Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (114)

Search Parameters:
Keywords = underwater acoustic network protocols

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1838 KB  
Article
Energy-Partitioned Routing Protocol Based on Advancement Function for Underwater Optical Wireless Sensor Networks
by Tian Bu, Menghao Yuan, Xulong Ji and Yang Qiu
Photonics 2025, 12(9), 878; https://doi.org/10.3390/photonics12090878 - 30 Aug 2025
Viewed by 578
Abstract
Due to increasing demand for the exploration of marine resources, underwater optical wireless sensor networks (UOWSNs) have emerged as a promising solution by offering higher bandwidth and lower latency compared to traditional underwater acoustic wireless sensor networks (UAWSNs), with their existing routing protocols [...] Read more.
Due to increasing demand for the exploration of marine resources, underwater optical wireless sensor networks (UOWSNs) have emerged as a promising solution by offering higher bandwidth and lower latency compared to traditional underwater acoustic wireless sensor networks (UAWSNs), with their existing routing protocols facing challenges in energy consumption and packet forwarding. To address these challenges, this paper proposes an energy-partitioned routing protocol based on an advancement function (EPAR) for UOWSNs. By dynamically classifying the nodes into high-energy and low-energy ones, the proposed EPAR algorithm employs an adaptive weighting strategy to prioritize the high-energy nodes in relay selection, thereby balancing network load and extending overall lifetime. In addition, a tunable advancement function is adopted by the proposed EPAR algorithm by comprehensively considering the Euclidean distance and steering angle toward the sink node. By adjusting a tunable parameter α, the function guides forwarding decisions to ensure energy-efficient and directionally optimal routing. Additionally, by employing a hop-by-hop neighbor discovery mechanism, the proposed algorithm enables each node to dynamically update its local neighbor set, thereby improving relay selection and mitigating the impact of void regions on the packet delivery ratio (PDR). Simulation results demonstrate that EPAR can obtain up to about a 10% improvement in PDR and up to about a 30% reduction in energy depletion, with a prolonged network lifetime when compared to the typical algorithms adopted in the simulations. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

28 pages, 8817 KB  
Article
A Three-Dimensional Routing Protocol for Underwater Acoustic Sensor Networks Based on Fuzzy Logic Reasoning
by Lianyu Sun, Zhiyong Liu, Juan Dong and Jiayi Wang
J. Mar. Sci. Eng. 2025, 13(4), 692; https://doi.org/10.3390/jmse13040692 - 29 Mar 2025
Viewed by 625
Abstract
Underwater acoustic sensor networks (UASNs) play an increasingly crucial role in both civilian and military fields. However, existing routing protocols primarily rely on node position information for forwarding decisions, neglecting link quality and energy efficiency. To address these limitations, we propose a fuzzy [...] Read more.
Underwater acoustic sensor networks (UASNs) play an increasingly crucial role in both civilian and military fields. However, existing routing protocols primarily rely on node position information for forwarding decisions, neglecting link quality and energy efficiency. To address these limitations, we propose a fuzzy logic reasoning adaptive forwarding (FLRAF) routing protocol for three-dimensional (3D) UASNs. First, the FLRAF method redefines a conical forwarding region to prioritize nodes with greater effective advance distance, thereby reducing path deviations and minimizing the total number of hops. Unlike traditional approaches based on pipeline or hemispherical forwarding regions, this design ensures directional consistency in multihop forwarding, which improves transmission efficiency and energy utilization. Second, we design a nested fuzzy inference system for forwarding node selection. The inner inference system evaluates link quality by integrating the signal-to-noise ratio and some metrics related to the packet reception rate. This approach enhances robustness against transient fluctuations and provides a more stable estimation of link quality trends in dynamic underwater environments. The outer inference system incorporates link quality index, residual energy, and effective advance distance to rank candidate nodes. This multimetric decision model achieves a balanced trade-off between transmission reliability and energy efficiency. Simulation results confirm that the FLRAF method outperforms existing protocols under varying node densities and mobility conditions. It achieves a higher packet delivery rate, extended network lifetime, and lower energy consumption. These results demonstrate that the FLRAF method effectively addresses the challenges of energy constraints and unreliable links in 3D UASNs, making it a promising solution for adaptive and energy-efficient underwater communication. Full article
(This article belongs to the Special Issue Maritime Communication Networks and 6G Technologies)
Show Figures

