Severe Paediatric Trauma in Australia: A 5-Year Retrospective Epidemiological Analysis of High-Severity Fractures in Rural New South Wales
Abstract
1. Introduction
2. Materials and Methods
2.1. Design
2.2. Data Source
2.3. Data Safety
2.4. Ethics
3. Results
3.1. Combined Results
3.1.1. Hospital 1 Cohort
3.1.2. Hospital 2 Cohort
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valerio, G.; Gallè, F.; Mancusi, C.; Di Onofrio, V.; Colapietro, M.; Guida, P.; Liguori, G. Pattern of fractures across pediatric age groups: Analysis of individual and lifestyle factors. BMC Public Health 2010, 10, 656. [Google Scholar] [CrossRef]
- Baig, M.N. A Review of Epidemiological Distribution of Different Types of Fractures in Paediatric Age. Cureus 2017, 9, e1624. [Google Scholar] [CrossRef]
- Hedström, E.M.; Svensson, O.; Bergström, U.; Michno, P. Epidemiology of fractures in children and adolescents. Acta Orthop. 2010, 81, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Lese, A.; Sraj, S. Rural Orthopedics: Providing Orthopedic Care in Rural Communities. Orthopedics 2019, 42, e350–e355. [Google Scholar] [CrossRef] [PubMed]
- Bang, F.; McFaull, S.; Cheesman, J.; Do, M.T. The rural-urban gap: Differences in injury characteristics. Health Promot. Chronic Dis. Prev. Can. 2019, 39, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Wooldridge, A.; Carayon, P.; Hoonakker, P.; Hose, B.Z.; Ross, J.; Kohler, J.E.; Brazelton, T.; Eithun, B.; Kelly, M.M.; Dean, S.M.; et al. Complexity of the pediatric trauma care process: Implications for multi-level awareness. Cogn. Technol. Work 2019, 21, 397–416. [Google Scholar] [CrossRef] [PubMed]
- Dabash, S.; Prabhakar, G.; Potter, E.; Thabet, A.M.; Abdelgawad, A.; Heinrich, S. Management of growth arrest: Current practice and future directions. J. Clin. Orthop. Trauma 2018, 9, S58–S66. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.; Tyson, S.; Yorke, J.; Davis, N. The impact of injury: The experiences of children and families after a child’s traumatic injury. Clin. Rehabil. 2021, 35, 614–625. [Google Scholar] [CrossRef]
- Hedström, E.M.; Waernbaum, I. Incidence of fractures among children and adolescents in rural and urban communities-analysis based on 9,965 fracture events. Inj. Epidemiol. 2014, 1, 14. [Google Scholar] [CrossRef]
- Holter, J.A.; Jeppesen, E.; Dehli, T.; Ohm, E.; Wisborg, T. Urban-rural disparities in fatal and non-fatal paediatric injuries after trauma-A national retrospective cohort study. Injury 2024, 55, 111968. [Google Scholar] [CrossRef]
- Curtis, E.; Jones, R.; Tipene-Leach, D.; Walker, C.; Loring, B.; Paine, S.J.; Reid, P. Why cultural safety rather than cultural competency is required to achieve health equity: A literature review and recommended definition. Int. J. Equity Health 2019, 18, 174. [Google Scholar] [CrossRef]
- Gilbride, S.J.; Wild, C.; Wilson, D.R.; Svenson, L.W.; Spady, D.W. Socio-economic status and types of childhood injury in Alberta: A population based study. BMC Pediatr. 2006, 6, 30. [Google Scholar] [CrossRef]
- Danseco, E.R.; Miller, T.R.; Spicer, R.S. Incidence and costs of 1987-1994 childhood injuries: Demographic breakdowns. Pediatrics 2000, 105, E27. [Google Scholar] [CrossRef]
- Hammig, B.; Weatherly, J. Gender and geographic differences in intentional and unintentional injury mortality among children in Illinois, 1988–1998. Inj. Control Saf. Promot. 2003, 10, 247–250. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.K.; Azuine, R.E.; Siahpush, M.; Kogan, M.D. All-cause and cause-specific mortality among US youth: Socioeconomic and rural-urban disparities and international patterns. J. Urban Health 2013, 90, 388–405. [Google Scholar] [CrossRef] [PubMed]
- Mihalicz, D.; Phillips, L.; Bratu, I. Urban vs rural pediatric trauma in Alberta: Where can we focus on prevention? J. Pediatr. Surg. 2010, 45, 908–911. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, C.S.; Adams, S.; Soundappan, S.S.V.; Albanese, B.; Brown, J. Paediatric off-road vehicle injury in rural and regional Australia. Aust. J. Rural Health 2021, 29, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Toida, C.; Muguruma, T.; Gakumazawa, M.; Shinohara, M.; Abe, T.; Takeuchi, I.; Morimura, N. Ten-Year in-Hospital Mortality Trends among Paediatric Injured Patients in Japan: A Nationwide Observational Study. J. Clin. Med. 2020, 9, 3273. [Google Scholar] [CrossRef]
- Victorian Injury Surveillance Unit (VISU): Accident Research Centre: Monash University. Available online: https://www.monash.edu/muarc/research/research-areas/home-and-community/visu (accessed on 25 June 2025).
