Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (935)

Search Parameters:
Keywords = unmanned aircraft

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4519 KiB  
Article
Aerial Autonomy Under Adversity: Advances in Obstacle and Aircraft Detection Techniques for Unmanned Aerial Vehicles
by Cristian Randieri, Sai Venkata Ganesh, Rayappa David Amar Raj, Rama Muni Reddy Yanamala, Archana Pallakonda and Christian Napoli
Drones 2025, 9(8), 549; https://doi.org/10.3390/drones9080549 - 4 Aug 2025
Viewed by 164
Abstract
Unmanned Aerial Vehicles (UAVs) have rapidly grown into different essential applications, including surveillance, disaster response, agriculture, and urban monitoring. However, for UAVS to steer safely and autonomously, the ability to detect obstacles and nearby aircraft remains crucial, especially under hard environmental conditions. This [...] Read more.
Unmanned Aerial Vehicles (UAVs) have rapidly grown into different essential applications, including surveillance, disaster response, agriculture, and urban monitoring. However, for UAVS to steer safely and autonomously, the ability to detect obstacles and nearby aircraft remains crucial, especially under hard environmental conditions. This study comprehensively analyzes the recent landscape of obstacle and aircraft detection techniques tailored for UAVs acting in difficult scenarios such as fog, rain, smoke, low light, motion blur, and disorderly environments. It starts with a detailed discussion of key detection challenges and continues with an evaluation of different sensor types, from RGB and infrared cameras to LiDAR, radar, sonar, and event-based vision sensors. Both classical computer vision methods and deep learning-based detection techniques are examined in particular, highlighting their performance strengths and limitations under degraded sensing conditions. The paper additionally offers an overview of suitable UAV-specific datasets and the evaluation metrics generally used to evaluate detection systems. Finally, the paper examines open problems and coming research directions, emphasising the demand for lightweight, adaptive, and weather-resilient detection systems appropriate for real-time onboard processing. This study aims to guide students and engineers towards developing stronger and intelligent detection systems for next-generation UAV operations. Full article
Show Figures

Figure 1

13 pages, 733 KiB  
Proceeding Paper
AI-Based Assistant for SORA: Approach, Interaction Logic, and Perspectives for Cybersecurity Integration
by Anton Puliyski and Vladimir Serbezov
Eng. Proc. 2025, 100(1), 65; https://doi.org/10.3390/engproc2025100065 - 1 Aug 2025
Viewed by 178
Abstract
This article presents the design, development, and evaluation of an AI-based assistant tailored to support users in the application of the Specific Operations Risk Assessment (SORA) methodology for unmanned aircraft systems. Built on a customized language model, the assistant was trained using system-level [...] Read more.
This article presents the design, development, and evaluation of an AI-based assistant tailored to support users in the application of the Specific Operations Risk Assessment (SORA) methodology for unmanned aircraft systems. Built on a customized language model, the assistant was trained using system-level instructions with the goal of translating complex regulatory concepts into clear and actionable guidance. The approach combines structured definitions, contextualized examples, constrained response behavior, and references to authoritative sources such as JARUS and EASA. Rather than substituting expert or regulatory roles, the assistant provides process-oriented support, helping users understand and complete the various stages of risk assessment. The model’s effectiveness is illustrated through practical interaction scenarios, demonstrating its value across educational, operational, and advisory use cases, and its potential to contribute to the digital transformation of safety and compliance processes in the drone ecosystem. Full article
Show Figures

