Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = underwater cleaning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5142 KiB  
Article
Cavitation-Jet-Induced Erosion Controlled by Injection Angle and Jet Morphology
by Jinichi Koue and Akihisa Abe
J. Mar. Sci. Eng. 2025, 13(8), 1415; https://doi.org/10.3390/jmse13081415 - 25 Jul 2025
Viewed by 185
Abstract
To improve environmental sustainability and operational safety in maritime industries, the development of efficient methods for removing biofouling from submerged surfaces is critical. This study investigates the erosion mechanisms of cavitation jets as a non-contact, high-efficiency method for detaching marine organisms, including bacteria [...] Read more.
To improve environmental sustainability and operational safety in maritime industries, the development of efficient methods for removing biofouling from submerged surfaces is critical. This study investigates the erosion mechanisms of cavitation jets as a non-contact, high-efficiency method for detaching marine organisms, including bacteria and larvae, from ship hulls and underwater infrastructure. Through erosion experiments on coated specimens, variations in jet morphology, and flow visualization using the Schlieren method, we examined how factors such as jet incident angle and nozzle configuration influence removal performance. The results reveal that erosion occurs not only at the direct jet impact zone but also in regions where cavitation bubbles exhibit intense motion, driven by pressure fluctuations and shock waves. Notably, single-hole jets with longer potential cores produced more concentrated erosion, while multi-jet interference enhanced bubble activity. These findings underscore the importance of understanding bubble distribution dynamics in the flow field and provide insight into optimizing cavitation jet configurations to expand the effective cleaning area while minimizing material damage. This study contributes to advancing biofouling removal technologies that promote safer and more sustainable maritime operations. Full article
Show Figures

Figure 1

19 pages, 3112 KiB  
Article
Durable Superhydrophobic Composite Coating Based on Hydrangea-like SiO2 Nanoparticles with Excellent Performance in Anticorrosion, Drag Reduction, and Antifouling
by Yuhao Xue, Yamei Zhao, Xiaoqi Gu, Mengdan Huo, Kunde Yang, Mingyu Liu, Sixian Fan and Maoyong Zhi
Materials 2025, 18(15), 3443; https://doi.org/10.3390/ma18153443 - 23 Jul 2025
Viewed by 273
Abstract
Superhydrophobic coatings possess distinct wettability characteristics and hold significant potential in metal corrosion protection and underwater drag reduction. However, their practical application is often hindered by poor durability arising from the fragility of their micro/nanostructured surface roughness. In this study, a durable superhydrophobic [...] Read more.
Superhydrophobic coatings possess distinct wettability characteristics and hold significant potential in metal corrosion protection and underwater drag reduction. However, their practical application is often hindered by poor durability arising from the fragility of their micro/nanostructured surface roughness. In this study, a durable superhydrophobic coating featuring a hierarchical, hydrangea-like micro/nanostructure was successfully fabricated on an aluminum alloy substrate via a simple one-step cold-spraying technique. The coating consisted of hydrangea-shaped SiO2 nanoparticles modified with 1H,1H,2H,2H-perfluorodecyltrimethoxysilane (PFDT) to produce multiscale roughness, while epoxy resin (EP) served as the binding matrix to enhance mechanical integrity. The hydrangea-like SiO2 nanostructures were characterized by solid cores and wrinkled, petal-like outgrowths. This unique morphology not only increased the surface roughness but also provided more active sites for air entrapment, thereby enhancing the coating’s overall performance. The h-SiO2@PFDT-EP composite coating exhibited excellent superhydrophobicity, with a WCA of 170.1° ± 0.8° and a SA of 2.7° ± 0.5°. Durability was evaluated through sandpaper abrasion, tape peeling, acid and alkali immersion, artificial weathering, and salt spray tests. The results demonstrated that the coating retained stable superhydrophobic performance under various environmental stresses. Compared with bare 6061 aluminum and EP coatings, its corrosion current density was reduced by four and three orders of magnitude, respectively. Furthermore, the coating achieved a maximum drag-reduction rate of 31.01% within a velocity range of 1.31–7.86 m/s. The coating also displayed excellent self-cleaning properties. Owing to its outstanding durability, corrosion resistance, and drag-reducing capability, this one-step fabricated superhydrophobic coating showed great promise for applications in marine engineering and defense. Full article
Show Figures