- Trauma, The Children’s Hospital at Westmead Sydney Children’s Hospitals Network. [Updated February 2024]. Available online: https://www.schn.health.nsw.gov.au/trauma-childrens-hospital-westmead#referral-process-for-clinicians-1 (accessed on 25 June 2025).
- Major Trauma in NSW 2021–2022 Institute of Trauma and Injury Management: NSW Agency for Clinical Innovation. 2024. Available online: https://aci.health.nsw.gov.au/networks/trauma/data/reports#major-trauma (accessed on 25 June 2025).
- Neurotrauma in Rural NSW 2016–2021 Institute of Trauma and Injury Management: NSW Agency for Clinical Innovation. 2025. Available online: https://aci.health.nsw.gov.au/networks/trauma/data/reports#neurotrauma (accessed on 25 June 2025).
- Murphy, G.T.; Tong, F.; Rozenbroek, P.; Mostofizadeh, D.; Sefton, A. Does distance to hospital and interhospital transfer negatively impact time to definitive fixation and outcomes in patients with fractured neck of femur in a rural setting? Aust. J. Rural Health 2025, 33, e13200. [Google Scholar] [CrossRef]
Gender | Hospital 1 | Hospital 2 | Total |
---|---|---|---|
Male | 55 (48.7) | 58 (51.3) | 113 (75.3) |
Female | 15 (40.5) | 22 (59.5) | 37 (24.7) |
Age (years) | |||
0–4 | 3 (33.3) | 6 (66.7) | 9 (6.0) |
5–9 | 19 (50.0) | 19 (50.0) | 38 (25.3) |
10–14 | 33 (51.6) | 31 (48.4) | 64 (42.7) |
15–19 | 15 (38.5) | 24 (61.5) | 39 (26.0) |
Triage Category | |||
Resuscitation-1 | 0 (0.0) | 18 (100.0) | 18 (12.0) |
Emergency-2 | 70 (53.0) | 62 (47.0) | 132 (88.0) |
Mode of Arrival | |||
Air Ambulance | 1 (16.7) | 5 (83.3) | 6 (4.0) |
Road Ambulance | 33 (45.8) | 39 (54.2) | 72 (48.0) |
Private Car | 36 (50.7) | 35 (49.3) | 71 (47.3) |
Upper Limb (Closed) | Proximal | Shaft | Distal | Total |
---|---|---|---|---|
Clavicle | 2 (7.7) | 20 (76.9) | 4 (15.4) | 26 (17.3) |
Humerus | 6 (42.9) | 0 (0.0) | 8 (57.1) | 14 (9.3) |
Radius | 0 (0.0) | 3 (18.8) | 13 (81.2) | 16 (10.7) |
Ulna | 1 (100.0) | 0 (0.0) | 0 (0.0) | 1 (0.7) |
Both Radius and Ulna | 1 (3.9) | 10 (38.5) | 15 (57.7) | 26 (17.3) |
Upper Limb (open) | ||||
Humerus | 0 (0.0) | 0 (0.0) | 1 (100.0) | 1 (0.7) |
Both Radius and Ulna | 0 (0.0) | 3 (100.0) | 0 (0.0) | 3 (2.0) |
Lower Limb (closed) | ||||
Femur | 2 (13.3) | 11 (73.3) | 2 (13.3) | 15 (10.0) |
Tibia | 2 (20.0) | 5 (50.0) | 3 (30.0) | 10 (6.7) |
Fibula | 0 (0.0) | 2 (100.0) | 0 (0.0) | 2 (1.3) |
Both Tibia and Fibula | 2 (28.6) | 2 (28.6) | 3 (42.9) | 7 (4.7) |
Lower Limb (open) | ||||
Tibia | 0 (0.0) | 1 (100.0) | 0 (0.0) | 1 (0.7) |
Both Tibia and Fibula | 0 (0.0) | 2 (50.0) | 2 (50.0) | 4 (2.7) |
Spine | C-Spine | T-Spine | L-Spine | Sacrum | Total |
---|---|---|---|---|---|
3 (27.3) | 5 (45.5) | 1 (9.1) | 2 (18.2) | 11 (7.3) | |
Hand | Prox Phalanx | Mid Phalanx | Open Phalanx | ||
1 (16.7) | 4 (66.7) | 1 (16.7) | 6 (4.0) | ||
Foot | Ankle | Cuniform | Calcaneus | Navicular | |
1 (20.0) | 1 (20.0) | 2 (40.0) | 1 (20.0) | 5 (3.3) | |
Pelvis | Multiple | ||||
2 (100.0) | 2 (1.3) |
Mechanism of Injury | 0–4 Yrs | 5–9 Yrs | 10–14 Yrs | 15–19 Yrs | Total |
---|---|---|---|---|---|
MBA | 0 (0.0) | 10 (26.3) | 33 (51.6) | 18 (46.2) | 61 (40.7) |