Figure 1

22 pages, 2471 KB  
Article
Underwater Acoustic MAC Protocol for Multi-Objective Optimization Based on Multi-Agent Reinforcement Learning
by Jinfang Jiang, Yiling Dong, Guangjie Han and Gang Su
Drones 2025, 9(2), 123; https://doi.org/10.3390/drones9020123 - 7 Feb 2025
Cited by 1 | Viewed by 1314
Abstract
In underwater acoustic networks (UANs), communication between nodes is susceptible to long propagation delays, limited energy, and channel conflicts, and traditional multi-access control (MAC) protocols cannot easily cope with these challenges. To enhance network throughput and balance channel allocation fairness and energy efficiency, [...] Read more.
In underwater acoustic networks (UANs), communication between nodes is susceptible to long propagation delays, limited energy, and channel conflicts, and traditional multi-access control (MAC) protocols cannot easily cope with these challenges. To enhance network throughput and balance channel allocation fairness and energy efficiency, this paper proposes a multi-objective optimization MAC protocol (MOMA-MAC) based on multi-agent reinforcement learning. MOMA-MAC utilizes a delay reward mechanism combined with the Multi-agent Proximal Policy Optimization Algorithm (MAPPO) to design a dual reward mechanism, which enables agents to adaptively collaborate and compete to optimize the use of network resources. According to experimental results, MOMA-MAC performs noticeably better than traditional MAC protocols and deep reinforcement learning-based methods in terms of throughput, energy efficiency, and fairness in multi-agent scenarios, showing great potential for improving communication efficiency and energy utilization. Full article
(This article belongs to the Topic Advances in Wireless and Mobile Networking)
Show Figures

Figure 1

15 pages, 5765 KB  
Article
An Acoustic Underwater Glider for the Real-Time Transmission of Observation Data via an Underwater Acoustic Communication Modem
by Sichen Zou and Qindong Sun
Sensors 2025, 25(3), 849; https://doi.org/10.3390/s25030849 - 30 Jan 2025
Cited by 2 | Viewed by 1699
Abstract
This paper introduces the development of an acoustic underwater glider integrated with an underwater acoustic modem designed to enable the real-time transmission of ocean observation data. The glider features three sequentially connected, independent compartments and is capable of operating at depths exceeding 1000 [...] Read more.
This paper introduces the development of an acoustic underwater glider integrated with an underwater acoustic modem designed to enable the real-time transmission of ocean observation data. The glider features three sequentially connected, independent compartments and is capable of operating at depths exceeding 1000 m. To ensure stable communication, two acoustic transducers are mounted at the rear of the glider and optimized to maintain a consistent energy radiation angle despite variations in the glider’s attitude. The acoustic modem, housed within one of the compartments, operates with a standby power consumption as low as 5 mW, significantly enhancing the overall energy efficiency of the system. To address the glider’s motion dynamics and the unique characteristics of the underwater acoustic channel, a multi-carrier frequency shift keying-based underwater acoustic communication scheme combined with a Stop-and-Wait Automatic Repeat Request protocol was designed and implemented. The system’s performance and reliability were validated through sea trials conducted in the South China Sea. The results demonstrated that the glider achieved reliable underwater acoustic communication over distances of up to 5 km. This research highlights the potential of the acoustic underwater glider for applications such as underwater acoustic measurements and distributed networking collaboration. The system holds significant promise for advancing underwater acoustic communication and ocean observation technologies. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

