Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = ultrasonic pulse wave velocity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3363 KiB  
Article
Effect of Elevated Temperature on Mechanical Properties and Shielding Performance of Magnetite–Serpentine Radiation-Proof Concrete
by Dan Wu, Zehua Liu, Zhenfu Chen, Qiongfang Wu and Qiuwang Tao
Materials 2025, 18(12), 2686; https://doi.org/10.3390/ma18122686 - 6 Jun 2025
Viewed by 615
Abstract
High temperatures can induce a range of physical and chemical alterations in radiation-protective concrete, potentially compromising its strength and significantly diminishing its radiation shielding capabilities. Therefore, it is very important to study the high temperature performance of radiation-proof concrete to ensure its safety [...] Read more.
High temperatures can induce a range of physical and chemical alterations in radiation-protective concrete, potentially compromising its strength and significantly diminishing its radiation shielding capabilities. Therefore, it is very important to study the high temperature performance of radiation-proof concrete to ensure its safety and stability in extreme environment. In this study, the magnetite–serpentine radiation-proof concrete is designed with magnetite as coarse aggregate, serpentine as fine aggregate, and Portland cement and granulated blast furnace slag as mixture. The apparent characteristics, mass loss, ultrasonic pulse velocity, mechanical properties, shielding performance, and correlation of this concrete were analyzed through experiments. The results show that the damage degree and relative wave velocity have a good correlation in evaluating the relative mass loss, linear attenuation coefficient, compressive strength, and tensile strength after high temperatures. The compressive strength at 800 °C is 12.2 MPa and the splitting tensile strength is 0.48 MPa; the linear attenuation coefficient of specimen at 800 °C is reduced to 80.9% of that at normal temperature. Meanwhile, penetrating cracks appeared at 600 °C and spalling phenomenon appeared at 800 °C, and better thermal stability and favorable mechanical properties and shielding performance also occurred; thus, suitable radioactive and high temperature environment was determined. The results could provide scientific guidance for nondestructive testing and performance evaluation of shielding structure materials. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

24 pages, 9196 KiB  
Article
Assessment of Anisotropy in Cold In-Place Recycled Materials Using Shear Wave Velocity and Computed Tomography Analysis
by Quentin Lecuru, Yannic Ethier, Alan Carter and Mourad Karray
Infrastructures 2025, 10(5), 115; https://doi.org/10.3390/infrastructures10050115 - 8 May 2025
Viewed by 476
Abstract
Pavement materials like hot mix asphalt (HMA) and cold recycled mixes (CRMs) are typically considered isotropic. This study evaluates the anisotropy of a cold in-place recycled (CIR) material using the shear wave velocity (Vs) parameter. The piezoelectric ring actuator technique (P-RAT) [...] Read more.
Pavement materials like hot mix asphalt (HMA) and cold recycled mixes (CRMs) are typically considered isotropic. This study evaluates the anisotropy of a cold in-place recycled (CIR) material using the shear wave velocity (Vs) parameter. The piezoelectric ring actuator technique (P-RAT) is utilized to assess the Vs parameter in three directions in CIR slabs. Similarly, the ultrasonic pulse velocity (UPV) technique is employed to measure P-wave velocities. Both methods evaluate mechanical properties in multiple directions. Complex modulus tests are conducted to link velocities results to |E*| modulus. Finally, computed tomography (CT) scans are performed on the specimens in order to evaluate anisotropy resulting from aggregate alignment. The Vs obtained using P-RAT and the Vp from UPV indicate anisotropy, as the wave velocities differ across the three directions. Differences range from 0.6 to 11.6% in Vs, influenced by measurement location. UPV results are analysed in relation to the |E*| modulus master curves, demonstrating that the first peak arrival time for the P-wave corresponds with the master curve. CT scan analysis reveals that the aggregates tend to be more aligned in the direction of the compacting wheel’s displacement, which also highlights anisotropy. Full article
(This article belongs to the Special Issue Sustainable and Digital Transformation of Road Infrastructures)
Show Figures

