Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (194)

Search Parameters:
Keywords = underwater optical communication

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2413 KB  
Article
Modeling and Optimization of NLOS Underwater Optical Channels Using QAM-OFDM Technique
by Noor Abdulqader Hamdullah, Mesut Çevik, Hameed Mutlag Farhan and İzzet Paruğ Duru
Photonics 2026, 13(1), 99; https://doi.org/10.3390/photonics13010099 (registering DOI) - 22 Jan 2026
Viewed by 12
Abstract
Due to increasing human activities underwater, there is a growing demand for high-speed underwater optical communication (UOWC) data links for security surveillance, environmental monitoring, pipeline inspection, and other applications. Line-of-sight communication is impossible under certain conditions due to misalignment, physical obstructions, irregular usage, [...] Read more.
Due to increasing human activities underwater, there is a growing demand for high-speed underwater optical communication (UOWC) data links for security surveillance, environmental monitoring, pipeline inspection, and other applications. Line-of-sight communication is impossible under certain conditions due to misalignment, physical obstructions, irregular usage, and difficulty adjusting the receiver orientation, especially when used in environments with mobile users or submerged sensor networks. Therefore, non-line-of-sight (NLOS) optical communication is used in this study. Advanced modulation schemes—quadrature amplitude modulation and orthogonal frequency-division multiplexing (QAM-OFDM)—were used to transmit the signal underwater between two network nodes. QAM increases the data transfer rate, while OFDM reduces dispersion and inter-symbol interference (ISI). The proposed UOWC system is investigated using a 532 nm green laser diode (LD). Reliable high-speed data transmission of up to 15 Gbps is achieved over horizontal distances of 134 m, 43 m, 21 m, and 5 m in four different aquatic environments—pure water (PW), clear ocean (CLO), coastal ocean (COO), and harbor II (HarII), respectively. The system achieves effectively error-free performance within the simulation duration (BER < 10−9), with a received optical signal power of approximately −41.5 dBm. Clear constellation patterns and low BER values are observed, confirming the robustness of the proposed architecture. Despite the limitations imposed by non-line-of-sight (NLOS) communication and the diversity aquatic environments, our proposed architecture excels at underwater long-distance data transmission at high speeds. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

40 pages, 5081 KB  
Article
HAO-AVP: An Entropy-Gini Reinforcement Learning Assisted Hierarchical Void Repair Protocol for Underwater Wireless Sensor Networks
by Lijun Hao, Chunbo Ma and Jun Ao
Sensors 2026, 26(2), 684; https://doi.org/10.3390/s26020684 - 20 Jan 2026
Viewed by 131
Abstract
Wireless Sensor Networks (WSNs) are pivotal for data acquisition, yet reliability is severely constrained by routing voids induced by sparsity, uneven energy, and high dynamicity. To address these challenges, the Hybrid Acoustic-Optical Adaptive Void-handling Protocol (HAO-AVP) is proposed to satisfy the requirements for [...] Read more.
Wireless Sensor Networks (WSNs) are pivotal for data acquisition, yet reliability is severely constrained by routing voids induced by sparsity, uneven energy, and high dynamicity. To address these challenges, the Hybrid Acoustic-Optical Adaptive Void-handling Protocol (HAO-AVP) is proposed to satisfy the requirements for highly reliable communication in complex underwater environments. First, targeting uneven energy, a reinforcement learning mechanism utilizing Gini coefficient and entropy is adopted. By optimizing energy distribution, voids are proactively avoided. Second, to address routing interruptions caused by the high dynamicity of topology, a collaborative mechanism for active prediction and real-time identification is constructed. Specifically, this mechanism integrates a Markov chain energy prediction model with on-demand hop discovery technology. Through this integration, precise anticipation and rapid localization of potential void risks are achieved. Finally, to recover damaged links at the minimum cost, a four-level progressive recovery strategy, comprising intra-medium adjustment, cross-medium hopping, path backtracking, and Autonomous Underwater Vehicle (AUV)-assisted recovery, is designed. This strategy is capable of adaptively selecting recovery measures based on the severity of the void. Simulation results demonstrate that, compared with existing mainstream protocols, the void identification rate of the proposed protocol is improved by approximately 7.6%, 8.4%, 13.8%, 19.5%, and 25.3%, respectively, and the void recovery rate is increased by approximately 4.3%, 9.6%, 12.0%, 18.4%, and 24.2%, respectively. In particular, enhanced robustness and a prolonged network life cycle are exhibited in sparse and dynamic networks. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

