Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (484)

Search Parameters:
Keywords = urban accident

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 650 KiB  
Article
Investigating Users’ Acceptance of Autonomous Buses by Examining Their Willingness to Use and Willingness to Pay: The Case of the City of Trikala, Greece
by Spyros Niavis, Nikolaos Gavanas, Konstantina Anastasiadou and Paschalis Arvanitidis
Urban Sci. 2025, 9(8), 298; https://doi.org/10.3390/urbansci9080298 - 1 Aug 2025
Viewed by 318
Abstract
Autonomous vehicles (AVs) have emerged as a promising sustainable urban mobility solution, expected to lead to enhanced road safety, smoother traffic flows, less traffic congestion, improved accessibility, better energy utilization and environmental performance, as well as more efficient passenger and freight transportation, in [...] Read more.
Autonomous vehicles (AVs) have emerged as a promising sustainable urban mobility solution, expected to lead to enhanced road safety, smoother traffic flows, less traffic congestion, improved accessibility, better energy utilization and environmental performance, as well as more efficient passenger and freight transportation, in terms of time and cost, due to better fleet management and platooning. However, challenges also arise, mostly related to data privacy, security and cyber-security, high acquisition and infrastructure costs, accident liability, even possible increased traffic congestion and air pollution due to induced travel demand. This paper presents the results of a survey conducted among 654 residents who experienced an autonomous bus (AB) service in the city of Trikala, Greece, in order to assess their willingness to use (WTU) and willingness to pay (WTP) for ABs, through testing a range of factors based on a literature review. Results useful to policy-makers were extracted, such as that the intention to use ABs was mostly shaped by psychological factors (e.g., users’ perceptions of usefulness and safety, and trust in the service provider), while WTU seemed to be positively affected by previous experience in using ABs. In contrast, sociodemographic factors were found to have very little effect on the intention to use ABs, while apart from personal utility, users’ perceptions of how autonomous driving will improve the overall life standards in the study area also mattered. Full article
Show Figures

Figure 1

20 pages, 10603 KiB  
Article
A Safety-Based Approach for the Design of an Innovative Microvehicle
by Michelangelo-Santo Gulino, Susanna Papini, Giovanni Zonfrillo, Thomas Unger, Peter Miklis and Dario Vangi
Designs 2025, 9(4), 90; https://doi.org/10.3390/designs9040090 (registering DOI) - 31 Jul 2025
Viewed by 168
Abstract
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper [...] Read more.
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper presents the design and development of an innovative self-balancing microvehicle under the H2020 LEONARDO project, which aims to address these challenges through advanced engineering and user-centric design. The vehicle combines features of monowheels and e-scooters, integrating cutting-edge technologies to enhance safety, stability, and usability. The design adheres to European regulations, including Germany’s eKFV standards, and incorporates user preferences identified through representative online surveys of 1500 PLEV users. These preferences include improved handling on uneven surfaces, enhanced signaling capabilities, and reduced instability during maneuvers. The prototype features a lightweight composite structure reinforced with carbon fibers, a high-torque motorized front wheel, and multiple speed modes tailored to different conditions, such as travel in pedestrian areas, use by novice riders, and advanced users. Braking tests demonstrate deceleration values of up to 3.5 m/s2, comparable to PLEV market standards and exceeding regulatory minimums, while smooth acceleration ramps ensure rider stability and safety. Additional features, such as identification plates and weight-dependent motor control, enhance compliance with local traffic rules and prevent misuse. The vehicle’s design also addresses common safety concerns, such as curb navigation and signaling, by incorporating large-diameter wheels, increased ground clearance, and electrically operated direction indicators. Future upgrades include the addition of a second rear wheel for enhanced stability, skateboard-like rear axle modifications for improved maneuverability, and hybrid supercapacitors to minimize fire risks and extend battery life. With its focus on safety, regulatory compliance, and rider-friendly innovations, this microvehicle represents a significant advancement in promoting safe and sustainable urban mobility. Full article
(This article belongs to the Section Vehicle Engineering Design)
Show Figures