Figure 1

29 pages, 4456 KiB  
Article
Effect of Design on Human Injury and Fatality Due to Impacts by Small UAS
by Borrdephong Rattanagraikanakorn, Henk A. P. Blom, Derek I. Gransden, Michiel Schuurman, Christophe De Wagter, Alexei Sharpanskykh and Riender Happee
Designs 2025, 9(4), 88; https://doi.org/10.3390/designs9040088 - 28 Jul 2025
Viewed by 298
Abstract
Although Unmanned Aircraft Systems (UASs) offer valuable services, they also introduce certain risks—particularly to individuals on the ground—referred to as third-party risk (TPR). In general, ground-level TPR tends to rise alongside the density of people who might use these services, leading current regulations [...] Read more.
Although Unmanned Aircraft Systems (UASs) offer valuable services, they also introduce certain risks—particularly to individuals on the ground—referred to as third-party risk (TPR). In general, ground-level TPR tends to rise alongside the density of people who might use these services, leading current regulations to heavily restrict UAS operations in populated regions. These operational constraints hinder the ability to gather safety insights through the conventional method of learning from real-world incidents. To address this, a promising alternative is to use dynamic simulations that model UAS collisions with humans, providing critical data to inform safer UAS design. In the automotive industry, the modelling and simulation of car crashes has been well developed. For small UAS, this dynamical modelling and simulation approach has focused on the effect of the varying weight and kinetic energy of the UAS, as well as the geometry and location of the impact on a human body. The objective of this research is to quantify the effects of UAS material and shape on-ground TPR through dynamical modelling and simulation. To accomplish this objective, five camera–drone types are selected that have similar weights, although they differ in terms of airframe structure and materials. For each of these camera–drones, a dynamical model is developed to simulate impact, with a biomechanical human body model validated for impact. The injury levels and probability of fatality (PoF) results, obtained through conducting simulations with these integrated dynamical models, are significantly different for the camera–drone types. For the uncontrolled vertical impact of a 1.2 kg UAS at 18 m/s on a model of a human head, differences in UAS designs even yield an order in magnitude difference in PoF values. Moreover, the highest PoF value is a factor of 2 lower than the parametric PoF models used in standing regulation. In the same scenario for UAS types with a weight of 0.4 kg, differences in UAS designs even considered yield an order when regarding the magnitude difference in PoF values. These findings confirm that the material and shape design of a UAS plays an important role in reducing ground TPR, and that these effects can be addressed by using dynamical modelling and simulation during UAS design. Full article
(This article belongs to the Collection Editorial Board Members’ Collection Series: Drone Design)
Show Figures

Figure 1

15 pages, 7636 KiB  
Article
Rapid Prediction of High-Resolution 3D Ship Airwake in the Glide Path Based on CFD, BP Neural Network, and DWL
by Qingsong Liu, Gan Ren, Dingfu Zhou, Bo Liu and Zida Li
Appl. Sci. 2025, 15(15), 8336; https://doi.org/10.3390/app15158336 - 26 Jul 2025
Viewed by 228
Abstract
To meet the requirements of the high spatiotemporal three-dimensional (3D) airflow field within the glide path corridor during carrier-based aircraft/unmanned aerial vehicles (UAVs) landings, this paper proposes a prediction method for high spatiotemporal resolution 3D ship airwake along the glide path by integrating [...] Read more.
To meet the requirements of the high spatiotemporal three-dimensional (3D) airflow field within the glide path corridor during carrier-based aircraft/unmanned aerial vehicles (UAVs) landings, this paper proposes a prediction method for high spatiotemporal resolution 3D ship airwake along the glide path by integrating computational fluid dynamics (CFD), backpropagation (BP) neural network, and Doppler wind lidar (DWL). Firstly, taking the conceptual design aircraft carrier model as the research object, CFD numerical simulations of the ship airwake within the glide path region are carried out using the Poly-Hexcore grid and the detached eddy simulation (DES)/the Reynolds-averaged Navier–Stokes (RANS) turbulence models. Then, using the high spatial resolution ship airwake along the glide path obtained from steady RANS computations under different inflow conditions as a sample dataset, the BP neural network prediction models were trained and optimized. Along the ideal glide path within 200 m behind the stern, the correlation coefficients between the predicted results of the BP neural network and the headwind, crosswind, and vertical wind of the testing samples exceeded 0.95, 0.91, and 0.82, respectively. Finally, using the inflow speed and direction with high temporal resolution from the bow direction obtained by the shipborne DWL as input, the BP prediction models can achieve accurate prediction of the 3D ship airwake along the glide path with high spatiotemporal resolution (3 m, 3 Hz). Full article
Show Figures