Figure 1

16 pages, 1350 KiB  
Review
Advances in Langevin Piezoelectric Transducer Designs for Broadband Ultrasonic Transmitter Applications
by Jinwook Kim, Jinwoo Kim and Juwon Kang
Actuators 2025, 14(7), 355; https://doi.org/10.3390/act14070355 - 19 Jul 2025
Viewed by 261
Abstract
Langevin ultrasonic transducers, also known as Tonpilz transducers, are widely used in high-power ultrasonic applications, including underwater sonar arrays, ultrasonic cleaning, and sonication devices. Traditionally designed for narrowband operation centered on a fundamental longitudinal resonance mode, their performance has been limited by structural [...] Read more.
Langevin ultrasonic transducers, also known as Tonpilz transducers, are widely used in high-power ultrasonic applications, including underwater sonar arrays, ultrasonic cleaning, and sonication devices. Traditionally designed for narrowband operation centered on a fundamental longitudinal resonance mode, their performance has been limited by structural constraints that tie resonance frequency to overall transducer length and mass. However, technical demands in biomedical, industrial, and underwater technologies have driven the development of broadband Langevin transducers capable of operating over wider frequency ranges. Lower frequencies are desirable for deep penetration and cavitation effects, while higher frequencies offer improved resolution and directivity. Recent design innovations have focused on modifications to the three key components of the transducer: the head mass, piezoelectric drive stack, and tail mass. Techniques such as integrating flexural or edge-resonance modes, adopting piezocomposite stacks, and tailoring structural geometry have shown promising improvements in bandwidth and transmitting efficiency. This review examines broadband Langevin transducer designs over the past three decades, offering detailed insights into design strategies for future development of high-power broadband ultrasonic transducers. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

24 pages, 7568 KiB  
Article
Developing a Superhydrophilic/Underwater Superoleophobic Plasma-Modified PVDF Microfiltration Membrane with Copolymer Hydrogels for Oily Water Separation
by Hasan Ali Hayder, Peng Shi and Sama M. Al-Jubouri
Appl. Sci. 2025, 15(12), 6654; https://doi.org/10.3390/app15126654 - 13 Jun 2025
Viewed by 556
Abstract
Polymer membranes often face challenges of oil fouling and rapid water flux decline during the separation of oil-in-water emulsions, making them a focal point of ongoing research and development efforts. Coating PVDF membranes with a hydrogel layer equips the developed membranes with robust [...] Read more.
Polymer membranes often face challenges of oil fouling and rapid water flux decline during the separation of oil-in-water emulsions, making them a focal point of ongoing research and development efforts. Coating PVDF membranes with a hydrogel layer equips the developed membranes with robust potential to mitigate oil fouling. However, developing a controllable thickness of a stable hydrogel layer to prevent the blocking of membrane pores remains a critical issue. In this work, atmospheric pressure low-temperature plasma was used to prepare the surface of a PVDF membrane to improve its wettability and adhesion properties for coating with a thin hydrophilic film of an AM-NaA copolymer hydrogel. The AM-NaA/PVDF membrane exhibited superhydrophilic and underwater superoleophobic properties, along with exceptional anti-crude oil-fouling characteristics and a self-cleaning function. The AM-NaA/PVDF membrane achieved high separation efficiency, exceeding 99% for various oil-in-water emulsions, with residual oil content in the permeate of less than 10 mg/L after a single-step separation. Additionally, it showed a high-water flux of 5874 L/m2·h for crude oil-in-water emulsions. The AM-NaA/PVDF membrane showed good stability and easy cleaning by water washing over multiple crude oil-in-water emulsion separation and regeneration cycles. Adding CaCl2 destabilized emulsions by promoting oil droplet coalescence, further boosting flux. This strategy provides a practical pathway for the development of highly reusable and oil-fouling-resistant membranes for the efficient separation of emulsified oily water. Full article
Show Figures