36 pages, 1402 KB  
Review
A Comprehensive Review of Bio-Inspired Approaches to Coordination, Communication, and System Architecture in Underwater Swarm Robotics
by Shyalan Ramesh, Scott Mann and Alex Stumpf
J. Mar. Sci. Eng. 2026, 14(1), 59; https://doi.org/10.3390/jmse14010059 - 29 Dec 2025
Viewed by 498
Abstract
The increasing complexity of marine operations has intensified the need for intelligent robotic systems to support ocean observation, exploration, and resource management. Underwater swarm robotics offers a promising framework that extends the capabilities of individual autonomous platforms through collective coordination. Inspired by natural [...] Read more.
The increasing complexity of marine operations has intensified the need for intelligent robotic systems to support ocean observation, exploration, and resource management. Underwater swarm robotics offers a promising framework that extends the capabilities of individual autonomous platforms through collective coordination. Inspired by natural systems, such as fish schools and insect colonies, bio-inspired swarm approaches enable distributed decision-making, adaptability, and resilience under challenging marine conditions. Yet research in this field remains fragmented, with limited integration across algorithmic, communication, and hardware design perspectives. This review synthesises bio-inspired coordination mechanisms, communication strategies, and system design considerations for underwater swarm robotics. It examines key marine-specific algorithms, including the Artificial Fish Swarm Algorithm, Whale Optimisation Algorithm, Coral Reef Optimisation, and Marine Predators Algorithm, highlighting their applications in formation control, task allocation, and environmental interaction. The review also analyses communication constraints unique to the underwater domain and emerging acoustic, optical, and hybrid solutions that support cooperative operation. Additionally, it examines hardware and system design advances that enhance system efficiency and scalability. A multi-dimensional classification framework evaluates existing approaches across communication dependency, environmental adaptability, energy efficiency, and swarm scalability. Through this integrated analysis, the review unifies bio-inspired coordination algorithms, communication modalities, and system design approaches. It also identifies converging trends, key challenges, and future research directions for real-world deployment of underwater swarm systems. Full article
(This article belongs to the Special Issue Wide Application of Marine Robotic Systems)
Show Figures

Figure 1

11 pages, 3299 KB  
Article
Analysis of Underwater Channel Transmission Characteristics for RAiGV Beams
by Feng Zhang, Zhi Liu, Qiaochu Yang, Peng Lin, Wanzhuo Ma, Peng Zhang and Shiming Gao
Photonics 2026, 13(1), 12; https://doi.org/10.3390/photonics13010012 - 24 Dec 2025
Viewed by 279
Abstract
This study systematically investigates the propagation characteristics of ring-shaped Airy-Gaussian vortex (RAiGV) beams in a 50 m marine turbulent channel. Utilizing a combined angular spectrum-phase screen model, numerical simulations were conducted to analyze the evolution of light intensity, scintillation index (SI), and detection [...] Read more.
This study systematically investigates the propagation characteristics of ring-shaped Airy-Gaussian vortex (RAiGV) beams in a 50 m marine turbulent channel. Utilizing a combined angular spectrum-phase screen model, numerical simulations were conducted to analyze the evolution of light intensity, scintillation index (SI), and detection probability (DP) under varying distribution factors b, topological charge l, and turbulence intensity σ2. Results reveal that the SI of RAiGV exhibits a three-stage pattern: initial rise, decline, and subsequent rise. The valley positions of SI correspond one-to-one with self-focusing foci. Smaller b values result in closer foci, with short-range SI reaching its minimum but eventually surpassing long-range SI. At b = 0.15, the beam maintains a flatter SI curve and higher DP over long distances. The l = 1 vortex structure, characterized by its simplicity, demonstrates superior robustness against turbulence compared to higher-order modes. Appropriate selection of b and l enables a trade-off between near-field peak intensity and far-field stability, providing valuable design guidance for underwater OAM multiplexing communications. Full article
(This article belongs to the Special Issue Free-Space Optical Communication and Networking Technology)
Show Figures