Figure 1

36 pages, 11687 KiB  
Article
Macroscopic-Level Collaborative Optimization Framework for IADS: Multiple-Route Terminal Maneuvering Area Scheduling Problem
by Chaoyu Xia, Minghua Hu, Xiuying Zhu, Yi Wen, Junqing Wu and Changbo Hou
Aerospace 2025, 12(7), 639; https://doi.org/10.3390/aerospace12070639 - 18 Jul 2025
Viewed by 178
Abstract
The terminal maneuvering area (TMA) serves as a critical transition zone between upper enroute airways and airports, representing one of the most complex regions for managing high volumes of arrival and departure traffic. This paper presents the multi-route TMA scheduling problem as an [...] Read more.
The terminal maneuvering area (TMA) serves as a critical transition zone between upper enroute airways and airports, representing one of the most complex regions for managing high volumes of arrival and departure traffic. This paper presents the multi-route TMA scheduling problem as an optimization challenge aimed at optimizing TMA interventions, such as rerouting, speed control, time-based metering, dynamic minimum time separation, and holding procedures; the objective function minimizes schedule deviations and the accumulated holding time. Furthermore, the problem is formulated as a mixed-integer linear program (MILP) to facilitate finding solutions. A rolling horizon control (RHC) dynamic optimization framework is also introduced to decompose the large-scale problem into manageable subproblems for iterative resolution. To demonstrate the applicability and effectiveness of the proposed scheduling models, a hub airport—Chengdu Tianfu International Airport (ICAO code: ZUTF) in the Cheng-Yu Metroplex—is selected for validation. Numerical analyses confirm the superiority of the proposed models, which are expected to reduce aircraft delays, shorten airborne and holding times, and improve airspace resource utilization. This study provides intelligent decision support and engineering design ideas for the macroscopic-level collaborative optimization framework of the Integrated Arrival–Departure and Surface (IADS) system. Full article
(This article belongs to the Collection Air Transportation—Operations and Management)
Show Figures

Figure 1

14 pages, 845 KiB  
Article
Cross-Path Planning of UAV Cluster Low-Altitude Flight Based on Inertial Navigation Combined with GPS Localization
by Xiancheng Yang, Ming Zhang, Peihui Yan, Qu Wang, Dongpeng Xie and Yuntian Brian Bai
Electronics 2025, 14(14), 2877; https://doi.org/10.3390/electronics14142877 - 18 Jul 2025
Viewed by 191
Abstract
To address the challenges of complex low-altitude flight environments for UAVs, where numerous obstacles often lead to GPS signal obstruction and multipath effects, this study proposes an integrated inertial navigation and GPS positioning approach for coordinated cross-path planning in drone swarms. The methodology [...] Read more.
To address the challenges of complex low-altitude flight environments for UAVs, where numerous obstacles often lead to GPS signal obstruction and multipath effects, this study proposes an integrated inertial navigation and GPS positioning approach for coordinated cross-path planning in drone swarms. The methodology involves the following: (1) discretizing continuous 3D airspace into grid cells using occupancy grid mapping to construct an environmental model; (2) analyzing dynamic flight characteristics through attitude angle variations in a 3D Cartesian coordinate system; and (3) implementing collaborative state updates and global positioning through fused inertial–GPS navigation. By incorporating Cramér–Rao lower bound optimization, the system achieves effective cross-path planning for drone formations. Experimental results demonstrate a 98.35% mission success rate with inter-drone navigation time differences maintained below 0.5 s, confirming the method’s effectiveness in enabling synchronized swarm operations while maintaining safe distances during cooperative monitoring and low-altitude flight missions. This approach demonstrates significant advantages in coordinated cross-path planning for UAV clusters. Full article
Show Figures