Figure 1

19 pages, 3373 KiB  
Article
A Review of Potential Geological Hazards and Precautions in the Mining of Submarine Natural Gas Hydrate
by Zhanghuang Ye, Wenqi Hu and Qiang Yan
Processes 2025, 13(6), 1669; https://doi.org/10.3390/pr13061669 - 26 May 2025
Viewed by 375
Abstract
Natural gas hydrate (NGH hereafter), commonly known as combustible ice ((CH4)n·mH2O), is an abundant non-conventional clean energy resource. It is mainly located in permafrost areas and submarine sediment layers at depths of 0–200 m and 300~3000 m underwater. Submarine [...] Read more.
Natural gas hydrate (NGH hereafter), commonly known as combustible ice ((CH4)n·mH2O), is an abundant non-conventional clean energy resource. It is mainly located in permafrost areas and submarine sediment layers at depths of 0–200 m and 300~3000 m underwater. Submarine NGH accounts for about 97%. Its commercial mining may be a solution to mankind’s future energy problems, as well as the beginning of a series of geological risks. These risks can be divided into two categories: natural geological hazards and secondary geological accidents. Based on the viewpoints of Earth system science researchers, this paper discusses the main potential geo-hazards of submarine NGH mining: stratum subsidence, seafloor landslides, the greenhouse effect, sand piping, well blowout, and wellbore instability. To minimize the potential catastrophic impacts on the Earth’s ecosystem or mechanical accidents, corresponding technical precautions and policy suggestions have been put forward. Hopefully, this paper will provide a useful reference for the commercial mining of NGH. Full article
(This article belongs to the Special Issue Production of Energy-Efficient Natural Gas Hydrate)
Show Figures

Figure 1

27 pages, 11465 KiB  
Article
Scenario-Based Economic Analysis of Underwater Biofouling Using Artificial Intelligence
by Min-Ho Park, Jae-Jung Hur, Gwi-Ho Yun and Won-Ju Lee
J. Mar. Sci. Eng. 2025, 13(5), 952; https://doi.org/10.3390/jmse13050952 - 14 May 2025
Viewed by 580
Abstract
This study presents a novel framework to evaluate the impact of a certain cycle of underwater hull and propeller cleaning. The artificial neural network model was created to predict fuel consumption, and the coefficients for the six voyages were calculated. Three scenarios, in [...] Read more.
This study presents a novel framework to evaluate the impact of a certain cycle of underwater hull and propeller cleaning. The artificial neural network model was created to predict fuel consumption, and the coefficients for the six voyages were calculated. Three scenarios, in which the coefficients changed in different ways, were established, and the monthly fuel consumption values were calculated accordingly. The annual fuel cost saving when the cycle of underwater hull and propeller cleaning was four months was USD 10,402–26,685, and it was USD 9653–24,102 for a cycle of six months. We confirmed that using the novel framework we presented, the optimal hull cleaning timing could be determined for oceangoing vessels worldwide, considering economic impact based on data and machine learning models. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 10019 KiB  
Article
Bifunctional N-TiO2/C/PU Foam for Interfacial Water Evaporation and Sewage Purification
by Ke Wang, Weifeng Li and Yumei Long
Materials 2025, 18(7), 1550; https://doi.org/10.3390/ma18071550 - 29 Mar 2025
Viewed by 557
Abstract
As an environmentally friendly and clean energy technology, solar-driven interfacial evaporation technology has attracted wide attention. However, organic pollutants can easily pollute distilled water during the evaporation of wastewater. In this work, we report a strategy of N-TiO2/C solar absorption with [...] Read more.
As an environmentally friendly and clean energy technology, solar-driven interfacial evaporation technology has attracted wide attention. However, organic pollutants can easily pollute distilled water during the evaporation of wastewater. In this work, we report a strategy of N-TiO2/C solar absorption with a low bandgap (2.33 eV), excellent light absorption ability, and high photothermal conversion efficiency (48.2%). Black N-TiO2/C was prepared by the sol-gel method in the presence of hexamethylenetetramine as a source of nitrogen and carbon. The simultaneous N doping and C with superior photothermal effect rapidly increased the surface temperature of the material, reduced the recombination rate of electrons and holes, and improved the photocatalytic activity, showing great potential for solar thermal energy conversion. The prepared solar absorbent and polyurethane (PU) were mixed evenly to form a porous N-TiO2/C/PU (NTCP) foam for purifying water. The evaporator produced clean water at a rate of 1.73 kg m−2 h−1 under the simulated sunlight of 1 sun irradiation. Meanwhile, the evaporator simultaneously photodegraded methylene blue (MB) and rhodamine B (RhB) underwater at a removal rate > 90%. The bifunctional solar water evaporation device combining photocatalytic and photothermal effects holds great potential for water purification. Full article
Show Figures