32 pages, 12908 KB  
Article
Energy-Efficient and Trust-Based Autonomous Underwater Vehicle Scheme for 6G-Enabled Internet of Underwater Things
by Altaf Hussain, Shuaiyong Li, Tariq Hussain, Razaz Waheeb Attar, Ahmed Alhomoud, Reem Alsagri and Khalid Zaman
Sensors 2025, 25(1), 286; https://doi.org/10.3390/s25010286 - 6 Jan 2025
Cited by 3 | Viewed by 2278
Abstract
This paper introduces a novel energy-efficient lightweight, void hole avoidance, localization, and trust-based scheme, termed as Energy-Efficient and Trust-based Autonomous Underwater Vehicle (EETAUV) protocol designed for 6G-enabled underwater acoustic sensor networks (UASNs). The proposed scheme addresses key challenges in UASNs, such as energy [...] Read more.
This paper introduces a novel energy-efficient lightweight, void hole avoidance, localization, and trust-based scheme, termed as Energy-Efficient and Trust-based Autonomous Underwater Vehicle (EETAUV) protocol designed for 6G-enabled underwater acoustic sensor networks (UASNs). The proposed scheme addresses key challenges in UASNs, such as energy consumption, network stability, and data security. It integrates a trust management framework that enhances communication security through node identification and verification mechanisms utilizing normal and phantom nodes. Furthermore, a 6G communication module is deployed to reduce network delay and enhance packet delivery, contributing to more efficient data transmission. Leveraging Autonomous Underwater Vehicles (AUVs), the EETAUV protocol offers a lightweight approach for node discovery, identification, and verification while ensuring a high data transmission rate through a risk-aware strategy including at low computational cost. The protocol’s performance is evaluated through extensive simulations and compared against state-of-the-art methods across various metrics, including network lifetime, throughput, residual energy, packet delivery ratio, mean square error, routing overhead, path loss, network delay, trust, distance, velocity, Computational Cost of Routing, and data security. The results demonstrate the superior cumulative performance of the proposed EETAUV scheme, making it a robust solution for secure, efficient, and reliable communication in UASNs. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

18 pages, 861 KB  
Article
A Collision Avoidance MAC Protocol with Power Control for Adaptive Clustering Underwater Sensor Networks
by Libin Xue, Hong Lei and Rongxin Zhu
J. Mar. Sci. Eng. 2025, 13(1), 76; https://doi.org/10.3390/jmse13010076 - 4 Jan 2025
Cited by 1 | Viewed by 1151
Abstract
Underwater sensor networks (UWSNs) play a vital role in marine exploration and environmental monitoring. However, due to the characteristics of underwater acoustic channels such as high delay, low bandwidth, and energy limitation, the design of an underwater media access control (MAC) protocol has [...] Read more.
Underwater sensor networks (UWSNs) play a vital role in marine exploration and environmental monitoring. However, due to the characteristics of underwater acoustic channels such as high delay, low bandwidth, and energy limitation, the design of an underwater media access control (MAC) protocol has brought great challenges, and existing MAC protocol designs rarely consider the influence of channel interference factors in networking. Therefore, this paper proposes a collision avoidance MAC protocol for clustering underwater sensor networks. The protocol first classifies users by combining the channel characteristics of underwater nodes and the distance measurement between nodes. Then, based on the clustering network, according to the channel correlation distance measurement between nodes and the communication range of the cluster head (CH), the transmit power in clusters is controlled to reduce the lifetime of the network based on the cumulative reduction in node power consumption. Finally, the cluster structure in each cluster is used to schedule the transmission of member nodes in the cluster, and at the same time, the energy consumption of nodes is reduced while multi-node collision-free transmission is realized. The simulation results show that the throughput of the proposed adaptive power control clustering MAC protocol (APCC-MAC) is 26.5% and 19.5% higher than that of packet-level slot scheduling (PLSS) algorithm and Cluster-Based Spatial–Temporal Scheduling (CSS) algorithm, respectively, providing better communication performance and stability for clustered underwater acoustic networks. Full article
(This article belongs to the Special Issue Intelligent Approaches to Marine Engineering Research)
Show Figures