Figure 1

34 pages, 11111 KB  
Review
Multi-Level Multi-Technology Underwater Networks: Challenges and Opportunities for Marine Monitoring
by A. Rehman and L. Galluccio
Network 2026, 6(1), 2; https://doi.org/10.3390/network6010002 - 24 Dec 2025
Viewed by 397
Abstract
Underwater networks are crucial for monitoring the marine ecosystem, enabling data collection to support the preservation and protection of natural resources. Among the various technologies available, acoustic and optical communications stand out for their superior performance in underwater environments. Acoustic technologies are suitable [...] Read more.
Underwater networks are crucial for monitoring the marine ecosystem, enabling data collection to support the preservation and protection of natural resources. Among the various technologies available, acoustic and optical communications stand out for their superior performance in underwater environments. Acoustic technologies are suitable for long-range communications, typically operating over hundreds of meters up to several kilometers, albeit with low data rates ranging from a few hundred bps to few tens of kbps. In contrast, optical technologies excel in providing high data rates, often between 1 and 10 Mbps, but only over short distances (e.g., 50 m) in controlled conditions. To leverage the strengths of these technologies, recent research has proposed multi-modal underwater systems; however, these solutions generally rely on single-level or at most dual-level architectures, limiting the benefits of a structured hierarchical approach. In this review paper, after discussing related work on multi-technology acoustic and optical networks, we highlight relevant design guidelines for multi-technology, multi-level underwater architectures, explicitly considering three layers: a deep acoustic layer, an intermediate optical layer, and an upper RF-enabled surface layer. For illustration, we also discuss a PoC of such a hierarchical architecture under development at the University of Catania, Italy, in the Area Marina Isole dei Ciclopi natural reserve. The PoC includes optical nodes capable of transmitting up to 10 Mbps over short ranges and acoustic nodes (both software defined and not) supporting rates of tens of kbps over hundreds of meters and being adaptive to network conditions, interconnected through hybrid multi-technology nodes deployed across the three network levels. By assigning specific technologies to appropriate layers, the architecture enhances scalability, robustness, and adaptability to dynamic underwater conditions. This design strategy not only improves data transmission efficiency but also ensures seamless operation across diverse marine scenarios, making it an effective solution for a wide range of underwater monitoring applications. Full article
Show Figures

Figure 1

20 pages, 10465 KB  
Article
Performance Analysis of Underwater Hybrid Prime Code and Manchester Encoding FSO-CDMA System Based on Multiple-Access Interference Cancellation Receiver
by Morsy A. Morsy, Yasser Bin Salamah, Yousef Saleh Alhassoun and Mohamed Tamazin
Electronics 2026, 15(1), 6; https://doi.org/10.3390/electronics15010006 - 19 Dec 2025
Viewed by 272
Abstract
This paper proposes an underwater free-space optical code division multiple-access (FSO-CDMA) communication system that integrates differential pulse position modulation (DPPM) with a developed hybrid prime code (HPC) and Manchester encoding, alongside a multiple-access interference cancellation (MAIC) receiver. The system is designed to address [...] Read more.
This paper proposes an underwater free-space optical code division multiple-access (FSO-CDMA) communication system that integrates differential pulse position modulation (DPPM) with a developed hybrid prime code (HPC) and Manchester encoding, alongside a multiple-access interference cancellation (MAIC) receiver. The system is designed to address the challenges posed by underwater turbulence, absorption, and scattering. A 1-watt laser source operating at a wavelength of 455 nm is utilized to mitigate these effects, thereby reducing link absorption, scattering, and attenuation. The MAIC receiver is employed to minimize noise and interference, significantly enhancing the system’s bit-error rate (BER) performance under turbulent conditions. The paper details the construction and correlation analysis of the HPC, and investigates both instantaneous and average BER performance based on the proposed modulation-coding technique and MAIC receiver. Results demonstrate that the proposed system achieves a 438 m link distance with an 8.33 Gbps data rate and 1.33 Tbps × user network throughput over a 184,900 m2 coverage area, maintaining a BER of 10−9. Full article
Show Figures