Figure 1

36 pages, 9024 KiB  
Article
Energy Optimal Trajectory Planning for the Morphing Solar-Powered Unmanned Aerial Vehicle Based on Hierarchical Reinforcement Learning
by Tichao Xu, Wenyue Meng and Jian Zhang
Drones 2025, 9(7), 498; https://doi.org/10.3390/drones9070498 - 15 Jul 2025
Viewed by 383
Abstract
Trajectory planning is crucial for solar aircraft endurance. The multi-wing morphing solar aircraft can enhance solar energy acquisition through wing deflection, which simultaneously incurs aerodynamic losses, complicating energy coupling and challenging existing planning methods in efficiency and long-term optimization. This study presents an [...] Read more.
Trajectory planning is crucial for solar aircraft endurance. The multi-wing morphing solar aircraft can enhance solar energy acquisition through wing deflection, which simultaneously incurs aerodynamic losses, complicating energy coupling and challenging existing planning methods in efficiency and long-term optimization. This study presents an energy-optimal trajectory planning method based on Hierarchical Reinforcement Learning for morphing solar-powered Unmanned Aerial Vehicles (UAVs), exemplified by a Λ-shaped aircraft. This method aims to train a hierarchical policy to autonomously track energy peaks. It features a top-level decision policy selecting appropriate bottom-level policies based on energy factors, which generate control commands such as thrust, attitude angles, and wing deflection angles. Shaped properly by reward functions and training conditions, the hierarchical policy can enable the UAV to adapt to changing flight conditions and achieve autonomous flight with energy maximization. Evaluated through 24 h simulation flights on the summer solstice, the results demonstrate that the hierarchical policy can appropriately switch its bottom-level policies during daytime and generate real-time control commands that satisfy optimal energy power requirements. Compared with the minimum energy consumption benchmark case, the proposed hierarchical policy achieved 0.98 h more of full-charge high-altitude cruise duration and 1.92% more remaining battery energy after 24 h, demonstrating superior energy optimization capabilities. In addition, the strong adaptability of the hierarchical policy to different quarterly dates was demonstrated through generalization ability testing. Full article
Show Figures

Figure 1

8 pages, 1503 KiB  
Proceeding Paper
A Wind Tunnel Study of the Aerodynamic Characteristics of Wings with Arc-Shaped Wingtips
by Stanimir Penchev and Hristian Panayotov
Eng. Proc. 2025, 100(1), 28; https://doi.org/10.3390/engproc2025100028 - 11 Jul 2025
Viewed by 167
Abstract
Wingtip devices like winglets and other types have been created to improve the aerodynamic efficiency of aircraft based on minimizing the induced drag of tip vortices. This study aims to investigate the aerodynamic characteristics of these devices at low Reynolds numbers. In the [...] Read more.
Wingtip devices like winglets and other types have been created to improve the aerodynamic efficiency of aircraft based on minimizing the induced drag of tip vortices. This study aims to investigate the aerodynamic characteristics of these devices at low Reynolds numbers. In the present study, the models of a basic non-swept tapered wing and a wing with arc-shaped wingtips are examined. For this purpose, the basic model is equipped with replaceable tips with different geometries. The measurements are performed in a low-speed wind tunnel at a Reynolds number of around 100,000. The analysis of the collected data shows that the best aerodynamic characteristics have a configuration with a 45-degree dihedral angle at the tips of the wing. These results can be used in the conceptual design of small unmanned aerial vehicles (UAVs) to improve their performance in terms of range and endurance. Full article
Show Figures

Figure 1

22 pages, 8689 KiB  
Article
Transfer Learning-Based Accurate Detection of Shrub Crown Boundaries Using UAS Imagery
by Jiawei Li, Huihui Zhang and David Barnard
Remote Sens. 2025, 17(13), 2275; https://doi.org/10.3390/rs17132275 - 3 Jul 2025
Viewed by 368
Abstract
The accurate delineation of shrub crown boundaries is critical for ecological monitoring, land management, and understanding vegetation dynamics in fragile ecosystems such as semi-arid shrublands. While traditional image processing techniques often struggle with overlapping canopies, deep learning methods, such as convolutional neural networks [...] Read more.
The accurate delineation of shrub crown boundaries is critical for ecological monitoring, land management, and understanding vegetation dynamics in fragile ecosystems such as semi-arid shrublands. While traditional image processing techniques often struggle with overlapping canopies, deep learning methods, such as convolutional neural networks (CNNs), offer promising solutions for precise segmentation. This study employed high-resolution imagery captured by unmanned aircraft systems (UASs) throughout the shrub growing season and explored the effectiveness of transfer learning for both semantic segmentation (Attention U-Net) and instance segmentation (Mask R-CNN). It utilized pre-trained model weights from two previous studies that originally focused on tree crown delineation to improve shrub crown segmentation in non-forested areas. Results showed that transfer learning alone did not achieve satisfactory performance due to differences in object characteristics and environmental conditions. However, fine-tuning the pre-trained models by unfreezing additional layers improved segmentation accuracy by around 30%. Fine-tuned pre-trained models show limited sensitivity to shrubs in the early growing season (April to June) and improved performance when shrub crowns become more spectrally unique in late summer (July to September). These findings highlight the value of combining pre-trained models with targeted fine-tuning to enhance model adaptability in complex remote sensing environments. The proposed framework demonstrates a scalable solution for ecological monitoring in data-scarce regions, supporting informed land management decisions and advancing the use of deep learning for long-term environmental monitoring. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