Figure 1

25 pages, 1159 KiB  
Article
Integration of TPB and TAM Frameworks to Assess Driving Assistance Technology-Mediated Risky Driving Behaviors Among Young Urban Chinese Drivers
by Ruiwei Li, Xiangyu Li and Xiaoqing Li
Vehicles 2025, 7(3), 79; https://doi.org/10.3390/vehicles7030079 - 28 Jul 2025
Viewed by 295
Abstract
This study developed and validated an integrated theoretical framework combining the Theory of Planned Behavior (TPB) and the Technology Acceptance Model (TAM) to investigate how driving assistance technologies (DATs) influence risky driving behaviors among young urban Chinese drivers. Based on this framework, we [...] Read more.
This study developed and validated an integrated theoretical framework combining the Theory of Planned Behavior (TPB) and the Technology Acceptance Model (TAM) to investigate how driving assistance technologies (DATs) influence risky driving behaviors among young urban Chinese drivers. Based on this framework, we proposed and tested several hypotheses regarding the effects of psychological and technological factors on risky driving intentions and behaviors. A survey was conducted with 495 young drivers in Shaoguan, Guangdong Province, examining psychological factors, technology acceptance, and their influence on risky driving behaviors. Structural equation modeling revealed that the integrated TPB-TAM explained 58.3% of the variance in behavioral intentions and 42.6% of the variance in actual risky driving behaviors, significantly outperforming single-theory models. Attitudes toward risky driving (β = 0.287) emerged as the strongest TPB predictor of behavioral intentions, while perceived usefulness (β = −0.172) and perceived ease of use (β = −0.113) of driving assistance technologies negatively influenced risky driving intentions. Multi-group analysis identified significant gender and driving experience differences. Logistic regression analyses demonstrated that model constructs significantly predicted actual traffic violations and accidents. These findings provide theoretical insights into risky driving determinants and practical guidance for developing targeted interventions and effective traffic safety policies for young drivers in urban China. Full article
Show Figures

Figure 1

23 pages, 13739 KiB  
Article
Traffic Accident Rescue Action Recognition Method Based on Real-Time UAV Video
by Bo Yang, Jianan Lu, Tao Liu, Bixing Zhang, Chen Geng, Yan Tian and Siyu Zhang
Drones 2025, 9(8), 519; https://doi.org/10.3390/drones9080519 - 24 Jul 2025
Viewed by 427
Abstract
Low-altitude drones, which are unimpeded by traffic congestion or urban terrain, have become a critical asset in emergency rescue missions. To address the current lack of emergency rescue data, UAV aerial videos were collected to create an experimental dataset for action classification and [...] Read more.
Low-altitude drones, which are unimpeded by traffic congestion or urban terrain, have become a critical asset in emergency rescue missions. To address the current lack of emergency rescue data, UAV aerial videos were collected to create an experimental dataset for action classification and localization annotation. A total of 5082 keyframes were labeled with 1–5 targets each, and 14,412 instances of data were prepared (including flight altitude and camera angles) for action classification and position annotation. To mitigate the challenges posed by high-resolution drone footage with excessive redundant information, we propose the SlowFast-Traffic (SF-T) framework, a spatio-temporal sequence-based algorithm for recognizing traffic accident rescue actions. For more efficient extraction of target–background correlation features, we introduce the Actor-Centric Relation Network (ACRN) module, which employs temporal max pooling to enhance the time-dimensional features of static backgrounds, significantly reducing redundancy-induced interference. Additionally, smaller ROI feature map outputs are adopted to boost computational speed. To tackle class imbalance in incident samples, we integrate a Class-Balanced Focal Loss (CB-Focal Loss) function, effectively resolving rare-action recognition in specific rescue scenarios. We replace the original Faster R-CNN with YOLOX-s to improve the target detection rate. On our proposed dataset, the SF-T model achieves a mean average precision (mAP) of 83.9%, which is 8.5% higher than that of the standard SlowFast architecture while maintaining a processing speed of 34.9 tasks/s. Both accuracy-related metrics and computational efficiency are substantially improved. The proposed method demonstrates strong robustness and real-time analysis capabilities for modern traffic rescue action recognition. Full article
(This article belongs to the Special Issue Cooperative Perception for Modern Transportation)
Show Figures