Figure 1

16 pages, 1413 KB  
Article
The Influence of Oceanic Turbulence on Fiber-Coupling Efficiency of Multi-Gaussian Shell-Mode Beams for Underwater Optical Communications
by Xiaonan Jing, Shan Lv, Jiqian Zhang, Hui Zhang, Yaru Gao, Yangsheng Yuan, Yangjian Cai and Dongmei Wei
Photonics 2025, 12(12), 1234; https://doi.org/10.3390/photonics12121234 - 17 Dec 2025
Viewed by 160
Abstract
This study theoretically investigates the coupling efficiency of multi-Gaussian Shell-mode (MGSM) beams in ocean turbulence. The expression for the fiber-coupling efficiency of the MGSM beams propagating through oceanic turbulent media is derived using the cross-spectral density function. Numerical simulations are performed to examine [...] Read more.
This study theoretically investigates the coupling efficiency of multi-Gaussian Shell-mode (MGSM) beams in ocean turbulence. The expression for the fiber-coupling efficiency of the MGSM beams propagating through oceanic turbulent media is derived using the cross-spectral density function. Numerical simulations are performed to examine the relationship between fiber-coupling efficiency and the beam order, and the scintillation index of the MGSM beams in ocean turbulence is also examined. In the analysis of transmission efficiency, the effects of the receiving aperture and source coherence on transmission efficiency are investigated, taking into account ocean turbulence induced by salinity and temperature fluctuations. The analysis of the fiber-coupling efficiency for MGSM beams presented in this work provides insights for optimizing the design of free-space optical communication systems. Full article
(This article belongs to the Special Issue Advances in the Propagation and Coherence of Light)
Show Figures

Figure 1

12 pages, 4170 KB  
Article
Low-Cost Optical Wireless Communication for Underwater IoT: LED and Photodiode System Design and Characterization
by Kidsanapong Puntsri and Wannaree Wongtrairat
Telecom 2025, 6(4), 95; https://doi.org/10.3390/telecom6040095 - 10 Dec 2025
Viewed by 549
Abstract
Underwater marine and freshwater environments are vast and mysterious, but our ability to explore them is limited by the inflexibility and inconvenience of monitoring systems. To overcome this problem, in this work, we present a proof-of-concept deployment of a real-time Internet of Underwater [...] Read more.
Underwater marine and freshwater environments are vast and mysterious, but our ability to explore them is limited by the inflexibility and inconvenience of monitoring systems. To overcome this problem, in this work, we present a proof-of-concept deployment of a real-time Internet of Underwater Things (IoUT) using blue light-emitting-diode-based visible light communication (VLC). Pulse-amplitude modulation with four levels is employed. To relax the focus point and increase the received power, four avalanche photodiodes (APDs) are adopted. Moreover, to reduce the error rate, the convolutional code with constraint-7 is used, which is the simplest to implement. Encoding and decoding are implemented by a field-programmable gate array. The results are verified by experimental demonstration. A baud rate of 9600 is used, but, unfortunately, we only have a 2 m long tank. System performance is improved when the number of APDs is increased; we investigated the effects of up to four APDs. Notably, bit error-free data transmission can be achieved. Additionally, this method would make underwater monitoring very conventional and dependable, and low-cost real-time monitoring would be possible, with data shown on the Grafana dashboard tool. Full article
Show Figures

Figure 1

24 pages, 16899 KB  
Article
Adaptive Relay Free Space Networking for Autonomous Underwater Drone Swarms
by David Stack, Douglas Nuti and Mehdi Rahmati
Sensors 2025, 25(24), 7412; https://doi.org/10.3390/s25247412 - 5 Dec 2025
Viewed by 645
Abstract
Underwater wireless networking is an emerging field for exploration and monitoring, enabling real-time data transmission and communication with both static sensors and submersibles. Current approaches mostly focus on utilizing acoustic waves. The use of optics for this purpose has been known to have [...] Read more.
Underwater wireless networking is an emerging field for exploration and monitoring, enabling real-time data transmission and communication with both static sensors and submersibles. Current approaches mostly focus on utilizing acoustic waves. The use of optics for this purpose has been known to have several implementation challenges that have prevented it from being considered as a universal alternative. This study proposes that utilizing optics in an adaptive relay wireless network configuration can overcome its primary limitation of line-of-sight (LOS) propagation. In this paper, a network of strategically placed sensors is experimentally constructed with the ability to read and send modulated blue light, fit for extended submersion in water. This proposal represents a hypothetical aquatic drone swarm that is developed and programmed to follow adaptive relay logic. This network is able to demonstrate adaptation to obstructions in the LOS and maintain communication through configurations in which the sender and intended recipient would otherwise be unable to directly communicate. This finding allows the advantages of optical communications to be further explored for aquatic applications, primarily its higher potential data rate, which is inherently productive to a swarm. Full article
(This article belongs to the Special Issue Recent Challenges in Underwater Optical Communication and Detection)
Show Figures