Falls related | 4 (44.4) | 8 (21.1) | 10 (15.6) | 6 (15.4) | 28 (18.6) |
MVA | 2 (22.2) | 3 (7.9) | 6 (9.4) | 8 (20.5) | 19 (12.7) |
Playground related | 1 (11.1) | 11 (29.0) | 6 (9.4) | 0 (0.0) | 18 (12.0) |
Equestrian related | 0 (0.0) | 2 (5.3) | 6 (9.4) | 0 (0.0) | 8 (5.3) |
Bicycle related | 1 (11.1) | 2 (5.3) | 1 (1.6) | 2 (5.1) | 6 (4.0) |
Crush Injury | 1 (11.1) | 0 (0.0) | 1 (1.6) | 2 (5.1) | 4 (2.7) |
Sports related | 0 (0.0) | 1 (2.6) | 1 (1.6) | 1 (2.6) | 3 (2.0) |
Aquatic Injury | 0 (0.0) | 1 (2.6) | 0 (0.0) | 2 (5.1) | 3 (2.0) |
Total | 9 | 38 | 64 | 39 | 150 |
Fracture Category | Most Common Mechanism of Injury | Number n (%) |
---|---|---|
Spine | MBA | 8 (72.7) |
Humerus | =Playground related | 4 (26.7) |
=Equestrian related | 4 (26.7) | |
Radius | MBA | 10 (62.5) |
Radius + Ulna | Playground related | 5 (17.2) |
Ulna | nil | - |
Clavicle | MBA | 15 (57.7) |
Femur | MBA | 4 (26.7) |
Tibia | MBA | 4 (36.4) |
Fibula | nil | - |
Tibia + Fibula | MBA | 5 (45.5) |
Hand | nil | - |
Foot | MBA | 2 (40.0) |
Pelvis | MVA | 2 (100.0) |
Fracture Category | Non-op | CR | CR + KW | ORIF | IM Nail | Transfer Required |
---|---|---|---|---|---|---|
Spine | 7 (63.6) | - | - | - | - | 4 (36.4) |
Humerus | 6 (40.0) | - | 5 (33.3) | 3 (20.0) | 1 (6.7) | - |
Radius | 4 (25.0) | 8 (50.0) | 2 (12.5) | 2 (12.5) | - | - |
Radius + Ulna | 3 (10.4) | 15 (51.7) | 3 (10.4) | 4 (13.8) | 3 (10.4) | 1 (3.5) |
Ulna | - | 1 (100.0) | - | - | - | - |
Clavicle | 25 (96.8) | - | - | 1 (3.9) | - | - |
Femur | 7 (46.7) | - | - | - | 8 (53.3) | - |
Tibia | 4 (36.4) | 5 (45.5) | - | 2 (18.2) | - | - |
Tibia + Fibula | - | 6 (54.5) | 2 (18.2) | 3 (27.3) | - | - |
Fibula | 2 (100.0) | - | - | - | - | - |
Hand | 7 (100.0) | - | - | - | - | - |
Foot | 4 (100.0) | - | - | 2 (33.3) | - | - |
Pelvis | 1 (50.0) | - | - | - | - | 1 (50.0) |
TOTAL | Non-op | Operative | Transfer Required | |||
70 (46.7) | 74 (49.3) | 6 (4.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostofi Zadeh Haghighi, D.L.; Spasojevic, M.; Brown, A. Severe Paediatric Trauma in Australia: A 5-Year Retrospective Epidemiological Analysis of High-Severity Fractures in Rural New South Wales. J. Clin. Med. 2025, 14, 4868. https://doi.org/10.3390/jcm14144868
Mostofi Zadeh Haghighi DL, Spasojevic M, Brown A. Severe Paediatric Trauma in Australia: A 5-Year Retrospective Epidemiological Analysis of High-Severity Fractures in Rural New South Wales. Journal of Clinical Medicine. 2025; 14(14):4868. https://doi.org/10.3390/jcm14144868
Chicago/Turabian StyleMostofi Zadeh Haghighi, David Leonard, Milos Spasojevic, and Anthony Brown. 2025. "Severe Paediatric Trauma in Australia: A 5-Year Retrospective Epidemiological Analysis of High-Severity Fractures in Rural New South Wales" Journal of Clinical Medicine 14, no. 14: 4868. https://doi.org/10.3390/jcm14144868
APA StyleMostofi Zadeh Haghighi, D. L., Spasojevic, M., & Brown, A. (2025). Severe Paediatric Trauma in Australia: A 5-Year Retrospective Epidemiological Analysis of High-Severity Fractures in Rural New South Wales. Journal of Clinical Medicine, 14(14), 4868. https://doi.org/10.3390/jcm14144868