Figure 1

13 pages, 3400 KiB  
Article
Urushiol-Based Coating with High Surface Hydrophilicity for Easy-Cleaning of Oil Pollutants
by Yuansong Ye, Huiping Shi, Yuchi Zhang, Jianrong Xia, Bing-Chiuan Shiu and Run Fang
Polymers 2024, 16(23), 3392; https://doi.org/10.3390/polym16233392 - 30 Nov 2024
Viewed by 1116
Abstract
Urushiol is recognized as a sustainable coating material with superior properties; however, it faces significant challenges in applications such as petrochemicals and marine engineering due to surface oil contamination. This study aimed to enhance the cleanability of urushiol-based coatings through hydrophilic modification. Polyethylene [...] Read more.
Urushiol is recognized as a sustainable coating material with superior properties; however, it faces significant challenges in applications such as petrochemicals and marine engineering due to surface oil contamination. This study aimed to enhance the cleanability of urushiol-based coatings through hydrophilic modification. Polyethylene glycol monooleate (PEGMO) was identified as an appropriate hydrophilic macromonomer and utilized as a modifier to develop a novel urushiol-based coating, termed P(U-PEGMO), via thermal curing. The results indicated that copolymerization occurred between urushiol and PEGMO during the curing process, forming a stable urushiol copolymer with favorable compatibility. The incorporation of PEGMO greatly improved the surface hydrophilicity of the coatings, as evidenced by a reduction in the water contact angle to below 30° when the modifier content reached 30% or higher, demonstrating a high degree of surface hydrophilicity. This enhanced property imparted the modified coating with underwater superoleophobicity and reduced oil adhesion, thereby facilitating the removal of oil. The cleaning performance was evaluated using a simple water rinsing method, after which, less than 2.5 wt% of oil residues remained on the surface of the modified coating. The high hydrophilicity is considered responsible for the coating’s easy-cleaning capability. In addition, the modified coatings exhibited improved flexibility and impact resistance, albeit with a slight decrease in hardness. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

17 pages, 32002 KiB  
Article
Automated Shoreline Segmentation in Satellite Imagery Using USV Measurements
by Antoni Jaszcz, Marta Włodarczyk-Sielicka, Andrzej Stateczny, Dawid Połap and Ilona Garczyńska
Remote Sens. 2024, 16(23), 4457; https://doi.org/10.3390/rs16234457 - 27 Nov 2024
Cited by 4 | Viewed by 1663
Abstract
Generating aerial shoreline segmentation masks can be a daunting task, often requiring manual labeling or correction. This is further problematic because neural segmentation models require decent and abundant data for training, requiring even more manpower to automate the process. In this paper, we [...] Read more.
Generating aerial shoreline segmentation masks can be a daunting task, often requiring manual labeling or correction. This is further problematic because neural segmentation models require decent and abundant data for training, requiring even more manpower to automate the process. In this paper, we propose utilizing Unmanned Surface Vehicles (USVs) in an automated shoreline segmentation system on satellite imagery. The remotely controlled vessel first collects above- and underwater shoreline information using light detection and ranging (LiDAR) and multibeam echosounder (MBES) measuring instruments, resulting in a geo-referenced 3D point cloud. After cleaning and processing these data, the system integrates the projected map with an aerial image of the region. Based on the height values of the mapped points, the image is segmented. Finally, post-processing methods and the k-NN algorithm are introduced, resulting in a complete binary shoreline segmentation mask. The obtained data were used for training U-Net-type segmentation models with pre-trained backbones. The InceptionV3-based model achieved an accuracy of 96% and a dice coefficient score of 93%, demonstrating the effectiveness of the proposed system as a source of data acquisition for training deep neural networks. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