Figure 1

25 pages, 8337 KiB  
Article
Assessment of Precast Concrete Deterioration in Marine Environments Using Non-Destructive Methods
by Tarek Ibrahim Selouma, Walid Fouad Edris, Abd Al-Kader A. Al Sayed, Rashid Al-Marri and Mostafa Shaaban
Buildings 2025, 15(6), 926; https://doi.org/10.3390/buildings15060926 - 15 Mar 2025
Viewed by 991
Abstract
Concrete structures in marine environments face significant degradation due to reinforcement corrosion caused by chloride ingress and sulfate attack. Poor construction quality, inadequate standards, and suboptimal design can further accelerate deterioration. Non-destructive testing (NDT) has proven valuable for durability assessment, yet its application [...] Read more.
Concrete structures in marine environments face significant degradation due to reinforcement corrosion caused by chloride ingress and sulfate attack. Poor construction quality, inadequate standards, and suboptimal design can further accelerate deterioration. Non-destructive testing (NDT) has proven valuable for durability assessment, yet its application remains limited due to the complex microstructural characteristics of concrete. This study establishes a comprehensive procedure for evaluating precast concrete degradation in marine environments using multiple characterization techniques. Two precast concrete elements with different cement types, CEM II A-L 42.5R and CEM I 42.5 R/SR, were analyzed through compressive strength tests, open porosity measurements, mercury intrusion porosimetry (MIP), ultrasonic wave transmission, and scanning electron microscopy (SEM). The results indicate that CEM I 42.5 R/SR exhibits superior compressive strength and lower porosity, making it more durable and suitable for load-bearing applications. Higher ultrasonic pulse velocity (UPV) further confirms its resilience. In contrast, CEM II A-L 42.5R shows lower mechanical performance and greater susceptibility to marine-induced degradation. Over time, pore size distribution shifts, potentially compromising mechanical integrity. SEM analysis reveals gypsum and brucite formation in degraded regions, demonstrating microstructural changes due to seawater exposure. A strong negative correlation between porosity and UPV underscores the detrimental effect of increased porosity on material density and structural stability. This study highlights the effectiveness of UPV and porosity analysis as reliable NDT techniques for assessing concrete deterioration. The strong correlation between UPV and porosity trends suggests that UPV serves as an early indicator of durability loss, enabling timely maintenance interventions. These findings provide valuable insights into material selection for enhanced structural performance in marine environments and emphasize the role of NDT in long-term structural health monitoring. Full article
(This article belongs to the Special Issue Study on the Durability of Construction Materials and Structures)
Show Figures

Figure 1

12 pages, 6050 KiB  
Article
Nondestructive Monitoring of Textile-Reinforced Cementitious Composites Subjected to Freeze–Thaw Cycles
by Nicolas Ospitia, Ali Pourkazemi, Eleni Tsangouri, Thaer Tayeh, Johan H. Stiens and Dimitrios G. Aggelis
Materials 2024, 17(24), 6232; https://doi.org/10.3390/ma17246232 - 20 Dec 2024
Cited by 1 | Viewed by 894
Abstract
Cementitious materials are susceptible to damage not only from mechanical loading, but also from environmental (physical, chemical, and biological) factors. For Textile-Reinforced Cementitious (TRC) composites, durability poses a significant challenge, and a reliable method to assess long-term performance is still lacking. Among various [...] Read more.
Cementitious materials are susceptible to damage not only from mechanical loading, but also from environmental (physical, chemical, and biological) factors. For Textile-Reinforced Cementitious (TRC) composites, durability poses a significant challenge, and a reliable method to assess long-term performance is still lacking. Among various durability attacks, freeze–thaw can induce internal cracking within the cementitious matrix, and weaken the textile–matrix bond. Such cracks result from hydraulic, osmotic, and crystallization pressure arising from the thermal cycles, leading to a reduction in the stiffness in the TRC composites. Early detection of freeze–thaw deterioration can significantly reduce the cost of repair, which is only possible through periodic, full-field monitoring of the composite. Full-field monitoring provides a comprehensive view of the damage distribution, offering valuable insights into the causes and progression of damage. The crack location, size, and pattern give more information than that offered by single-point measurement. While visual inspections are commonly employed for crack assessment, they are often time-consuming. Technological advances now enable crack pattern classification based on high-quality surface images; however, these methods only provide information limited to the surface. Elastic wave-based non-destructive testing (NDT) methods are highly sensitive to the material’s mechanical properties, and therefore are widely used for damage monitoring. On the other hand, electromagnetic wave-based NDTs offer the advantage of fast, non-contact measurements. Micro- and millimeter wave frequencies offer a balance of high resolution and wave penetration, although they have not yet been sufficiently explored for detecting damage in cementitious composites. In this study, TRC specimens were subjected to up to 150 freeze–thaw cycles and monitored using a combination of active elastic and electromagnetic wave-based NDT mapping methods. For this purpose, transmission measurements were conducted at multiple points, with ultrasonic pulse velocity (UPV) employed as a benchmark and, for the first time, millimeter wave (MMW) spectrometry applied. This multi-modal mapping approach enabled the tracking of damage progression, and the identification of degraded zones. Full article
Show Figures