Figure 1

27 pages, 2130 KiB  
Article
Disaster Risk Reduction in a Manhattan-Type Road Network: A Framework for Serious Game Activities for Evacuation
by Corrado Rindone and Antonio Russo
Sustainability 2025, 17(14), 6326; https://doi.org/10.3390/su17146326 - 10 Jul 2025
Viewed by 272
Abstract
The increasing number of natural and man-made disasters registered at the global level is causing a significant amount of damage. This represents one of the main sustainability challenges at the global level. The collapse of the Twin Towers, Hurricane Katrina, and the nuclear [...] Read more.
The increasing number of natural and man-made disasters registered at the global level is causing a significant amount of damage. This represents one of the main sustainability challenges at the global level. The collapse of the Twin Towers, Hurricane Katrina, and the nuclear accident at the Fukushima power plant are some of the most representative disaster events that occurred at the beginning of the third millennium. These relevant disasters need an enhanced level of preparedness to reduce the gaps between the plan and its implementation. Among these actions, training and exercises play a relevant role because they increase the capability of planners, managers, and the people involved. By focusing on the exposure risk component, the general objective of the research is to obtain quantitative evaluations of the exercise’s contribution to risk reduction through evacuation. The paper aims to analyze serious games using a set of methods and models that simulate an urban risk reduction plan. In particular, the paper proposes a transparent framework that merges transport risk analysis (TRA) and transport system models (TSMs), developing serious game activities with the support of emerging information and communication technologies (e-ICT). Transparency is possible through the explicitation of reproducible analytical formulations and linked parameters. The core framework of serious games is constituted by a set of models that reproduce the effects of players’ choices, including planned actions of decisionmakers and travel users’ choices. The framework constitutes the prototype of a digital platform in a “non-stressful” context aimed at providing more insights about the effects of planned actions. The proposed framework is characterized by transparency, a feature that allows other analysts and planners to reproduce each risk scenario, by applying TRA and relative effects simulations in territorial contexts by means of TSMs and parameters updated by e-ICT. A basic experimentation is performed by using a game, presenting the main results of a prototype test based on a reproducible exercise. The prototype experiment demonstrates the efficacy of increasing preparedness levels and reducing exposure by designing and implementing a serious game. The paper’s methodology and results are useful for policymakers, emergency managers, and the community for increasing the preparedness level. Full article
(This article belongs to the Special Issue Sustainable Transportation Engineering and Mobility Safety Management)
Show Figures