25 pages, 2836 KiB  
Review
Research Advances in Marine Aquaculture Net-Cleaning Robots
by Heng Liu, Chuhua Jiang, Junhua Chen, Hao Li and Yongqi Chen
Sensors 2024, 24(23), 7555; https://doi.org/10.3390/s24237555 - 26 Nov 2024
Viewed by 1952
Abstract
In the realm of marine aquaculture, the netting of cages frequently accumulates marine fouling, which impedes water circulation and poses safety hazards. Traditional manual cleaning methods are marked by inefficiency, high labor demands, substantial costs, and considerable environmental degradation. This paper initially presents [...] Read more.
In the realm of marine aquaculture, the netting of cages frequently accumulates marine fouling, which impedes water circulation and poses safety hazards. Traditional manual cleaning methods are marked by inefficiency, high labor demands, substantial costs, and considerable environmental degradation. This paper initially presents the current utilization of net-cleaning robots in the cleaning, underwater inspection, and monitoring of aquaculture cages, highlighting their benefits in enhancing operational efficiency and minimizing costs. Subsequently, it reviews key technologies such as underwater image acquisition, visual recognition, adhesion-based movement, efficient fouling removal, motion control, and positioning navigation. Ultimately, it anticipates the future trajectory of net-cleaning robots, emphasizing their potential for intelligence and sustainability, which could drive the marine aquaculture industry towards a more efficient and eco-friendly era. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

14 pages, 1291 KiB  
Article
Determining Validity and Reliability of an In-Field Performance Analysis System for Swimming
by Dennis-Peter Born, Marek Polach and Craig Staunton
Sensors 2024, 24(22), 7186; https://doi.org/10.3390/s24227186 - 9 Nov 2024
Cited by 1 | Viewed by 1423
Abstract
To permit the collection of quantitative data on start, turn and clean swimming performances in any swimming pool, the aims of the present study were to (1) validate a mobile in-field performance analysis system (PAS) against the Kistler starting block equipped with force [...] Read more.
To permit the collection of quantitative data on start, turn and clean swimming performances in any swimming pool, the aims of the present study were to (1) validate a mobile in-field performance analysis system (PAS) against the Kistler starting block equipped with force plates and synchronized to a 2D camera system (KiSwim, Kistler, Winterthur, Switzerland), (2) assess the PAS’s interrater reliability and (3) provide percentiles as reference values for elite junior and adult swimmers. Members of the Swiss junior and adult national swimming teams including medalists at Olympic Games, World and European Championships volunteered for the present study (n = 47; age: 17 ± 4 [range: 13–29] years; World Aquatics Points: 747 ± 100 [range: 527–994]). All start and turn trials were video-recorded and analyzed using two methods: PAS and KiSwim. The PAS involves one fixed view camera recording overwater start footage and a sport action camera that is moved underwater along the side of the pool perpendicular to the swimming lane on a 1.55 m long monostand. From a total of 25 parameters determined with the PAS, 16 are also measurable with the KiSwim, of which 7 parameters showed satisfactory validity (r = 0.95–1.00, p < 0.001, %-difference < 1%). Interrater reliability was determined for all 25 parameters of the PAS and reliability was accepted for 21 of those start, turn and swimming parameters (ICC = 0.78–1.00). The percentiles for all valid and reliable parameters provide reference values for assessment of start, turn and swimming performance for junior and adult national team swimmers. The in-field PAS provides a mobile method to assess start, turn and clean swimming performance with high validity and reliability. The analysis template and manual included in the present article aid the practical application of the PAS in research and development projects as well as academic works. Full article
Show Figures

