. Research suggests that quality ECE strengthens child development, while low-quality services can be harmful. ECE quality comprises structural features [...] Read more.
Despite extensive research on early childhood education (ECE) quality at the preschool level, toddler settings remain comparatively understudied, particularly in Chile and Latin America. Research suggests that quality ECE strengthens child development, while low-quality services can be harmful. ECE quality comprises structural features like ratios and classroom resources, and process features related to interactions within classrooms. This study examines how process and structural quality indicators are related in nurseries serving disadvantaged backgrounds. Data were collected from 51 Chilean urban classrooms serving children aged 12–24 months. Classrooms were evaluated using the Classroom Assessment Scoring System (CLASS) for toddlers, questionnaires, and checklists. Latent Profile Analysis identified process quality patterns, while multinomial regression examined associations with structural quality indicators. The results revealed low-to-moderate process quality across classrooms (M = 4.78 for Emotional and Behavioral Support; M = 2.35 for Engaged Support for Learning), with three distinct quality clusters emerging. Marginally significant differences were found between high- and low-performing clusters regarding classroom space (p = 0.06), number of toys (p = 0.08), and staff educational credentials (p = 0.01–0.07). No significant differences emerged for group sizes or adult-to-child ratios, which are heavily regulated in Chile. These findings underscore the need to strengthen quality assurance mechanisms ensuring all children access quality ECE. Full article
Show Figures

Figure 1

20 pages, 741 KiB  
Review
Exploring Design Thinking Methodologies: A Comprehensive Analysis of the Literature, Outstanding Practices, and Their Linkage to Sustainable Development Goals
by Matilde Martínez Casanovas
Sustainability 2025, 17(15), 7142; https://doi.org/10.3390/su17157142 (registering DOI) - 6 Aug 2025
Abstract
Design Thinking (DT) has emerged as a relevant methodology for addressing global challenges aligned with the United Nations Sustainable Development Goals (SDGs). This study presents a systematic literature review, conducted following PRISMA 2020 guidelines, which analyzes 42 peer-reviewed publications from 2013 to 2023. [...] Read more.
Design Thinking (DT) has emerged as a relevant methodology for addressing global challenges aligned with the United Nations Sustainable Development Goals (SDGs). This study presents a systematic literature review, conducted following PRISMA 2020 guidelines, which analyzes 42 peer-reviewed publications from 2013 to 2023. Through inductive content analysis, 10 core DT principles—such as empathy, iteration, user-centeredness, and systems thinking—I identified and thematically mapped to specific SDGs, including goals related to health, education, innovation, and climate action. The study also presents five real-world cases from diverse sectors such as technology, healthcare, and urban planning, illustrating how DT has been applied to address practical challenges aligned with the SDGs. However, the review identifies persistent gaps in the field: the lack of standardized evaluation frameworks, limited integration across SDG domains, and weak adaptation of ethical and contextual considerations, particularly in vulnerable communities. As a response, this paper recommends the adoption of structured impact assessment tools (e.g., Cities2030, Responsible Design Thinking), integration of design justice principles, and the development of participatory, iterative ecosystems for innovation. By offering both conceptual synthesis and applied insights, this article positions Design Thinking as a strategic and systemic approach for driving sustainable transformation aligned with the 2030 Agenda. Full article
(This article belongs to the Section Sustainable Education and Approaches)
Show Figures