Figure 1

25 pages, 4284 KB  
Article
Reliable, Energy-Optimized, and Void-Aware (REOVA), Routing Protocol with Strategic Deployment in Mobile Underwater Acoustic Communications
by Muhammad Umar Khan, Muhammad Aamir and Pablo Otero
J. Mar. Sci. Eng. 2024, 12(12), 2215; https://doi.org/10.3390/jmse12122215 - 2 Dec 2024
Viewed by 1073
Abstract
The Underwater Acoustic Sensor Networks have gained significant attention because of their wide range of applications in submerged environments. However, ensuring reliable and energy-efficient communication in the submerged environment is challenging due to their distinctive characteristics such as limited energy resources, dynamic topology, [...] Read more.
The Underwater Acoustic Sensor Networks have gained significant attention because of their wide range of applications in submerged environments. However, ensuring reliable and energy-efficient communication in the submerged environment is challenging due to their distinctive characteristics such as limited energy resources, dynamic topology, extended propagation delays, and node mobility. Additionally, the void hole problem in submerged environments arises due to randomized node deployment. To curtail these issues, this paper introduces a novel way of strategically deploying the nodes based on the underwater depth parameters, which can reduce the likelihood of void hole occurrence. An optimal number of clusters based on the fixed transmission range of cluster heads is used to cater to extensive energy usage. In the proposed routing protocol, the path selection is based on the residual energy, link quality, and proximity to a higher number of nodes. Extensive simulations have been conducted by varying network parameters to analyze the network performance in terms of energy expenditure, packet delivery ratio, network throughput, number of dead nodes, and end-to-end delays. Also, the proposed work provides a performance comparison with some state-of-the-art protocols and exhibits promising results. Full article
(This article belongs to the Special Issue Advanced Control Strategies for Autonomous Maritime Systems)
Show Figures

Figure 1

15 pages, 3839 KB  
Article
Hybrid Duplex Medium Access Control Protocol for Tsunami Early Warning Systems in Underwater Networks
by Sung Hyun Park, Ye Je Choi and Tae Ho Im
Electronics 2024, 13(21), 4288; https://doi.org/10.3390/electronics13214288 - 31 Oct 2024
Cited by 1 | Viewed by 1219
Abstract
Tsunamis are devastating natural phenomena that cause extensive damage to both human life and infrastructure. To mitigate such impacts, tsunami early warning systems have been deployed globally. South Korea has also initiated a project to install a tsunami warning system to monitor its [...] Read more.
Tsunamis are devastating natural phenomena that cause extensive damage to both human life and infrastructure. To mitigate such impacts, tsunami early warning systems have been deployed globally. South Korea has also initiated a project to install a tsunami warning system to monitor its surrounding seas. To ensure reliable warning decisions, various types of data must be combined, but efficiently transmitting heterogeneous data poses a challenge due to the unique characteristics of underwater acoustic communication. Therefore, this paper proposes a Hybrid Duplex Medium Access Control (HDMAC) protocol designed for a tsunami warning system, with a specific focus on heterogeneous data transmission. HDMAC efficiently handles both seismic and environmental data by utilizing hybrid duplexing, which combines frequency duplex for seismic data with time duplex for environmental data. The protocol addresses the distinct transmission requirements for each data type by optimizing channel utilization through a group Automatic Repeat request (ARQ) scheme and packet size adjustment. Theoretical analysis predicts that HDMAC can achieve a channel utilization of up to 0.91 in smaller networks and 0.64 in larger networks. HDMAC is validated through simulations, and the simulation results closely match these predictions. The simulation results demonstrate the efficiency of HDMAC in supporting real-time submarine earthquake monitoring systems. Full article
(This article belongs to the Special Issue New Advances in Underwater Communication Systems)
Show Figures