68 pages, 10407 KiB  
Review
Bioinspired Morphing in Aerodynamics and Hydrodynamics: Engineering Innovations for Aerospace and Renewable Energy
by Farzeen Shahid, Maqusud Alam, Jin-Young Park, Young Choi, Chan-Jeong Park, Hyung-Keun Park and Chang-Yong Yi
Biomimetics 2025, 10(7), 427; https://doi.org/10.3390/biomimetics10070427 - 1 Jul 2025
Viewed by 1372
Abstract
Bioinspired morphing offers a powerful route to higher aerodynamic and hydrodynamic efficiency. Birds reposition feathers, bats extend compliant membrane wings, and fish modulate fin stiffness, tailoring lift, drag, and thrust in real time. To capture these advantages, engineers are developing airfoils, rotor blades, [...] Read more.
Bioinspired morphing offers a powerful route to higher aerodynamic and hydrodynamic efficiency. Birds reposition feathers, bats extend compliant membrane wings, and fish modulate fin stiffness, tailoring lift, drag, and thrust in real time. To capture these advantages, engineers are developing airfoils, rotor blades, and hydrofoils that actively change shape, reducing drag, improving maneuverability, and harvesting energy from unsteady flows. This review surveys over 296 studies, with primary emphasis on literature published between 2015 and 2025, distilling four biological archetypes—avian wing morphing, bat-wing elasticity, fish-fin compliance, and tubercled marine flippers—and tracing their translation into morphing aircraft, ornithopters, rotorcraft, unmanned aerial vehicles, and tidal or wave-energy converters. We compare experimental demonstrations and numerical simulations, identify consensus performance gains (up to 30% increase in lift-to-drag ratio, 4 dB noise reduction, and 15% boost in propulsive or power-capture efficiency), and analyze materials, actuation, control strategies, certification, and durability as the main barriers to deployment. Advances in multifunctional composites, electroactive polymers, and model-based adaptive control have moved prototypes from laboratory proof-of-concept toward field testing. Continued collaboration among biology, materials science, control engineering, and fluid dynamics is essential to unlock robust, scalable morphing technologies that meet future efficiency and sustainability targets. Full article
Show Figures

Figure 1

26 pages, 6535 KiB  
Article
Aerodynamic Optimization of Morphing Airfoil by PCA and Optimization-Guided Data Augmentation
by Ao Guo, Jing Wang, Miao Zhang and Han Wang
Aerospace 2025, 12(7), 599; https://doi.org/10.3390/aerospace12070599 - 1 Jul 2025
Viewed by 342
Abstract
An aircraft that has been carefully optimized for a single flight condition will tend to perform poorly at other flight conditions. For aircraft such as long-haul airliners, this is not necessarily a problem, since the cruise condition so heavily dominates a typical mission. [...] Read more.
An aircraft that has been carefully optimized for a single flight condition will tend to perform poorly at other flight conditions. For aircraft such as long-haul airliners, this is not necessarily a problem, since the cruise condition so heavily dominates a typical mission. However, other aircraft, such as Unmanned Aerial Vehicles (UAVs), may be expected to perform well at a wide range of flight conditions. Morphing systems may be a solution to this problem, as they allow the aircraft to adapt its shape to produce optimum performance at each flight condition. This study proposes an aerodynamic optimization framework for morphing airfoils by integrating Principal Component Analysis (PCA) for geometric dimensionality reduction and deep learning (DL) for surrogate modeling, alongside an optimization-guided data augmentation strategy. By employing PCA, the geometric dimensionality of airfoil surfaces is reduced from 24 to 18 design variables while preserving 100% shape fidelity, thus establishing a compressed morphing parameterization space. A Multi-Island Genetic Algorithm (MIGA) efficiently explores the reduced design space, while iterative retraining of the surrogate model enhances prediction accuracy, particularly in high-performance regions. Additionally, Shapley Additive Explanation (SHAP) analysis reveals interpretable correlations between principal component modes and aerodynamic performances. Experimental results show that the optimized airfoil achieves a 54.66% increase in low-speed cruise lift-to-drag ratio and 10.90% higher climb lift compared to the baseline. Overall, the proposed framework not only enhances the adaptability of morphing airfoils across various low-speed flight conditions but also facilitates targeted surrogate refinement and efficient data acquisition in high-performance regions. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