Figure 1

13 pages, 659 KiB  
Article
Severe Paediatric Trauma in Australia: A 5-Year Retrospective Epidemiological Analysis of High-Severity Fractures in Rural New South Wales
by David Leonard Mostofi Zadeh Haghighi, Milos Spasojevic and Anthony Brown
J. Clin. Med. 2025, 14(14), 4868; https://doi.org/10.3390/jcm14144868 - 9 Jul 2025
Viewed by 319
Abstract
Background: Trauma-related injuries are among the most common reasons for paediatric hospital presentations and represent a substantial component of orthopaedic care. Their management poses unique challenges due to ongoing skeletal development in children. While most reported fractures occur at home or during [...] Read more.
Background: Trauma-related injuries are among the most common reasons for paediatric hospital presentations and represent a substantial component of orthopaedic care. Their management poses unique challenges due to ongoing skeletal development in children. While most reported fractures occur at home or during sports, prior studies have primarily used data from urban European populations, limiting the relevance of their findings for rural and regional settings. Urban-centred research often informs public healthcare guidelines, treatment algorithms, and infrastructure planning, introducing a bias when findings are generalised outside of metropolitan populations. This study addresses that gap by analysing fracture data from two rural trauma centres in New South Wales, Australia. This study assesses paediatric fractures resulting from severe injury mechanisms in rural areas, identifying common fracture types, underlying mechanisms, and treatment approaches to highlight differences in demographics. These findings aim to cast a light on healthcare challenges that regional areas face and to improve the overall cultural safety of children who live and grow up outside of the metropolitan trauma networks. Methods: We analysed data from two major rural referral hospitals in New South Wales (NSW) for paediatric injuries presenting between 1 January 2018 and 31 December 2022. This study included 150 patients presenting with fractures following severe mechanisms of injury, triaged into Australasian Triage Scale (ATS) categories 1 and 2 upon initial presentation. Results: A total of 150 severe fractures were identified, primarily affecting the upper and lower limbs. Males presented more frequently than females, and children aged 10–14 years old were most commonly affected. High-energy trauma from motorcycle (dirt bike) accidents was the leading mechanism of injury among all patients, and accounted for >50% of injuries among 10–14-year-old patients. The most common fractures sustained in these events were upper limb fractures, notably of the clavicle (n = 26, 17.3%) and combined radius/ulna fractures (n = 26, 17.3%). Conclusions: Paediatric trauma in regional Australia presents a unique and under-reported challenge, with high-energy injuries frequently linked to unregulated underage dirt bike use. Unlike urban centres where low-energy mechanisms dominate, rural areas require targeted prevention strategies. While most cases were appropriately managed locally, some were transferred to tertiary centres. These findings lay the groundwork for multi-centre research, and support the need for region-specific policy reform in the form of improved formal injury surveillance, injury prevention initiatives, and the regulation of under-aged off-road vehicular usage. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

14 pages, 3592 KiB  
Article
Novel Machine Learning-Based Smart City Pedestrian Road Crossing Alerts
by Song-Kyoo Kim and I Cheng Chan
Smart Cities 2025, 8(4), 114; https://doi.org/10.3390/smartcities8040114 - 8 Jul 2025
Viewed by 495
Abstract
This paper presents a novel system designed to enhance pedestrian safety in urban environments by utilizing real-time video analysis and machine learning techniques. With a focus on the bustling streets of Macao, known for its high pedestrian traffic and complex road conditions, the [...] Read more.
This paper presents a novel system designed to enhance pedestrian safety in urban environments by utilizing real-time video analysis and machine learning techniques. With a focus on the bustling streets of Macao, known for its high pedestrian traffic and complex road conditions, the proposed model alerts drivers to the presence of pedestrians, significantly reducing the risk of accidents. Leveraging the You Only Look Once algorithm, this research demonstrates how timely alerts can be generated based on risk assessments derived from video footage. The model is rigorously tested against diverse driving scenarios, providing robust accuracy in detecting potential hazards. A comparative analysis of various machine learning algorithms, including Gradient Boosting and Logistic Regression, underscores the effectiveness and reliability of the system. The key finding of this research indicates that dataset refinement and enhanced feature differentiation could lead to improved model performance. Ultimately, this work seeks to contribute to the development of smart city initiatives that prioritize safety through advanced technological solutions. This approach exemplifies a vision for more responsive and responsible urban transport systems. Full article
Show Figures