Figure 1

28 pages, 11045 KiB  
Article
Evaluating the Microclimatic Performance of Elevated Open Spaces for Outdoor Thermal Comfort in Cold Climate Zones
by Xuan Ma, Qian Luo, Fangxi Yan, Yibo Lei, Yuyang Lu, Haoyang Chen, Yuhuan Yang, Han Feng, Mengyuan Zhou, Hua Ding and Jingyuan Zhao
Buildings 2025, 15(15), 2777; https://doi.org/10.3390/buildings15152777 - 6 Aug 2025
Abstract
Improving outdoor thermal comfort is a critical objective in urban design, particularly in densely built urban environments. Elevated semi-open spaces—outdoor areas located beneath raised building structures—have been recognized for enhancing pedestrian comfort by improving airflow and shading. However, previous studies primarily focused on [...] Read more.
Improving outdoor thermal comfort is a critical objective in urban design, particularly in densely built urban environments. Elevated semi-open spaces—outdoor areas located beneath raised building structures—have been recognized for enhancing pedestrian comfort by improving airflow and shading. However, previous studies primarily focused on warm or temperate climates, leaving a significant research gap regarding their thermal performance in cold climate zones characterized by extreme seasonal variations. Specifically, few studies have investigated how these spaces perform under conditions typical of northern Chinese cities like Xi’an, which is explicitly classified within the Cold Climate Zone according to China’s national standard GB 50176-2016 and experiences both severe summer heat and cold winter conditions. To address this gap, we conducted field measurements and numerical simulations using the ENVI-met model (v5.0) to systematically evaluate the microclimatic performance of elevated ground-floor spaces in Xi’an. Key microclimatic parameters—including air temperature, mean radiant temperature, relative humidity, and wind velocity—were assessed during representative summer and winter conditions. Our findings indicate that the height of the elevated structure significantly affects outdoor thermal comfort, identifying an optimal elevated height range of 3.6–4.3 m to effectively balance summer cooling and winter sheltering needs. These results provide valuable design guidance for architects and planners aiming to enhance outdoor thermal environments in cold climate regions facing distinct seasonal extremes. Full article
Show Figures

Figure 1

15 pages, 284 KiB  
Article
Co-Use of Alcohol and Cannabis During COVID-19: Associations Between Sociodemographic Factors and Self-Reported Mental Health Symptoms and Heavy Episodic Drinking in Canadian Adults
by Nibene H. Somé, Sameer Imtiaz, Yeshambel T. Nigatu, Samantha Wells, Claire de Oliveira, Shehzad Ali, Tara Elton-Marshall, Jürgen Rehm, Kevin D. Shield and Hayley A. Hamilton
Psychoactives 2025, 4(3), 27; https://doi.org/10.3390/psychoactives4030027 - 6 Aug 2025
Abstract
This study estimates the prevalence of co-use of alcohol and cannabis, assesses the sociodemographic risk factors of co-use, and examines the associations between mental health and heavy episodic drinking (HED) and alcohol–cannabis co-use in Canada during the early years of the COVID-19 pandemic. [...] Read more.
This study estimates the prevalence of co-use of alcohol and cannabis, assesses the sociodemographic risk factors of co-use, and examines the associations between mental health and heavy episodic drinking (HED) and alcohol–cannabis co-use in Canada during the early years of the COVID-19 pandemic. Nine successive cross-sectional surveys, held from May 2020 to January 2022, of adults (aged ≥18 years) living in Canada were pooled for 9011 participants. The prevalence of co-use was calculated across sociodemographic groups. Logistic regressions were used to assess associations. Alcohol–cannabis co-use was associated with a greater likelihood of engaging in HED and experiencing symptoms of anxiety, depression, and loneliness. The prevalence of co-use of alcohol was different across sociodemographic groups. The highest prevalence was among TGD people (35.5%), followed by individuals aged 18–39 years (14.5%). Additionally, being TGD (aOR = 3.61, 95% CI 2.09–6.25), separated/divorced/widowed (aOR = 1.60, 95% CI 1.23–2.07), living in an urban area (aOR = 1.26, 95% CI 1.07–1.56), and having a high household income (aOR = 1.41, 95% CI 1.09–1.82) increased the likelihood of reporting alcohol–cannabis co-use. These findings underscore the fact that developing public health and clinical interventions for preventing and treating excessive alcohol or cannabis use must consider both alcohol and cannabis use patterns and should be tailored to the highest-risk TGD and young adults. Full article
20 pages, 2104 KiB  
Article
Landscape Heterogeneity and Transition Drive Wildfire Frequency in the Central Zone of Chile
by Mariam Valladares-Castellanos, Guofan Shao and Douglass F. Jacobs
Remote Sens. 2025, 17(15), 2721; https://doi.org/10.3390/rs17152721 - 6 Aug 2025
Abstract
Wildfire regimes are closely linked to changes in landscape structure, yet the influence of accelerated land use transitions on fire activity remains poorly understood, particularly in rapidly transforming regions like central Chile. Although land use change has been extensively documented in the country, [...] Read more.
Wildfire regimes are closely linked to changes in landscape structure, yet the influence of accelerated land use transitions on fire activity remains poorly understood, particularly in rapidly transforming regions like central Chile. Although land use change has been extensively documented in the country, the specific role of the speed, extent, and spatial configuration of these transitions in shaping fire dynamics requires further investigation. To address this gap, we examined how landscape transitions influence fire frequency in central Chile, a region experiencing rapid land use change and heightened fire activity. Using multi-temporal remote sensing data, we quantified land use transitions, calculated landscape metrics to describe their spatial characteristics, and applied intensity analysis to assess their relationship with fire frequency changes. Our results show that accelerated landscape transitions significantly increased fire frequency, particularly in areas affected by forest plantation rotations, new forest establishment, and urban expansion, with changes exceeding uniform intensity expectations. Regional variations were evident: In the more densely populated northern areas, increased fire frequency was primarily linked to urban development and deforestation, while in the more rural southern regions, forest plantation cycles played a dominant role. Areas with a high number of large forest patches were especially prone to fire frequency increases. These findings demonstrate that both the speed and spatial configuration of landscape transitions are critical drivers of wildfire activity. By identifying the specific land use changes and landscape characteristics that amplify fire risks, this study provides valuable knowledge to inform fire risk reduction, landscape management, and urban planning in Chile and other fire-prone regions undergoing rapid transformation. Full article
Show Figures