Figure 1

18 pages, 4219 KiB  
Article
Experimental Investigation of Concrete Crack Depth Detection Using a Novel Piezoelectric Transducer and Improved AIC Algorithm
by Weijie Li, Jintao Zhu, Kaicheng Mu, Wenwei Yang, Xue Zhang and Xuefeng Zhao
Buildings 2024, 14(12), 3939; https://doi.org/10.3390/buildings14123939 - 11 Dec 2024
Cited by 3 | Viewed by 1720
Abstract
Ultrasonic pulse velocity (UPV) has shown effectiveness in determining the depth of surface-open cracks in concrete structures. The type of transducer and the algorithm for extracting the arrival time of the ultrasonic signal significantly impact the accuracy of crack depth detection. To reduce [...] Read more.
Ultrasonic pulse velocity (UPV) has shown effectiveness in determining the depth of surface-open cracks in concrete structures. The type of transducer and the algorithm for extracting the arrival time of the ultrasonic signal significantly impact the accuracy of crack depth detection. To reduce the energy loss in piezoceramic-based sensors, a high-performance piezoceramic-enabled smart aggregate (SA) was employed as the ultrasonic transducer. For the extraction of ultrasonic signal arrival time in concrete, a novel characteristic equation was proposed, utilizing the slope of the signal within a shifting window. This equation was subsequently applied to modify Maeda’s function, with the arrival time of ultrasonic waves defined as the moment corresponding to the minimum Akaike information criterion (AIC) value. Six plain concrete specimens with artificial cracks were prepared and one reinforced concrete beam with a load-induced crack was used for validation. The average deviation of the testing of 492 points on 12 human-made cracks was around 5%. The detection results of 11 measurement points of a crack in a reinforced concrete beam show that three measurement points have a deviation of about 17%. The experimental results demonstrated that the novel piezoelectric transducer and improved AIC algorithm exhibit high accuracy in detecting the depth of concrete cracks. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 5226 KiB  
Article
Porous Metal Backing for High-Temperature Ultrasonic Transducers
by Guy Feuillard, Dang Chi Nguyen, Marc Lethiecq, Mathieu Jean and Frédéric Navacchia
Acoustics 2024, 6(4), 1074-1087; https://doi.org/10.3390/acoustics6040058 - 25 Nov 2024
Viewed by 1466
Abstract
Improving the performance of high-temperature ultrasonic transducers is a goal of major importance in many industrial applications. To this aim, we propose to use porous metals that support high temperatures as backings. Thus, the acoustic properties of stainless steel and porous stainless steel [...] Read more.
Improving the performance of high-temperature ultrasonic transducers is a goal of major importance in many industrial applications. To this aim, we propose to use porous metals that support high temperatures as backings. Thus, the acoustic properties of stainless steel and porous stainless steel with porosity of 25% and 35% are determined at ambient temperature and up to 400 °C. Over the temperature range, the longitudinal wave velocity variation is comprised between 5% and 6% in the porous metals. We find that temperature does not significantly affect the attenuation in the material. The pulse-echo response and frequency response of a LiNbO3-based transducer with a porous backing are simulated using a one dimensional electroacoustic model. These simulations, compared to those of a reference transducer, show that the axial resolution with such a design allows these transducers to be used for imaging and/or Non-Destructive Testing and evaluation at high temperature. Full article
Show Figures