Figure 1

22 pages, 3309 KB  
Article
Cross-Layer Routing Protocol Based on Channel Quality for Underwater Acoustic Communication Networks
by Jinghua He, Jie Tian, Zhanqing Pu, Wei Wang and Haining Huang
Appl. Sci. 2024, 14(21), 9778; https://doi.org/10.3390/app14219778 - 25 Oct 2024
Viewed by 1313
Abstract
Due to the physical characteristics of acoustic channels, the performance of underwater acoustic communication networks (UACNs) is more susceptible to the impacts of multipath and Doppler effects. Channel quality can serve as a measure of the reliability of underwater communication links. A cross-layer [...] Read more.
Due to the physical characteristics of acoustic channels, the performance of underwater acoustic communication networks (UACNs) is more susceptible to the impacts of multipath and Doppler effects. Channel quality can serve as a measure of the reliability of underwater communication links. A cross-layer routing protocol based on channel quality (CLCQ) is proposed to improve the overall network performance and resource utilization. First, the BELLHOP ray model is used to calculate the channel impulse response combined with the winter sound speed profile data of a specific sea area. Then, the channel impulse response is integrated into the communication system to evaluate the channel quality between nodes based on the bit error rate (BER). Finally, during the selection of the next hop node, a reinforcement learning algorithm is employed to facilitate cross-layer interaction within the protocol stack. The optimal relay node is determined by the channel quality index (BER) from the physical layer, the buffer state from the data link layer, and the node residual energy. To enhance the algorithm’s convergence speed, a forwarding candidate set selection method is proposed which takes into account node depth, residual energy, and buffer state. Simulation results show that the packet delivery rate (PDR) of the CLCQ is significantly higher than that of Q-Learning-Based Energy-Efficient and Lifetime-Extended Adaptive Routing (QELAR) and Geographic and Opportunistic Routing (GEDAR). Full article
(This article belongs to the Special Issue Recent Advances in Underwater Acoustic Signal Processing)
Show Figures

Figure 1

24 pages, 4889 KB  
Article
SSH-MAC: Service-Aware and Scheduling-Based Media Access Control Protocol in Underwater Acoustic Sensor Network
by Hongyu Zhao, Huifang Chen and Lei Xie
Remote Sens. 2024, 16(15), 2718; https://doi.org/10.3390/rs16152718 - 24 Jul 2024
Cited by 1 | Viewed by 1346
Abstract
In the framework of the space-air-ground-ocean integrated network, the underwater acoustic sensor network (UASN) plays a pivotal role. The design of media access control (MAC) protocols is essential for the UASN to ensure efficient and reliable data transmission. From the perspective of differentiated [...] Read more.
In the framework of the space-air-ground-ocean integrated network, the underwater acoustic sensor network (UASN) plays a pivotal role. The design of media access control (MAC) protocols is essential for the UASN to ensure efficient and reliable data transmission. From the perspective of differentiated services in the UASN, a service-aware and scheduling-based hybrid MAC protocol, named the SSH-MAC protocol, is proposed in this paper. In the SSH-MAC protocol, the centralized scheduling strategy is adopted by sensor nodes with environmental monitoring service, and the distributed scheduling strategy is adopted by sensor nodes with target detection service. Considering the time-varying data generation rate of sensor nodes, the sink node will switch the scheduling mode of sensor nodes based on the specific control packet and adjust the resource allocation ratio between centralized scheduling and distributed scheduling. Simulation results show that the performance of the SSH-MAC protocol, in terms of utilization, end-to-end delay, packet delivery ratio, energy consumption, and payload efficiency, is good. Full article
Show Figures