18 pages, 6240 KiB  
Article
Estimation of Near-Surface Loosened Rock Mass Zones in Mountainous Areas by Using Helicopter-Borne and Drone-Borne Electromagnetic Method for Landslide Susceptibility Analysis
by Atsuko Nonomura, Shuichi Hasegawa, Akira Jomori, Minoru Okumura, Haruki Ojyuku, Hiroaki Hoshino, Tetsuya Toyama, Atsuyoshi Jomori and Yoshiyuki Kaneda
Remote Sens. 2025, 17(13), 2184; https://doi.org/10.3390/rs17132184 - 25 Jun 2025
Viewed by 248
Abstract
Mapping methods for loosened rock mass in mountainous areas are useful for risk management of landslide disasters. Depending on the type of aircraft and sensor, there are several different aerial electromagnetic measurement methods for estimating subsurface structures. Helicopter-borne electromagnetic methods are commonly used. [...] Read more.
Mapping methods for loosened rock mass in mountainous areas are useful for risk management of landslide disasters. Depending on the type of aircraft and sensor, there are several different aerial electromagnetic measurement methods for estimating subsurface structures. Helicopter-borne electromagnetic methods are commonly used. Recently, unmanned aerial vehicles (drones) have been used. By understanding the characteristics of each method, it is possible to choose a suitable method for the target of observation. In this study, resistivity from the frequency-domain helicopter-borne electromagnetic (HEM) method and resistivity from the time-domain drone-grounded electrical-source airborne transient electromagnetic (D-GREATEM) method were compared to estimate loosened zones in mountainous areas. The resistivity cross-sectional profiles were largely similar, but differences were observed near the surface in some zones. The comparative analysis of both methods with outcrop observations revealed that D-GREATEM resistivity data can detect both loosened rock mass from the surface to an approximately 30 m depth located above the groundwater and saturated rock mass. It is because D-GREATEM resistivity was obtained by assuming five layers from the surface to a depth of 40 m. This indicates that D-GREATEM is suitable for estimating near-surface loosened rock mass distribution in the valleys. However, D-GREATEM has a limited observation range. Therefore, it was concluded that the D-GREATEM method is suitable for a detailed and localized estimation of landslide susceptibility near the surface, whereas the HEM method is suitable for wide-area analysis. Full article
(This article belongs to the Special Issue Remote Sensing and Geophysics Methods for Geomorphology Research)
Show Figures

Figure 1

25 pages, 6723 KiB  
Article
Parametric Modeling and Evaluation of Departure and Arrival Air Routes for Urban Logistics UAVs
by Zhongming Li, Yifei Zhao and Xinhui Ren
Drones 2025, 9(7), 454; https://doi.org/10.3390/drones9070454 - 23 Jun 2025
Viewed by 380
Abstract
With the rapid development of the low-altitude economy, the intensive take-offs and landings of Unmanned Aerial Vehicles (UAVs) performing logistics transport tasks in urban areas have introduced significant safety risks. To reduce the likelihood of collisions, logistics operators—such as Meituan, Antwork, and Fengyi—have [...] Read more.
With the rapid development of the low-altitude economy, the intensive take-offs and landings of Unmanned Aerial Vehicles (UAVs) performing logistics transport tasks in urban areas have introduced significant safety risks. To reduce the likelihood of collisions, logistics operators—such as Meituan, Antwork, and Fengyi—have established fixed departure and arrival air routes above vertiports and designed fixed flight air routes between vertiports to guide UAVs to fly along predefined paths. In the complex and constrained low-altitude urban environment, the design of safe and efficient air routes has undoubtedly become a key enabler for successful operations. This research, grounded in both current theoretical research and real-world logistics UAV operations, defines the concept of UAV logistics air routes and presents a comprehensive description of their structure. A parametric model for one-way round-trip logistics air routes is proposed, along with an air route evaluation model and optimization method. Based on this framework, the research identifies four basic configurations that are commonly adopted for one-way round-trip operations. These configurations can be further improved into two optimized configurations with more balanced performance across multiple metrics. Simulation results reveal that Configuration 1 is only suitable for small-scale transport; as the number of delivery tasks increases, delays grow linearly. When the task volume exceeds 100 operations per 30 min, Configurations 2, 3, and 4 reduce average delay by 88.9%, 89.2%, and 93.3%, respectively, compared with Configuration 1. The research also finds that flight speed along segments and the cruise segment capacity have the most significant influence on delays. Properly increasing these two parameters can lead to a 28.4% reduction in the average delay. The two optimized configurations, derived through further refinement, show better trade-offs between average delay and flight time than any of the fundamental configurations. This research not only provides practical guidance for the planning and design of UAV logistics air routes but also lays a methodological foundation for future developments in UAV scheduling and air route network design. Full article
(This article belongs to the Section Innovative Urban Mobility)
Show Figures