Figure 1

16 pages, 71175 KiB  
Article
Acoustic Assessment of Microstructural Deformation Mechanisms on a Cold Rolled Cu30Zn Brass
by María Sosa, Linton Carvajal, Vicente Salinas Barrera, Fernando Lund, Claudio Aguilar and Felipe Castro Cerda
Materials 2024, 17(13), 3321; https://doi.org/10.3390/ma17133321 - 4 Jul 2024
Cited by 2 | Viewed by 1411
Abstract
The relationship between acoustic parameters and the microstructure of a Cu30Zn brass plate subjected to plastic deformation was evaluated. The plate, previously annealed at 550 °C for 30 min, was cold rolled to reductions ranging from 10% to 70%. Linear ultrasonic measurements were [...] Read more.
The relationship between acoustic parameters and the microstructure of a Cu30Zn brass plate subjected to plastic deformation was evaluated. The plate, previously annealed at 550 °C for 30 min, was cold rolled to reductions ranging from 10% to 70%. Linear ultrasonic measurements were performed on each of the nine specimens, corresponding to the nine different reductions, using the pulse-echo method to record the times of flight of longitudinal waves along the thickness axis. Subsequently, acoustic measurements were conducted to determine the nonlinear parameter β through second harmonic generation. Microstructural analysis, carried out by X-ray diffraction, Vickers hardness testing, and optical microscopy, revealed an increase in deformation twins, reaching a maximum at 40% thickness reduction. At higher deformations, the microstructure showed the generation and proliferation of shear bands, coinciding with a decrease in the twinning structure and an increase in dislocation density. The longitudinal wave velocity exhibited a 0.9% decrease at 20% deformation, attributed to dislocations and initial twin formation, followed by a continuous increase up to 2% beyond this point, resulting from the combined effects of twinning and shear banding. The nonlinear parameter β displayed a notable maximum, approximately one order of magnitude greater than its original value, at 40% deformation. This peak correlates with a roughly tenfold increase in twinning fault probability at the same deformation level. Full article
Show Figures

Figure 1

14 pages, 3818 KiB  
Article
Use of Non-Destructive Ultrasonic Techniques as Characterization Tools for Different Varieties of Wine
by José Ángel Corbacho, David Morcuende, Montaña Rufo, Jesús M. Paniagua, María Ángeles Ontalba and Antonio Jiménez
Sensors 2024, 24(13), 4294; https://doi.org/10.3390/s24134294 - 2 Jul 2024
Cited by 1 | Viewed by 2054
Abstract
In this work, we have verified how non-destructive ultrasonic evaluation allows for acoustically characterizing different varieties of wine. For this, a 3.5 MHz transducer has been used by means of an immersion technique in pulse-echo mode. The tests were performed at various temperatures [...] Read more.
In this work, we have verified how non-destructive ultrasonic evaluation allows for acoustically characterizing different varieties of wine. For this, a 3.5 MHz transducer has been used by means of an immersion technique in pulse-echo mode. The tests were performed at various temperatures in the range 14–18 °C. The evaluation has been carried out studying, on the one hand, conventional analysis parameters (velocity and attenuation) and, on the other, less conventional parameters (frequency components). The experimental study comprised two stages. In the first, the feasibility of the study was checked by inspecting twelve samples belonging to six varieties of red and white wine. The results showed clearly higher ultrasonic propagation velocity values in the red wine samples. In the second, nine samples of different monovarietal wine varieties (Grenache, Tempranillo and Cabernet Sauvignon) were analyzed. The results show how ultrasonic velocity makes it possible to unequivocally classify the grape variety used in winemaking with the Cabernet Sauvignon variety having the highest values and the Grenache the lowest. In addition, the wines of the Tempranillo variety are those that present higher values of the attenuation coefficient, and those from the Grenache variety transmit higher frequency waves. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