Figure 1

28 pages, 48169 KiB  
Article
Advancing Self-Supervised Learning for Building Change Detection and Damage Assessment: Unified Denoising Autoencoder and Contrastive Learning Framework
by Songxi Yang, Bo Peng, Tang Sui, Meiliu Wu and Qunying Huang
Remote Sens. 2025, 17(15), 2717; https://doi.org/10.3390/rs17152717 - 6 Aug 2025
Abstract
Building change detection and building damage assessment are two essential tasks in post-disaster analysis. Building change detection focuses on identifying changed building areas between bi-temporal images, while building damage assessment involves segmenting all buildings and classifying their damage severity. These tasks play a [...] Read more.
Building change detection and building damage assessment are two essential tasks in post-disaster analysis. Building change detection focuses on identifying changed building areas between bi-temporal images, while building damage assessment involves segmenting all buildings and classifying their damage severity. These tasks play a critical role in disaster response and urban development monitoring. Although supervised learning has significantly advanced building change detection and damage assessment, its reliance on large labeled datasets remains a major limitation. In contrast, self-supervised learning enables the extraction of meaningful data representations without explicit training labels. To address this challenge, we propose a self-supervised learning approach that unifies denoising autoencoders and contrastive learning, enabling effective data representation for building change detection and damage assessment. The proposed architecture integrates a dual denoising autoencoder with a Vision Transformer backbone and contrastive learning strategy, complemented by a Feature Pyramid Network-ResNet dual decoder and an Edge Guidance Module. This design enhances multi-scale feature extraction and enables edge-aware segmentation for accurate predictions. Extensive experiments were conducted on five public datasets, including xBD, LEVIR, LEVIR+, SYSU, and WHU, to evaluate the performance and generalization capabilities of the model. The results demonstrate that the proposed Denoising AutoEncoder-enhanced Dual-Fusion Network (DAEDFN) approach achieves competitive performance compared with fully supervised methods. On the xBD dataset, the largest dataset for building damage assessment, our proposed method achieves an F1 score of 0.892 for building segmentation, outperforming state-of-the-art methods. For building damage severity classification, the model achieves an F1 score of 0.632. On the building change detection datasets, the proposed method achieves F1 scores of 0.837 (LEVIR), 0.817 (LEVIR+), 0.768 (SYSU), and 0.876 (WHU), demonstrating model generalization across diverse scenarios. Despite these promising results, challenges remain in complex urban environments, small-scale changes, and fine-grained boundary detection. These findings highlight the potential of self-supervised learning in building change detection and damage assessment tasks. Full article
Show Figures