Figure 1

27 pages, 1880 KiB  
Article
UAV-Enabled Video Streaming Architecture for Urban Air Mobility: A 6G-Based Approach Toward Low-Altitude 3D Transportation
by Liang-Chun Chen, Chenn-Jung Huang, Yu-Sen Cheng, Ken-Wen Hu and Mei-En Jian
Drones 2025, 9(6), 448; https://doi.org/10.3390/drones9060448 - 18 Jun 2025
Viewed by 693
Abstract
As urban populations expand and congestion intensifies, traditional ground transportation struggles to satisfy escalating mobility demands. Unmanned Electric Vertical Take-Off and Landing (eVTOL) aircraft, as a key enabler of Urban Air Mobility (UAM), leverage low-altitude airspace to alleviate ground traffic while offering environmentally [...] Read more.
As urban populations expand and congestion intensifies, traditional ground transportation struggles to satisfy escalating mobility demands. Unmanned Electric Vertical Take-Off and Landing (eVTOL) aircraft, as a key enabler of Urban Air Mobility (UAM), leverage low-altitude airspace to alleviate ground traffic while offering environmentally sustainable solutions. However, supporting high bandwidth, real-time video applications, such as Virtual Reality (VR), Augmented Reality (AR), and 360° streaming, remains a major challenge, particularly within bandwidth-constrained metropolitan regions. This study proposes a novel Unmanned Aerial Vehicle (UAV)-enabled video streaming architecture that integrates 6G wireless technologies with intelligent routing strategies across cooperative airborne nodes, including unmanned eVTOLs and High-Altitude Platform Systems (HAPS). By relaying video data from low-congestion ground base stations to high-demand urban zones via autonomous aerial relays, the proposed system enhances spectrum utilization and improves streaming stability. Simulation results validate the framework’s capability to support immersive media applications in next-generation autonomous air mobility systems, aligning with the vision of scalable, resilient 3D transportation infrastructure. Full article
Show Figures

Figure 1

13 pages, 1895 KiB  
Article
Impact Strength of Adhesive Joints of Pre-Impregnated Composite Elements
by Andrzej Komorek, Paweł Żeglarski and Jan Godzimirski
Materials 2025, 18(12), 2887; https://doi.org/10.3390/ma18122887 - 18 Jun 2025
Viewed by 385
Abstract
Composite materials’ contribution to the construction of manned and unmanned aircraft continues to grow and, together with the increased use of these materials, there is a growing need to develop an optimal method of joining composite components and carrying out repairs following operational [...] Read more.
Composite materials’ contribution to the construction of manned and unmanned aircraft continues to grow and, together with the increased use of these materials, there is a growing need to develop an optimal method of joining composite components and carrying out repairs following operational damage. One such method is bonding by means of adhesive bonds, many of whose properties are already quite well known. However, relatively little is known about the impact strength of adhesive joints in general, including adhesive joints of composite components. This paper presents a concept for conducting such tests using adhesive lap joints. The sample pieces were cut from a 9-layer, 2 mm thick composite panel made with an autoclave technique. The results show that the lowest impact strength and shear strength occurred for adhesive joints made with an epoxy adhesive with the highest Young’s modulus. The best results were obtained for the adhesive whose joints became destroyed in equal proportions in a cohesive–adhesive manner. Full article
(This article belongs to the Special Issue Modification, Properties and Application of Epoxy Adhesives/Materials)
Show Figures

Figure 1

Back to TopTop