15 pages, 2081 KiB  
Review
Methodology for Determining the Correct Ultrasonic Pulse Velocity in Concrete
by Uldis Lencis, Aigars Udris, Patricia Kara De Maeijer and Aleksandrs Korjakins
Buildings 2024, 14(3), 720; https://doi.org/10.3390/buildings14030720 - 7 Mar 2024
Cited by 9 | Viewed by 3465
Abstract
Quite often, concrete strength parameters must be determined in the shortest possible time. Due to the strong correlation between concrete’s mechanical and acoustic properties, ultrasonic devices can be used for this purpose. However, the ultrasonic pulse velocity (UPV) is influenced by a variety [...] Read more.
Quite often, concrete strength parameters must be determined in the shortest possible time. Due to the strong correlation between concrete’s mechanical and acoustic properties, ultrasonic devices can be used for this purpose. However, the ultrasonic pulse velocity (UPV) is influenced by a variety of factors, including the curing and exploitation conditions of the concrete, the presence of reinforcement, and other various physical factors. Ignoring these factors may contribute to the misinterpretation of the measurement data when determining the strength of the concrete. Typically, all these factors are analyzed independently. This publication consolidates the findings obtained from our research efforts and field expertise over the past two decades. It outlines the elaborated UPV measurement methodology based on the integration of a four-argument function: the hydration process phase of the hardened cement paste (or concrete aged three days and older), hardening (curing) condition, concrete moisture level, and ambient temperature. To understand the interactions of the key factors, different ultrasonic devices were used to measure the velocities of longitudinal and surface waves in concrete by applying direct and indirect transmission methods when concrete specimens were tested under different moisture and temperature conditions. Full article
(This article belongs to the Special Issue Experiment and Analysis of Building Structures)
Show Figures

Figure 1

25 pages, 1787 KiB  
Article
Frequency-Resolved High-Frequency Broadband Measurement of Acoustic Longitudinal Waves by Laser-Based Excitation and Detection
by Felix Brand and Klaus Stefan Drese
Sensors 2024, 24(5), 1630; https://doi.org/10.3390/s24051630 - 1 Mar 2024
Cited by 1 | Viewed by 1809
Abstract
Optoacoustics is a metrology widely used for material characterisation. In this study, a measurement setup for the selective determination of the frequency-resolved phase velocities and attenuations of longitudinal waves over a wide frequency range (3–55 MHz) is presented. The ultrasonic waves in [...] Read more.
Optoacoustics is a metrology widely used for material characterisation. In this study, a measurement setup for the selective determination of the frequency-resolved phase velocities and attenuations of longitudinal waves over a wide frequency range (3–55 MHz) is presented. The ultrasonic waves in this setup were excited by a pulsed laser within an absorption layer in the thermoelastic regime and directed through a layer of water onto a sample. The acoustic waves were detected using a self-built adaptive interferometer with a photorefractive crystal. The instrument transmits compression waves only, is low-contact, non-destructive, and has a sample-independent excitation. The limitations of the approach were studied both by simulation and experiments to determine how the frequency range and precision can be improved. It was shown that measurements are possible for all investigated materials (silicon, silicone, aluminium, and water) and that the relative error for the phase velocity is less than 0.2%. Full article
(This article belongs to the Special Issue Acoustic and Ultrasonic Sensing Technology in Non-Destructive Testing)
Show Figures