Figure 1

22 pages, 4682 KiB  
Article
Transformer-Based Vehicle-Trajectory Prediction at Urban Low-Speed T-Intersection
by Jae Kwan Lee
Sensors 2025, 25(14), 4256; https://doi.org/10.3390/s25144256 - 8 Jul 2025
Viewed by 507
Abstract
Transformer-based models have demonstrated outstanding performance in trajectory prediction; however, their complex architecture demands substantial computing power, and their performance degrades significantly in long-term prediction. A transformer model was developed to predict vehicle trajectory in urban low-speed T-intersections. Microscopic traffic simulation data were [...] Read more.
Transformer-based models have demonstrated outstanding performance in trajectory prediction; however, their complex architecture demands substantial computing power, and their performance degrades significantly in long-term prediction. A transformer model was developed to predict vehicle trajectory in urban low-speed T-intersections. Microscopic traffic simulation data were generated to train the trajectory-prediction model; furthermore, validation data focusing on atypical scenarios were also produced. The appropriate loss function to improve prediction accuracy was explored, and the optimal input/output sequence length for efficient data management was examined. Various driving-characteristics data were employed to evaluate the model’s generalization performance. Consequently, the smooth L1 loss function showed outstanding performance. The optimal length for the input and output sequences was found to be 1 and 3 s, respectively, for trajectory prediction. Additionally, improving the model structure—rather than diversifying the training data—is necessary to enhance generalization performance in atypical driving situations. Finally, this study confirmed that the additional features such as vehicle position and speed variation extracted from the original trajectory data decreased the model accuracy by about 21%. These findings contribute to the development of applicable lightweight models in edge computing infrastructure to be installed at intersections, as well as the development of a trajectory prediction and accident analysis system for various scenarios. Full article
Show Figures

Figure 1

27 pages, 110289 KiB  
Article
Automated Digitization Approach for Road Intersections Mapping: Leveraging Azimuth and Curve Detection from Geo-Spatial Data
by Ahmad M. Senousi, Wael Ahmed, Xintao Liu and Walid Darwish
ISPRS Int. J. Geo-Inf. 2025, 14(7), 264; https://doi.org/10.3390/ijgi14070264 - 5 Jul 2025
Viewed by 409
Abstract
Effective maintenance and management of road infrastructure are essential for community well-being, economic stability, and cost efficiency. Well-maintained roads reduce accident risks, improve safety, shorten travel times, lower vehicle repair costs, and facilitate the flow of goods, all of which positively contribute to [...] Read more.
Effective maintenance and management of road infrastructure are essential for community well-being, economic stability, and cost efficiency. Well-maintained roads reduce accident risks, improve safety, shorten travel times, lower vehicle repair costs, and facilitate the flow of goods, all of which positively contribute to GDP and economic development. Accurate intersection mapping forms the foundation of effective road asset management, yet traditional manual digitization methods remain time-consuming and prone to gaps and overlaps. This study presents an automated computational geometry solution for precise road intersection mapping that eliminates common digitization errors. Unlike conventional approaches that only detect intersection positions, our method systematically reconstructs complete intersection geometries while maintaining topological consistency. The technique combines plane surveying principles (including line-bearing analysis and curve detection) with spatial analytics to automatically identify intersections, characterize their connectivity patterns, and assign unique identifiers based on configurable parameters. When evaluated across multiple urban contexts using diverse data sources (manual digitization and OpenStreetMap), the method demonstrated consistent performance with mean Intersection over Union greater than 0.85 and F-scores more than 0.91. The high correctness and completeness metrics (both more than 0.9) confirm its ability to minimize both false positive and omission errors, even in complex roadway configurations. The approach consistently produced gap-free, overlap-free outputs, showing strength in handling interchange geometries. The solution enables transportation agencies to make data-driven maintenance decisions by providing reliable, standardized intersection inventories. Its adaptability to varying input data quality makes it particularly valuable for large-scale infrastructure monitoring and smart city applications. Full article
Show Figures