Figure 1

19 pages, 4106 KiB  
Article
Design and Computational Modelling of AUV Tunnel Thruster Covers for Efficient Operation
by Christopher McNeill, Zachary Cooper-Baldock and Karl Sammut
J. Mar. Sci. Eng. 2024, 12(11), 2021; https://doi.org/10.3390/jmse12112021 - 9 Nov 2024
Cited by 1 | Viewed by 1763
Abstract
Autonomous underwater vehicles have seen widespread adoption across industrial, scientific, and defence applications. They are typically utilized to perform oceanic mapping, surveillance, and inspection-type missions. Hovering AUVs, used for inspection applications, are over-actuated vehicles incorporating multiple thrusters to enable multiple degrees of freedom [...] Read more.
Autonomous underwater vehicles have seen widespread adoption across industrial, scientific, and defence applications. They are typically utilized to perform oceanic mapping, surveillance, and inspection-type missions. Hovering AUVs, used for inspection applications, are over-actuated vehicles incorporating multiple thrusters to enable multiple degrees of freedom control at a low velocity. These vehicles, however, are extremely energy-limited, owing to their restrictive structural design that prohibits large batteries. This necessitates careful hydrodynamic design to best utilize this limited energy storage. Of particular importance are the hydrodynamic propulsion efficiencies of these vehicles. Whilst the external structure of AUV platforms is relatively well-defined and hydrodynamically optimized, one area has seen limited focus and optimization. This is the immediate surroundings of the propulsion geometry and housing. In this body of work, we propose an adaptation to the traditional through-body tunnel thruster geometry of an over-actuated AUV platform. The modification is the inclusion of a retractable internal thruster cover. Subsequently, a comparison is provided between a clean-hull AUV configuration, one with open through-body thrusters, and one fitted with the designed cover geometry. A comprehensive computational fluid dynamics analysis is then converged and assessed using the Reynolds-Averaged Navier–Stokes equations. The drag and local flow fields are determined, where the covers are found to reduce the drag coefficient and total drag of the AUV by 9.51%, primarily due to a reduction of 9.91% in the pressure drag. These findings highlight the increased operational efficiency of the cover geometry and support the adoption of such covers for energy-constrained AUVs. Full article
(This article belongs to the Special Issue Maritime Efficiency and Energy Transition)
Show Figures

Figure 1

19 pages, 5374 KiB  
Article
Assembly of Chitosan/Caragana Fibers to Construct an Underwater Superelastic 2D Layer-Supported 3D Architecture for Rapid Congo Red Removal
by Ning Luo, Hanwen Ge, Xiangyu Liu, Qingdong He, Wenbo Wang, Wenyuan Ma and Fang Guo
Nanomaterials 2024, 14(18), 1510; https://doi.org/10.3390/nano14181510 - 17 Sep 2024
Cited by 1 | Viewed by 1113
Abstract
Developing environmentally friendly bulk materials capable of easily and thoroughly removing trace amounts of dye pollutants from water to rapidly obtain clean water has always been a goal pursued by researchers. Herein, a green material with a 3D architecture and with strong underwater [...] Read more.
Developing environmentally friendly bulk materials capable of easily and thoroughly removing trace amounts of dye pollutants from water to rapidly obtain clean water has always been a goal pursued by researchers. Herein, a green material with a 3D architecture and with strong underwater rebounding and fatigue resistance ability was prepared by means of the assembly of biopolymer chitosan (CS) and natural caraganate fibers (CKFs) under freezing conditions. The CKFs can randomly and uniformly distribute in the lamellar structure formed during the freezing process of CS and CKFs, playing a role similar to that of “steel bars” in concrete, thus providing longitudinal support for the 3D-architecture material. The 2D layers formed by CS and CKFs as the main basic units can provide the material with a higher strength. The 3D-architecture material can bear the compressive force of a weight underwater for multiple cycles, meeting the requirements for water purification. The underwater compression test shows that the 3D-architecture material can quickly rebound to its original shape after removing the stress. This 3D-architecture material can be used to purify dye-containing water. When its dosage is 3 g/L, the material can remove 99.65% of the Congo Red (CR) in a 50 mg/L dye solution. The adsorption performance of the 3D architecture adsorbent for CR removal in actual water samples (i.e., tap water, seawater) is superior than that of commercial activated carbon. Due to its porous block characteristics, this material can be used for the continuous and efficient treatment of wastewater containing trace amounts of CR dye to obtain pure clean water, meaning that it has great potential for the effective purification of dye wastewater. Full article
Show Figures