Figure 1

49 pages, 3395 KB  
Review
Underwater Drone-Enabled Wireless Communication Systems for Smart Marine Communications: A Study of Enabling Technologies, Opportunities, and Challenges
by Sarun Duangsuwan and Katanyoo Klubsuwan
Drones 2025, 9(11), 784; https://doi.org/10.3390/drones9110784 - 11 Nov 2025
Viewed by 2121
Abstract
Underwater drones such as autonomous underwater vehicles (AUVs) and remotely operated vehicles (ROVs) are revolutionizing underwater operations and are essential for advanced marine applications like environmental monitoring, deep-sea exploration, and marine surveillance. In this paper, we concentrate on the enabling technologies and wireless [...] Read more.
Underwater drones such as autonomous underwater vehicles (AUVs) and remotely operated vehicles (ROVs) are revolutionizing underwater operations and are essential for advanced marine applications like environmental monitoring, deep-sea exploration, and marine surveillance. In this paper, we concentrate on the enabling technologies and wireless communication strategies for underwater drones. Specifically, we analyze acoustic, optical, and radio frequency (RF) approaches, along with their respective advantages and disadvantages. We investigate the potential of integrating underwater drone-enabled wireless communication systems for smart marine communications. The study highlights the benefits of combining acoustic, optical, and RF methods to improve connectivity and data reliability. A hybrid underwater communication system is ideal for underwater drones because it can reduce latency, increase data throughput, and improve adaptability under various underwater conditions, supporting smart marine communications. The future direction involves developing hybrid communication frameworks that incorporate the Internet of Underwater Things (IoUT), AI-driven data, virtual reality (VR), and digital twin (DT) technologies, enabling a next-generation smart marine ecosystem. Full article
Show Figures

Figure 1

15 pages, 2747 KB  
Article
Characterization and Performance Analysis of Underwater Optical Time and Frequency Dissemination Link Based on Monte Carlo Simulation and Experimental Demonstration
by Yibo Yuan, Hengrui Liu, Ziyi Wang, Hanwen Zhang, Xujin Li, Jianfeng Cui and Yiguang Yang
Sensors 2025, 25(22), 6861; https://doi.org/10.3390/s25226861 - 10 Nov 2025
Viewed by 554
Abstract
Underwater Wireless Optical Communication (UWOC) plays a crucial role in marine exploration and observation due to its high speed and low latency characteristics, while research on underwater time and frequency transfer (UTFT) is relatively lacking. The complicated underwater environments, absorption and scattering effects [...] Read more.
Underwater Wireless Optical Communication (UWOC) plays a crucial role in marine exploration and observation due to its high speed and low latency characteristics, while research on underwater time and frequency transfer (UTFT) is relatively lacking. The complicated underwater environments, absorption and scattering effects severely degrade signal stability and signal-to-noise-ratio (SNR). In response to this issue, a photon packet transmission model is established based on the Monte Carlo simulation (MCS). The effects of different parameters, including water conditions, divergence angles, receiving apertures, are systematically analyzed, with key indicators such as phase noise and Allan deviation, identified as performance measures. An experimental platform is also built using kaolin turbidity to obtain experimental results corresponding to different frequencies and turbidity levels, which are then compared with simulation results. The high consistency between simulation and experimental results verifies the reliability of the proposed model. This research provides a feasible method for performance prediction and tolerance design of UTFT networks. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