Figure 1

24 pages, 6924 KiB  
Article
Long-Term Time Series Estimation of Impervious Surface Coverage Rate in Beijing–Tianjin–Hebei Urbanization and Vulnerability Assessment of Ecological Environment Response
by Yuyang Cui, Yaxue Zhao and Xuecao Li
Land 2025, 14(8), 1599; https://doi.org/10.3390/land14081599 - 6 Aug 2025
Abstract
As urbanization processes are no longer characterized by simple linear expansion but exhibit leaping, edge-sparse, and discontinuous features, spatiotemporally continuous impervious surface coverage data are needed to better characterize urbanization processes. This study utilized GAIA impervious surface binary data and employed spatiotemporal aggregation [...] Read more.
As urbanization processes are no longer characterized by simple linear expansion but exhibit leaping, edge-sparse, and discontinuous features, spatiotemporally continuous impervious surface coverage data are needed to better characterize urbanization processes. This study utilized GAIA impervious surface binary data and employed spatiotemporal aggregation methods to convert thirty years of 30 m resolution data into 1 km resolution spatiotemporal impervious surface coverage data, constructing a long-term time series annual impervious surface coverage dataset for the Beijing–Tianjin–Hebei region. Based on this dataset, we analyzed urban expansion processes and landscape pattern indices in the Beijing–Tianjin–Hebei region, exploring the spatiotemporal response relationships of ecological environment changes. Results revealed that the impervious surface area increased dramatically from 7579.3 km2 in 1985 to 37,484.0 km2 in 2020, representing a year-on-year growth of 88.5%. Urban expansion rates showed two distinct peaks: 800 km2/year around 1990 and approximately 1700 km2/year during 2010–2015. In high-density urbanized areas with impervious surfaces, the average forest area significantly increased from approximately 2500 km2 to 7000 km2 during 1985–2005 before rapidly declining, grassland patch fragmentation intensified, while in low-density areas, grassland area showed fluctuating decline with poor ecosystem stability. Furthermore, by incorporating natural and social factors such as Fractional Vegetation Coverage (FVC), Habitat Quality Index (HQI), Land Surface Temperature (LST), slope, and population density, we assessed the vulnerability of urbanization development in the Beijing–Tianjin–Hebei region. Results showed that high vulnerability areas (EVI > 0.5) in the Beijing–Tianjin core region continue to expand, while the proportion of low vulnerability areas (EVI < 0.25) in the northern mountainous regions decreased by 4.2% in 2020 compared to 2005. This study provides scientific support for the sustainable development of the Beijing–Tianjin–Hebei urban agglomeration, suggesting location-specific and differentiated regulation of urbanization processes to reduce ecological risks. Full article
Show Figures

Figure 1

26 pages, 2126 KiB  
Systematic Review
Interlinking Urban Sustainability, Circular Economy and Complexity: A Systematic Literature Review
by Walter Antonio Abujder Ochoa, Angela Gabriela Torrico Arce, Alfredo Iarozinski Neto, Mayara Regina Munaro, Oriana Palma Calabokis and Vladimir A. Ballesteros-Ballesteros
Sustainability 2025, 17(15), 7118; https://doi.org/10.3390/su17157118 - 6 Aug 2025
Abstract
Urban sustainability challenges demand integrated frameworks capable of addressing the dynamic, non-linear nature of cities. This study explores how the principles of the circular economy and complexity theory intersect to support systemic transformation in sustainable urban planning. Through a systematic literature review of [...] Read more.
Urban sustainability challenges demand integrated frameworks capable of addressing the dynamic, non-linear nature of cities. This study explores how the principles of the circular economy and complexity theory intersect to support systemic transformation in sustainable urban planning. Through a systematic literature review of 71 peer-reviewed articles published between 2015 and 2025, we analyze conceptual, methodological, and practical articulations across multiple thematic axes, including circular governance, urban metabolism, regenerative design, adaptive planning, digital integration, and environmental justice. Bibliometric and content analyses were conducted using Scopus metadata, VOSviewer for thematic clustering, and the StArt software (Version 3.4) to structure article selection. The findings reveal that circular economy provides practical tools for resource efficiency and regeneration, while complexity theory offers an adaptive framework to navigate uncertainty, emergent behaviors, and feedback dynamics. The synthesis suggests that their integration enables a more holistic and resilient approach to urban transformation. However, gaps remain in social inclusivity, long-term assessment, and the operationalization of complexity-informed planning. This study contributes to advancing a transdisciplinary agenda for circular and adaptive urban futures, offering insights for scholars, planners, and policymakers aiming to reconfigure cities within planetary boundaries. Full article
Show Figures