Figure 1

26 pages, 2098 KiB  
Article
Length Requirements for Urban Expressway Work Zones’ Warning and Transition Areas Based on Driving Safety and Comfort
by Aixiu Hu, Ruiyun Huang, Yanqun Yang, Ibrahim El-Dimeery and Said M. Easa
Systems 2025, 13(7), 525; https://doi.org/10.3390/systems13070525 - 30 Jun 2025
Viewed by 319
Abstract
As aging urban expressways become more pronounced, maintenance and construction work on these roadways is increasingly necessary. Some lanes may need to be closed during maintenance and construction, decreasing driving safety and comfort in the work zone. This situation often leads to traffic [...] Read more.
As aging urban expressways become more pronounced, maintenance and construction work on these roadways is increasingly necessary. Some lanes may need to be closed during maintenance and construction, decreasing driving safety and comfort in the work zone. This situation often leads to traffic congestion and a higher risk of traffic accidents. Notably, 80% of work zone traffic accidents occur in the warning and upstream transition areas (or simply warning and transition areas). Therefore, it is crucial to appropriately determine the lengths of these areas to enhance both safety and comfort for drivers. In this study, we examined three different warning lengths (1800 m, 2000 m, and 2200 m) and three transition lengths (120 m, 140 m, and 160 m) using the entropy weighting method to create nine simulation scenarios on a two-way, six-lane urban expressway. We selected various metrics for driving safety and comfort, including drivers’ eye movement, electroencephalogram, and driving behavior indicators. A total of 45 participants (mean age = 23.9 years, standard deviation = 1.8) were recruited for the driving simulation experiment, and each participant completed all 9 simulation scenarios. After eliminating 5 invalid datasets, we obtained valid data from 40 participants. We employed a combination of the analytic network process and entropy weighting method to calculate the comprehensive weights of the eight evaluation indicators. Additionally, we introduced the fuzzy theory, utilizing a trapezoidal membership function to evaluate the membership matrix values of the indicators and the comprehensive evaluation grade eigenvalues. The ranking of the experimental scenarios was determined using these eigenvalues. The results indicated that more extended warning lengths correlated with increased safety and comfort. Specifically, the best driver safety and comfort levels were observed in Scenario I, which featured a 2200 m warning length × 160 m transition length. However, the difference in safety and comfort across different transition lengths diminished as the warning length increased. Therefore, when road space is limited, a thoughtful combination of reasonable lengths can still provide high driving safety and comfort. Full article
(This article belongs to the Special Issue Modelling and Simulation of Transportation Systems)
Show Figures

Figure 1

25 pages, 2434 KiB  
Article
Navigating Risks and Realities: Understanding Motorbike Taxi Usage and Safety Strategies in Yaoundé and Douala (Cameroon)
by Abdou Kouomoun, Salifou Ndam, Jérôme Chenal and Armel Kemajou
Safety 2025, 11(2), 61; https://doi.org/10.3390/safety11020061 - 19 Jun 2025
Viewed by 1133
Abstract
Motorbike taxis are widely used in Yaoundé and Douala, despite their association with heightened accident risks and relatively high fares. This research combines qualitative methods, including 38 semi-structured interviews and direct field observations, with a quantitative survey of 280 motorbike taxi passengers (customers). [...] Read more.
Motorbike taxis are widely used in Yaoundé and Douala, despite their association with heightened accident risks and relatively high fares. This research combines qualitative methods, including 38 semi-structured interviews and direct field observations, with a quantitative survey of 280 motorbike taxi passengers (customers). It employs a dynamic risk approach to analyse both the factors motivating individuals to choose motorbike taxis and the strategies adopted by drivers and passengers to mitigate and prevent accidents. The findings reveal that speed, cost-effectiveness, and the limited accessibility of certain neighbourhoods to other transport options are key factors driving regular motorbike taxi use. Moreover, strategies for managing accident risks include regulating passenger positions based on gender, perceived age, or physical stature; invoking deities for protection; and passengers’ verbal interactions with drivers to ensure safer behaviour. This research also explores how overloading, a collectively tolerated deviance, is managed to avoid or minimize the impact of accidents. By addressing both risk acceptance and prevention strategies, this study provides new insights into passengers’ social perceptions, which are often overlooked in motorbike taxi research. It expands the understanding of motorbike taxi use in urban Global South transport contexts, particularly in terms of users’ risk management behaviours. Full article
Show Figures