Figure 1

24 pages, 12937 KiB  
Article
Structural Design and Horizontal Wave Force Estimation of a Wall-Climbing Robot for the Underwater Cleaning of Jackets
by Shilong Jiao, Xiaojun Zhang, Lingyu Sun, Yusheng Shi and Minglu Zhang
J. Mar. Sci. Eng. 2024, 12(9), 1612; https://doi.org/10.3390/jmse12091612 - 10 Sep 2024
Viewed by 1392
Abstract
Currently, divers face significant safety risks when cleaning marine organisms from the steel structures of offshore underwater platform jackets. Consequently, utilizing robots instead of divers to carry out underwater biofouling removal operations will be an important development direction for the underwater maintenance of [...] Read more.
Currently, divers face significant safety risks when cleaning marine organisms from the steel structures of offshore underwater platform jackets. Consequently, utilizing robots instead of divers to carry out underwater biofouling removal operations will be an important development direction for the underwater maintenance of offshore platforms in the future. In this study, a wall-climbing robot was designed to clean marine organisms from the underwater surface of a platform jacket leg. The overall structure of the underwater cleaning wall-climbing robot is introduced, including the cleaning actuator and the variable curvature-adapted connecting rod mechanism. The corresponding relationship between the variable curvature-adapted connecting rod mechanism and the jacket leg is analyzed in detail. The variable curvature-adapted connecting rod mechanism was optimized using a genetic algorithm to ensure that the underwater cleaning wall-climbing robot can adapt to a minimum diameter of 1 m for the jacket leg. By drawing on Airy wave theory and random wave theory, the Airy wave parameters for waves were analyzed under different sea conditions, considering practical application scenarios. By using Fluent software 2022, a 2D numerical wave tank was constructed to simulate waves under various sea conditions, and the wave surface shapes for different sea states were determined. By building on the Morison equation, a method for calculating the horizontal wave forces on the underwater cleaning wall-climbing robot using the equivalent area and equivalent volume is proposed. By using the two aforementioned methods, the horizontal wave forces on the underwater cleaning wall-climbing robot under specific sea states were determined. The horizontal wave forces of the underwater cleaning wall-climbing robot under different sea conditions were analyzed and simulated in a 3D numerical wave tank. By comparing the theoretical analysis results with the numerical simulation results, where the maximum difference at the extreme points is approximately 11%, the feasibility of the proposed horizontal wave force estimation method was verified. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

12 pages, 4642 KiB  
Article
Transparent Superhydrophobic and Self-Cleaning Coating
by Binbin Zhang, Xiaochen Xue, Lixia Zhao and Baorong Hou
Polymers 2024, 16(13), 1876; https://doi.org/10.3390/polym16131876 - 1 Jul 2024
Cited by 25 | Viewed by 5084
Abstract
Surface roughness and low surface energy are key elements for the artificial preparation of biomimetic superhydrophobic materials. However, the presence of micro-/nanostructures and the corresponding increase in roughness can increase light scattering, thereby reducing the surface transparency. Therefore, designing and constructing superhydrophobic surfaces [...] Read more.
Surface roughness and low surface energy are key elements for the artificial preparation of biomimetic superhydrophobic materials. However, the presence of micro-/nanostructures and the corresponding increase in roughness can increase light scattering, thereby reducing the surface transparency. Therefore, designing and constructing superhydrophobic surfaces that combine superhydrophobicity with high transparency has been a continuous research focus for researchers and engineers. In this study, a transparent superhydrophobic coating was constructed on glass substrates using hydrophobic fumed silica (HF-SiO2) and waterborne polyurethane (WPU) as raw materials, combined with a simple spray-coating technique, resulting in a water contact angle (WCA) of 158.7 ± 1.5° and a sliding angle (SA) of 6.2 ± 1.8°. Characterization tests including SEM, EDS, LSCM, FTIR, and XPS revealed the presence of micron-scale protrusions and a nano-scale porous network composite structure on the surface. The presence of HF-SiO2 not only provided a certain roughness but also effectively reduced surface energy. More importantly, the coating exhibited excellent water-repellent properties, extremely low interfacial adhesion, self-cleaning ability, and high transparency, with the light transmittance of the coated glass substrate reaching 96.1% of that of the bare glass substrate. The series of functional characteristics demonstrated by the transparent superhydrophobic HF-SiO2@WPU coating designed and constructed in this study will play an important role in various applications such as underwater observation windows, building glass facades, automotive glass, and goggles. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Graphical abstract

Back to TopTop