Figure 1

20 pages, 1279 KiB  
Article
A Framework for Quantifying Hyperloop’s Socio-Economic Impact in Smart Cities Using GDP Modeling
by Aleksejs Vesjolijs, Yulia Stukalina and Olga Zervina
Economies 2025, 13(8), 228; https://doi.org/10.3390/economies13080228 - 6 Aug 2025
Abstract
Hyperloop ultra-high-speed transport presents a transformative opportunity for future mobility systems in smart cities. However, assessing its socio-economic impact remains challenging due to Hyperloop’s unique technological, modal, and operational characteristics. As a novel, fifth mode of transportation—distinct from both aviation and rail—Hyperloop requires [...] Read more.
Hyperloop ultra-high-speed transport presents a transformative opportunity for future mobility systems in smart cities. However, assessing its socio-economic impact remains challenging due to Hyperloop’s unique technological, modal, and operational characteristics. As a novel, fifth mode of transportation—distinct from both aviation and rail—Hyperloop requires tailored evaluation tools for policymakers. This study proposes a custom-designed framework to quantify its macroeconomic effects through changes in gross domestic product (GDP) at the city level. Unlike traditional economic models, the proposed approach is specifically adapted to Hyperloop’s multimodality, infrastructure, speed profile, and digital-green footprint. A Poisson pseudo-maximum likelihood (PPML) model is developed and applied at two technology readiness levels (TRL-6 and TRL-9). Case studies of Glasgow, Berlin, and Busan are used to simulate impacts based on geo-spatial features and city-specific trade and accessibility indicators. Results indicate substantial GDP increases driven by factors such as expanded 60 min commute catchment zones, improved trade flows, and connectivity node density. For instance, under TRL-9 conditions, GDP uplift reaches over 260% in certain scenarios. The framework offers a scalable, reproducible tool for policymakers and urban planners to evaluate the economic potential of Hyperloop within the context of sustainable smart city development. Full article
(This article belongs to the Section International, Regional, and Transportation Economics)
Show Figures

Figure 1

15 pages, 1337 KiB  
Article
Application of Prefabricated Public Buildings in Rural Areas with Extreme Hot–Humid Climate: A Case Study of the Yongtai County Digital Industrial Park, Fuzhou, China
by Xin Wu, Jiaying Wang, Ruitao Zhang, Qianru Bi and Jinghan Pan
Buildings 2025, 15(15), 2767; https://doi.org/10.3390/buildings15152767 - 6 Aug 2025
Abstract
Accomplishing China’s national targets of carbon peaking and carbon neutrality necessitates proactive solutions, hinging critically on fundamentally transforming rural construction models. Current construction practices in rural areas are characterized by inefficiency, high resource consumption, and reliance on imported materials. These shortcomings not only [...] Read more.
Accomplishing China’s national targets of carbon peaking and carbon neutrality necessitates proactive solutions, hinging critically on fundamentally transforming rural construction models. Current construction practices in rural areas are characterized by inefficiency, high resource consumption, and reliance on imported materials. These shortcomings not only jeopardize the attainment of climate objectives, but also hinder equitable development between urban and rural regions. Using the Digital Industrial Park in Yongtai County, Fuzhou City, as a case study, this study focuses on prefabricated public buildings in regions with extreme hot–humid climate, and innovatively integrates BIM (Building Information Modeling)-driven carbon modeling with the Gaussian Two-Step Floating Catchment Area (G2SFCA) method for spatial accessibility assessment to investigate the carbon emissions and economic benefits of prefabricated buildings during the embodied stage, and analyzes the spatial accessibility of prefabricated building material suppliers in Fuzhou City and identifies associated bottlenecks, seeking pathways to promote sustainable rural revitalization. Compared with traditional cast-in-situ buildings, embodied carbon emissions of prefabricated during their materialization phase significantly reduced. This dual-perspective approach ensures that the proposed solutions possess both technical rigor and logistical feasibility. Promoting this model across rural areas sharing similar climatic conditions would advance the construction industry’s progress towards the dual carbon goals. Full article
Show Figures