Figure 1

31 pages, 3767 KiB  
Article
Curing Sustainability Assessment in Concrete Pavements: A 20-Year Simulation-Based Analysis in Urban Road Contexts
by Julián Pulecio-Díaz
Sustainability 2025, 17(12), 5299; https://doi.org/10.3390/su17125299 - 8 Jun 2025
Viewed by 627
Abstract
In urban areas with warm climates, a lack of proper curing during concrete pavement construction can significantly reduce service life, increase maintenance needs, and compromise sustainability goals. Despite its relevance, the comprehensive impact of curing has been poorly quantified from a multidimensional perspective. [...] Read more.
In urban areas with warm climates, a lack of proper curing during concrete pavement construction can significantly reduce service life, increase maintenance needs, and compromise sustainability goals. Despite its relevance, the comprehensive impact of curing has been poorly quantified from a multidimensional perspective. This study aims to evaluate the effect of applying a liquid curing compound on the sustainability of concrete slab pavements over a 20-year horizon using a simulation-based approach. Two scenarios, cured and uncured, were modeled with HIPERPAV®, incorporating site-specific climatic, structural, and material parameters. Based on projected maintenance cycles, nine sustainability indicators were calculated and grouped into environmental (CO2 emissions, energy, water, and waste), social (accidents, travel time, satisfaction, and jobs), and economic (life-cycle maintenance cost) dimensions. Statistical tests (ANOVA, Welch ANOVA, and Kruskal–Wallis) were applied to assess significance. Results showed that curing reduced CO2 emissions (−13.7%), energy consumption (−12.5%), and waste (−20.7%), while improving accident rates (−40.3%), user satisfaction (+17.8%), and maintenance cost savings (−9.5%). The findings support curing as a cost-effective and sustainability-enhancing strategy for urban pavement design and management. Full article
Show Figures

Figure 1

27 pages, 1879 KiB  
Article
Deep Multimodal-Interactive Document Summarization Network and Its Cross-Modal Text–Image Retrieval Application for Future Smart City Information Management Systems
by Wenhui Yu, Gengshen Wu and Jungong Han
Smart Cities 2025, 8(3), 96; https://doi.org/10.3390/smartcities8030096 - 6 Jun 2025
Viewed by 2886
Abstract
Urban documents like city planning reports and environmental data often feature complex charts and texts that require effective summarization tools, particularly in smart city management systems. These documents increasingly use graphical abstracts alongside textual summaries to enhance readability, making automated abstract generation crucial. [...] Read more.
Urban documents like city planning reports and environmental data often feature complex charts and texts that require effective summarization tools, particularly in smart city management systems. These documents increasingly use graphical abstracts alongside textual summaries to enhance readability, making automated abstract generation crucial. This study explores the application of summarization technology using scientific paper abstract generation as a case. The challenge lies in processing the longer multimodal content typical in research papers. To address this, a deep multimodal-interactive network is proposed for accurate document summarization. This model enhances structural information from both images and text, using a combination module to learn the correlation between them. The integrated model aids both summary generation and significant image selection. For the evaluation, a dataset is created that encompasses both textual and visual components along with structural information, such as the coordinates of the text and the layout of the images. While primarily focused on abstract generation and image selection, the model also supports text–image cross-modal retrieval. Experimental results on the proprietary dataset demonstrate that the proposed method substantially outperforms both extractive and abstractive baselines. In particular, it achieves a Rouge-1 score of 46.55, a Rouge-2 score of 16.13, and a Rouge-L score of 24.95, improving over the best comparison abstractive model (Pegasus: Rouge-1 43.63, Rouge-2 14.62, Rouge-L 24.46) by approximately 2.9, 1.5, and 0.5 points, respectively. Even against strong extractive methods like TextRank (Rouge-1 30.93) and LexRank (Rouge-1 29.63), our approach shows gains of over 15 points in Rouge-1, underlining its effectiveness in capturing both textual and visual semantics. These results suggest significant potential for smart city applications—such as accident scene documentation and automated environmental monitoring summaries—where rapid, accurate processing of urban multimodal data is essential. Full article
Show Figures