25 pages, 10667 KB  
Article
Adaptive Exposure Optimization for Underwater Optical Camera Communication via Multimodal Feature Learning and Real-to-Sim Channel Emulation
by Jiongnan Lou, Xun Zhang, Haifei Shen, Yiqian Qian, Zhan Wang, Hongda Chen, Zefeng Wang and Lianxin Hu
Sensors 2025, 25(20), 6436; https://doi.org/10.3390/s25206436 - 17 Oct 2025
Viewed by 919
Abstract
Underwater Optical Camera Communication (UOCC) has emerged as a promising paradigm for short-range, high-bandwidth, and secure data exchange in autonomous underwater vehicles (AUVs). UOCC performance strongly depends on exposure time and International Standards Organization (ISO) sensitivity—two parameters that govern photon capture, contrast, and [...] Read more.
Underwater Optical Camera Communication (UOCC) has emerged as a promising paradigm for short-range, high-bandwidth, and secure data exchange in autonomous underwater vehicles (AUVs). UOCC performance strongly depends on exposure time and International Standards Organization (ISO) sensitivity—two parameters that govern photon capture, contrast, and bit detection fidelity. However, optical propagation in aquatic environments is highly susceptible to turbidity, scattering, and illumination variability, which severely degrade image clarity and signal-to-noise ratio (SNR). Conventional systems with fixed imaging settings cannot adapt to time-varying conditions, limiting communication reliability. While validating the feasibility of deep learning for exposure prediction, this baseline lacked environmental awareness and generalization to dynamic scenarios. To overcome these limitations, we introduce a Real-to-Sim-to-Deployment framework that couples a physically calibrated emulation platform with a Hybrid CNN-MLP Model (HCMM). By fusing optical images, environmental states, and camera configurations, the HCMM achieves substantially improved parameter prediction accuracy, reducing RMSE to 0.23–0.33. When deployed on embedded hardware, it enables real-time adaptive reconfiguration and delivers up to 8.5 dB SNR gain, surpassing both static-parameter systems and the prior CNN baseline. These results demonstrate that environment-aware multimodal learning, supported by reproducible optical channel emulation, provides a scalable and robust solution for practical UOCC deployment in positioning, inspection, and laser-based underwater communication. Full article
Show Figures

Figure 1

11 pages, 2244 KB  
Article
Research on the Optical Receiving Performance of Underwater Wireless Optical Communication System Based on Fresnel Lens
by Ya Zhao, Shixiang Hong, Zhanqi Zhang, Xiaoxuan Zhu and Peng Zhang
Photonics 2025, 12(10), 1010; https://doi.org/10.3390/photonics12101010 - 13 Oct 2025
Cited by 1 | Viewed by 562
Abstract
In response to the practical demands of high rate, long distance, low cost and miniaturized equipment for underwater wireless communication, an underwater wireless optical communication experimental system with Fresnel lenses as optical receiving antennas has been established. Using 488 nm and 520 nm [...] Read more.
In response to the practical demands of high rate, long distance, low cost and miniaturized equipment for underwater wireless communication, an underwater wireless optical communication experimental system with Fresnel lenses as optical receiving antennas has been established. Using 488 nm and 520 nm lasers as the test light sources, the relationship curves between the focusing performance of several Fresnel lenses with different light transmission aperisions and focal lengths after passing through the underwater channel and the lens surface, laser wavelength, and incident angle were obtained. The influence of the laser incident angle on the focusing spots of 488 nm and 520 nm lasers was measured. The experimental results indicate that the Fresnel lens exhibits excellent light concentration performance, with the overall system concentration efficiency being higher than that of conventional lenses, significantly enhancing the received optical power in underwater wireless optical communication systems. Additionally, configuring the sawtooth surface as the incident surface of the Fresnel lens can improve the concentration efficiency by approximately 1% to 5% compared to using a smooth incident surface. Full article
Show Figures