Graphical abstract

22 pages, 4583 KB  
Review
Cooperative Communication Based Protocols for Underwater Wireless Sensors Networks: A Review
by Muhammad Shoaib Khan, Andrea Petroni and Mauro Biagi
Sensors 2024, 24(13), 4248; https://doi.org/10.3390/s24134248 - 29 Jun 2024
Cited by 11 | Viewed by 2618
Abstract
Underwater wireless sensor networks are gaining popularity since supporting a broad range of applications, both military and civilian. Wireless acoustics is the most widespread technology adopted in underwater networks, the realization of which must face several challenges induced by channel propagation like signal [...] Read more.
Underwater wireless sensor networks are gaining popularity since supporting a broad range of applications, both military and civilian. Wireless acoustics is the most widespread technology adopted in underwater networks, the realization of which must face several challenges induced by channel propagation like signal attenuation, multipath and latency. In order to address such issues, the attention of researchers has recently focused on the concept of cooperative communication and networking, borrowed from terrestrial systems and to be conveniently recast in the underwater scenario. In this paper, we present a comprehensive literature review about cooperative underwater wireless sensor networks, investigating how nodes cooperation can be exploited at the different levels of the network protocol stack. Specifically, we review the diversity techniques employable at the physical layer, error and medium access control link layer protocols, and routing strategies defined at the network layer. We also provide numerical results and performance comparisons among the most widespread approaches. Finally, we present the current and future trends in cooperative underwater networks, considering the use of machine learning algorithms to efficiently manage the different aspects of nodes cooperation. Full article
Show Figures

Figure 1

15 pages, 311 KB  
Article
PUF and Chaotic Map-Based Authentication Protocol for Underwater Acoustic Networks
by Qi Xie and Ye Yao
Appl. Sci. 2024, 14(13), 5400; https://doi.org/10.3390/app14135400 - 21 Jun 2024
Cited by 6 | Viewed by 1328
Abstract
A secure and effective authentication and communication scheme between users and underwater sensors plays an important role in improving the detection and utilization of marine resources in underwater acoustic networks (UANs). However, due to the energy limitations and susceptibility to capture of underwater [...] Read more.
A secure and effective authentication and communication scheme between users and underwater sensors plays an important role in improving the detection and utilization of marine resources in underwater acoustic networks (UANs). However, due to the energy limitations and susceptibility to capture of underwater sensors and gateways, it is necessary to design a lightweight authentication protocol that can resist capture of sensors and gateways during attacks. In this paper, a lightweight authentication protocol for UANs based on the Physical Unclonable Function (PUF) and chaotic map is proposed. We used the advantages of PUF to resist sensors and gateways being captured in attacks and the chaotic map to achieve lightweight authentication because the computational cost of the chaotic map is almost one-third that of Elliptic Curve Cryptography (ECC). Additionally, we used the formal security proof in the random oracle model to prove the security of the proposed scheme. Our scheme was more secure and efficient compared with some other related schemes in terms of security and performance requirements, and the proposed scheme is suitable for UANs. Full article
23 pages, 9442 KB  
Article
RAP-MAC: A Robust and Adaptive Pipeline MAC Protocol for Underwater Acoustic String Networks
by Xiaohe Pan, Mengzhuo Liu, Jifeng Zhu, Lipeng Huo, Zheng Peng, Jun Liu and Jun-Hong Cui
Remote Sens. 2024, 16(12), 2195; https://doi.org/10.3390/rs16122195 - 17 Jun 2024
Cited by 4 | Viewed by 1850
Abstract
The development of underwater acoustic networks is a significant expansion of Internet-of-Things technology to underwater environments. These networks are essential for a variety of marine applications. For many practical uses, it is more efficient to collect marine data from a remote location over [...] Read more.
The development of underwater acoustic networks is a significant expansion of Internet-of-Things technology to underwater environments. These networks are essential for a variety of marine applications. For many practical uses, it is more efficient to collect marine data from a remote location over multiple hops, rather than direct point-to-point communications. In this article, we will focus on the underwater acoustic string network (UA-SN) designed for this type of application. We propose a Robust and Adaptive Pipeline Medium Access Control (RAP-MAC) protocol to enhance the network’s transmission efficiency, adaptability, and robustness. The protocol includes a scheduling-based concurrent algorithm, online real-time configuration adjustment function, a rate mode adaptive algorithm, and a fault recovery algorithm. We conducted simulations to compare the new protocol with another representative protocol, validating the RAP-MAC protocol’s adaptability and fault recovery ability. Additionally, we carried out two large-scale sea trials. The results of these experiments indicate that the RAP-MAC protocol ensures effectiveness and reliability in large-scale multihop UA-SNs. In the South China Sea, we were able to achieve a communication distance of 87 km with a throughput of 601.6 bps, exceeding the recognized upper bound of underwater acoustic communication experiment performance by 40 km·kbps. Full article
Show Figures