Figure 1

11 pages, 1226 KiB  
Proceeding Paper
Assessment of Nature-Based Solutions’ Impact on Urban Air Quality Using Remote Sensing
by Paloma C. Toscan, Alcindo Neckel, Emanuelle Goellner, Marcos L. S. Oliveira and Eduardo N. B. Pereira
Eng. Proc. 2025, 94(1), 15; https://doi.org/10.3390/engproc2025094015 - 5 Aug 2025
Abstract
Urban air pollution poses a significant challenge to public health and sustainable development, particularly in mid-sized cities with limited monitoring capabilities. This study investigates the impact of Nature-Based Solutions (NBS) on air quality and Land Surface Temperature (LST) in Guimarães, Portugal. The first [...] Read more.
Urban air pollution poses a significant challenge to public health and sustainable development, particularly in mid-sized cities with limited monitoring capabilities. This study investigates the impact of Nature-Based Solutions (NBS) on air quality and Land Surface Temperature (LST) in Guimarães, Portugal. The first phase involves mapping pollutants and assessing European guidelines, traditional monitoring methods, and emerging tools such as sensors and satellite data. The findings indicate gaps in spatial coverage, emphasizing the importance of integrating data from Sentinel-3, Sentinel-5P, local sensors, and drones. These insights establish a foundation for the next phase, which involves predictive modeling of NBS, LST, and pollutants using machine learning techniques to support data-driven policy-making. Full article
Show Figures

Figure 1

28 pages, 1145 KiB  
Article
Uncovering Hidden Risks: Non-Targeted Screening and Health Risk Assessment of Aromatic Compounds in Summer Metro Carriages
by Han Wang, Guangming Li, Cuifen Dong, Youyan Chi, Kwok Wai Tham, Mengsi Deng and Chunhui Li
Buildings 2025, 15(15), 2761; https://doi.org/10.3390/buildings15152761 - 5 Aug 2025
Abstract
Metro carriages, as enclosed transport microenvironments, have been understudied regarding pollution characteristics and health risks from ACs, especially during high-temperature summers that amplify exposure. This study applied NTS techniques for the first time across three major Chengdu metro lines, systematically identifying sixteen ACs, [...] Read more.
Metro carriages, as enclosed transport microenvironments, have been understudied regarding pollution characteristics and health risks from ACs, especially during high-temperature summers that amplify exposure. This study applied NTS techniques for the first time across three major Chengdu metro lines, systematically identifying sixteen ACs, including hazardous species such as acetophenone, benzonitrile, and benzoic acid that are often overlooked in conventional BTEX-focused monitoring. The TAC concentration reached 41.40 ± 5.20 µg/m3, with half of the compounds exhibiting significant increases during peak commuting periods. Source apportionment using diagnostic ratios and PMF identified five major contributors: carriage material emissions (36.62%), human sources (22.50%), traffic exhaust infiltration (16.67%), organic solvents (16.55%), and industrial emissions (7.66%). Although both non-cancer (HI) and cancer (TCR) risks for all population groups were below international thresholds, summer tourists experienced higher exposure than daily commuters. Notably, child tourists showed the greatest vulnerability, with a TCR of 5.83 × 10−7, far exceeding that of commuting children (1.88 × 10−7). Benzene was the dominant contributor, accounting for over 50% of HI and 70% of TCR. This study presents the first integrated NTS and quantitative risk assessment to characterise ACs in summer metro environments, revealing a broader range of hazardous compounds beyond BTEX. It quantifies population-specific risks, highlights children’s heightened vulnerability. The findings fill critical gaps in ACs exposure and provide a scientific basis for improved air quality management and pollution mitigation strategies in urban rail transit systems. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

Back to TopTop