Figure 1

16 pages, 5781 KB  
Article
Design of an Underwater Optical Communication System Based on RT-DETRv2
by Hexi Liang, Hang Li, Minqi Wu, Junchi Zhang, Wenzheng Ni, Baiyan Hu and Yong Ai
Photonics 2025, 12(10), 991; https://doi.org/10.3390/photonics12100991 - 8 Oct 2025
Cited by 1 | Viewed by 980
Abstract
Underwater wireless optical communication (UWOC) is a key technology in ocean resource development, and its link stability is often limited by the difficulty of optical alignment in complex underwater environments. In response to this difficulty, this study has focused on improving the Real-Time [...] Read more.
Underwater wireless optical communication (UWOC) is a key technology in ocean resource development, and its link stability is often limited by the difficulty of optical alignment in complex underwater environments. In response to this difficulty, this study has focused on improving the Real-Time Detection Transformer v2 (RT-DETRv2) model. We have improved the underwater light source detection model by collaboratively designing a lightweight backbone network and deformable convolution, constructing a cross-stage local attention mechanism to reduce the number of network parameters, and introducing geometrically adaptive convolution kernels that dynamically adjust the distribution of sampling points, enhance the representation of spot-deformation features, and improve positioning accuracy under optical interference. To verify the effectiveness of the model, we have constructed an underwater light-emitting diode (LED) light-spot detection dataset containing 11,390 images was constructed, covering a transmission distance of 15–40 m, a ±45° deflection angle, and three different light-intensity conditions (noon, evening, and late night). Experiments show that the improved model achieves an average precision at an intersection-over-union threshold of 0.50 (AP50) value of 97.4% on the test set, which is 12.7% higher than the benchmark model. The UWOC system built based on the improved model achieves zero-bit-error-rate communication within a distance of 30 m after assisted alignment (an initial lateral offset angle of 0°–60°), and the bit-error rate remains stable in the 10−7–10−6 range at a distance of 40 m, which is three orders of magnitude lower than the traditional Remotely Operated Vehicle (ROV) underwater optical communication system (a bit-error rate of 10−6–10−3), verifying the strong adaptability of the improved model to complex underwater environments. Full article
Show Figures

Figure 1

42 pages, 5827 KB  
Review
A Review of Reconfigurable Intelligent Surfaces in Underwater Wireless Communication: Challenges and Future Directions
by Tharuka Govinda Waduge, Yang Yang and Boon-Chong Seet
J. Sens. Actuator Netw. 2025, 14(5), 97; https://doi.org/10.3390/jsan14050097 - 26 Sep 2025
Cited by 1 | Viewed by 3593
Abstract
Underwater wireless communication (UWC) is an emerging technology crucial for automating marine industries, such as offshore aquaculture and energy production, and military applications. It is a key part of the 6G vision of creating a hyperconnected world for extending connectivity to the underwater [...] Read more.
Underwater wireless communication (UWC) is an emerging technology crucial for automating marine industries, such as offshore aquaculture and energy production, and military applications. It is a key part of the 6G vision of creating a hyperconnected world for extending connectivity to the underwater environment. Of the three main practicable UWC technologies (acoustic, optical, and radiofrequency), acoustic methods are best for far-reaching links, while optical is best for high-bandwidth communication. Recently, utilizing reconfigurable intelligent surfaces (RISs) has become a hot topic in terrestrial applications, underscoring significant benefits for extending coverage, providing connectivity to blind spots, wireless power transmission, and more. However, the potential for further research works in underwater RIS is vast. Here, for the first time, we conduct an extensive survey of state-of-the-art of RIS and metasurfaces with a focus on underwater applications. Within a holistic perspective, this survey systematically evaluates acoustic, optical, and hybrid RIS, showing that environment-aware channel switching and joint communication architectures could deliver holistic gains over single-domain RIS in the distance–bandwidth trade-off, congestion mitigation, security, and energy efficiency. Additional focus is placed on the current challenges from research and realization perspectives. We discuss recent advances and suggest design considerations for coupling hybrid RIS with optical energy and piezoelectric acoustic energy harvesting, which along with distributed relaying, could realize self-sustainable underwater networks that are highly reliable, long-range, and high throughput. The most impactful future directions seem to be in applying RIS for enhancing underwater links in inhomogeneous environments and overcoming time-varying effects, realizing RIS hardware suitable for the underwater conditions, and achieving simultaneous transmission and reflection (STAR-RIS), and, particularly, in optical links—integrating the latest developments in metasurfaces. Full article
Show Figures

Figure 1

Back to TopTop