Figure 1

24 pages, 3357 KB  
Article
Analysis of the Effect of Base Station Motion on Underwater Handovers for Base-Station-Based Underwater Wireless Acoustic Networks
by Changho Yun and Yong-Ju Kwon
Sensors 2024, 24(12), 3797; https://doi.org/10.3390/s24123797 - 12 Jun 2024
Cited by 1 | Viewed by 1387
Abstract
In base-station-based underwater wireless acoustic networks (B-UWANs), effective handover mechanisms are necessary to ensure seamless data services for mobile nodes such as autonomous underwater vehicles (AUVs). Unlike terrestrial base stations (BSs), moored buoy BSs in B-UWANs experience motion responses due to wave loads [...] Read more.
In base-station-based underwater wireless acoustic networks (B-UWANs), effective handover mechanisms are necessary to ensure seamless data services for mobile nodes such as autonomous underwater vehicles (AUVs). Unlike terrestrial base stations (BSs), moored buoy BSs in B-UWANs experience motion responses due to wave loads under environmental conditions, posing unique challenges to the handover process. This study examines how BS motion affects handover decision errors, which arise when AUVs incorrectly initiate handovers to unintended BSs due to BS motion. By utilizing the AUV–BS distance as a handover triggering parameter, our analysis reveals a significant increase in decision errors within the overlapping regions when both the current and target BSs are in motion, especially when moving in the same direction. In addition, these errors intensify with the magnitude of BS motion and are exacerbated by smaller BS network radii. Based on these simulation results, we present an analytical framework that not only measures the influence of BS motion on the AUV–BS distance but also provides strategic insights for refining underwater handover protocols, thereby enhancing operational reliability and service continuity in B-UWANs. Full article
Show Figures

Figure 1

22 pages, 377 KB  
Article
Node Load and Location-Based Clustering Protocol for Underwater Acoustic Sensor Networks
by Haodi Mei, Haiyan Wang, Xiaohong Shen, Zhe Jiang, Yongsheng Yan, Lin Sun and Weiliang Xie
J. Mar. Sci. Eng. 2024, 12(6), 982; https://doi.org/10.3390/jmse12060982 - 11 Jun 2024
Cited by 4 | Viewed by 1415
Abstract
Clustering protocols for underwater acoustic sensor networks (UASNs) have gained widespread attention due to their importance in reducing network complexity. Congestion occurs when the intra-cluster load is greater than the upper limit of the intra-cluster information transmission capacity, which leads to a dramatic [...] Read more.
Clustering protocols for underwater acoustic sensor networks (UASNs) have gained widespread attention due to their importance in reducing network complexity. Congestion occurs when the intra-cluster load is greater than the upper limit of the intra-cluster information transmission capacity, which leads to a dramatic deterioration of network performance despite the reduction of network complexity. To avoid congestion, we propose a node load and location-based clustering protocol for UASNs (LLCP). First, a node load and location-based optimization mechanism is proposed. The number of cluster members is optimized based on node load and location to maximize the number of cluster members while avoiding congestion. Then, a node degree and location-based cluster member selection mechanism is proposed to select the optimal cluster members. Finally, a priority-based clustering mechanism is proposed. The node clustering order is adjusted based on the clustering priority to maximize the reduction of network complexity by increasing the average number of cluster members. Simulation results show that our proposed LLCP minimizes the network complexity while avoiding congestion. Full article
(This article belongs to the Special Issue Underwater Acoustic Communication and Network, 2nd Edition)
Show Figures

Figure 1

Back to TopTop