Figure 1

20 pages, 1163 KiB  
Article
A User-Centered Theoretical Model for Future Urban Transit Systems
by Gerald B. Imbugwa, Tom Gilb and Manuel Mazzara
Future Transp. 2025, 5(2), 62; https://doi.org/10.3390/futuretransp5020062 - 3 Jun 2025
Viewed by 341
Abstract
Growing populations and environmental issues are a burden for urban transport systems. Current research fails to offer multimodal integrated solutions maximizing time, cost, emissions, and satisfaction. We introduce the first optimization model integrating carpooling with micro-mobility for multi-leg routing in dynamic urban conditions [...] Read more.
Growing populations and environmental issues are a burden for urban transport systems. Current research fails to offer multimodal integrated solutions maximizing time, cost, emissions, and satisfaction. We introduce the first optimization model integrating carpooling with micro-mobility for multi-leg routing in dynamic urban conditions (peak, weather, accidents). In synthetically generated data calibrated with real-world trends, our framework performs up to 25% shorter travel times, 30% reduced peak-hour emissions, and sub-second computation for 40-node networks over single-mode baselines. The model’s scenario-aware flexibility and policy-controllable weights (λ1 to λ4) offer planners a scalable solution for sustainable mobility. The paper’s primary contribution is its integrated optimization framework integrating carpooling, micro-mobility, and multi-leg routing in dynamic urban conditions, an absent component in prior single-mode or static models. Our scenario-based analysis demonstrates up to 30% travel time and emissions reduction over stand-alone mobility solutions. Full article
(This article belongs to the Special Issue Feature Papers in Future Transportation)
Show Figures

Figure 1

30 pages, 7256 KiB  
Article
Networked Sensor-Based Adaptive Traffic Signal Control for Dynamic Flow Optimization
by Xinhai Wang and Wenhua Shao
Sensors 2025, 25(11), 3501; https://doi.org/10.3390/s25113501 - 1 Jun 2025
Viewed by 852
Abstract
With the rapid advancement of modern society, the demand for efficient and convenient transportation has increased significantly, making traffic congestion a pressing challenge that must be addressed in the process of urban expansion. To effectively mitigate this issue, we propose an approach that [...] Read more.
With the rapid advancement of modern society, the demand for efficient and convenient transportation has increased significantly, making traffic congestion a pressing challenge that must be addressed in the process of urban expansion. To effectively mitigate this issue, we propose an approach that leverages sensor networks to monitor real-time traffic data across road networks, enabling the precise characterization of traffic flow dynamics. This method integrates the Webster algorithm with a proportional–integral–derivative (PID) controller, whose parameters are optimized using a genetic algorithm, thereby facilitating scientifically informed traffic signal timing strategies for enhanced traffic regulation. Geomagnetic sensors are deployed along the roads at a ratio of 1:50–1:60, and radar sensors are deployed on the roadsides of key sections. This can effectively detect changes in road traffic flow and provide early warnings for possible accidents. The integration of the Webster method with a genetically optimized PID controller enables adaptive traffic signal timing with minimal energy consumption, effectively reducing road occupancy rates and mitigating congestion-related risks. Compared to conventional fixed-time control schemes, the proposed approach improves traffic regulation efficiency by 17.3%. Furthermore, it surpasses traditional real-time adaptive control strategies by 3% while significantly lowering communication energy expenditure. Notably, during peak hours, the genetically optimized PID controller enhances traffic control effectiveness by 13% relative to its non-optimized counterpart. A framework is proposed to improve the efficiency of road operation under the condition of random traffic changes. The k-means method is used to mark key roads, and weights are assigned based on this to coordinate and regulate traffic conditions. These findings underscore our contribution to the field of intelligent transportation systems by presenting a novel, energy-efficient, and highly effective traffic management solution. The proposed method not only advances the scientific understanding of dynamic traffic control but also offers a robust technical foundation for alleviating urban traffic congestion and improving overall travel efficiency. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

Back to TopTop