Figure 1

14 pages, 4461 KiB  
Article
Freeze–Thaw Damage Characteristics of Concrete Based on Compressive Mechanical Properties and Acoustic Parameters
by Dongye Lv, Hanbing Liu, Feng He, Wensheng Wang, Qiang Miao, Hanjun Li, Fuen Wang, Jing Zhao and Chengwei Shi
Materials 2024, 17(5), 1010; https://doi.org/10.3390/ma17051010 - 22 Feb 2024
Cited by 10 | Viewed by 2877
Abstract
Concrete is a versatile material widely used in modern construction. However, concrete is also subject to freeze–thaw damage, which can significantly reduce its mechanical properties and lead to premature failure. Therefore, the objective of this study was to assess the laboratory performance and [...] Read more.
Concrete is a versatile material widely used in modern construction. However, concrete is also subject to freeze–thaw damage, which can significantly reduce its mechanical properties and lead to premature failure. Therefore, the objective of this study was to assess the laboratory performance and freeze–thaw damage characteristics of a common mix proportion of concrete based on compressive mechanical tests and acoustic technologies. Freeze–thaw damage characteristics of the concrete were evaluated via compressive mechanical testing, mass loss analysis, and ultrasonic pulse velocity testing. Acoustic emission (AE) technology was utilized to assess the damage development status of the concrete. The outcomes indicated that the relationships between cumulative mass loss, compressive strength, and ultrasonic wave velocity and freeze–thaw cycles during the freezing–thawing process follow a parabola fitting pattern. As the freeze–thaw damage degree increased, the surface presented a trend of “smooth intact surface” to “surface with dense pores” to “cement mortar peeling” to “coarse aggregates exposed on a large area”. Therefore, there was a rapid decrease in the mass loss after a certain number of freeze–thaw cycles. According to the three stages divided by the stress–AE parameter curve, the linear growth stage shortens, the damage accumulation stage increases, and the failure stage appears earlier with the increase in freeze–thaw cycles. In conclusion, the application of a comprehensive understanding of freeze–thaw damage characteristics of concrete based on compressive properties and acoustic parameters would enhance the evaluation of the performance degradation and damage status for concrete structures. Full article
Show Figures

Figure 1

16 pages, 4427 KiB  
Article
Durability of Concrete with Superabsorbent Polymer (SAP) Assessed Using Depth of Carbonation and NDT Ultrasonic Methods
by Joanna Julia Sokołowska
Materials 2024, 17(4), 906; https://doi.org/10.3390/ma17040906 - 15 Feb 2024
Cited by 3 | Viewed by 2058
Abstract
The paper concerns destructive and non-destructive (NDT) evaluation of the effect of the addition of superabsorbent polymer (SAP) used as a carrier of mixing water and a means of internal curing on the durability of concrete. The research concerns testing of five concretes—an [...] Read more.
The paper concerns destructive and non-destructive (NDT) evaluation of the effect of the addition of superabsorbent polymer (SAP) used as a carrier of mixing water and a means of internal curing on the durability of concrete. The research concerns testing of five concretes—an ordinary reference concrete and four concretes differing in the content of mixing water introduced into the concrete mix in the form of pre-saturated SAP particles (25%, two variants of 50% and 75% of the total mixing water in the form of SAP hydrogel). The research consisted of 4 stages of tests. The subsequent stages involved the analysis of the effect of using SAP as a carrier of mixing water on the particular characteristics of concrete mix and hardened concrete, i.e., consistency and density of concrete mix (1st stage), carbonation tested using two indicators—phenolphthalein and thymol phenolphthalein (2nd stage), and finally: the homogeneity of the concretes’ structure by means of ultrasonic method (determination of ultrasonic pulse velocity) 28 days after production (3rd stage) and 3 years after production (4th stage). The ultrasonic pulse (or wave) velocity was then correlated with the content of water applied in the form of SAP hydrogel. The statistical analysis of results showed that the method of introducing the mixing water into the concrete mix in the form of pre-absorbed superabsorbent polymer, although it changed the concrete mix consistency, did not significantly affect the concrete ability to resist carbonation. Meanwhile, after 3 years, the densification of the microstructure of concrete with SAP has been observed. Full article
(This article belongs to the Special Issue Advances in Cement, Lime and Concrete)
Show Figures

Figure 1

15 pages, 6239 KiB  
Article
Assessment of a Non-Destructive Testing Method Using Ultrasonic Pulse Velocity to Determine the Compressive Strength of Rubberized Bricks Produced with Lime Kiln Dust Waste
by Joy Ayankop Oke and Hossam Abuel-Naga
Geotechnics 2023, 3(4), 1294-1308; https://doi.org/10.3390/geotechnics3040070 - 1 Dec 2023
Cited by 6 | Viewed by 2128
Abstract
This paper presents a comprehensive study in which non-destructive testing utilizing ultrasonic pulse velocity (UPV), considering both pressure (P) waves and shear (S) waves, was used to assess the compressive strength (CS) of rubberized bricks. These innovative bricks were manufactured by blending lime [...] Read more.
This paper presents a comprehensive study in which non-destructive testing utilizing ultrasonic pulse velocity (UPV), considering both pressure (P) waves and shear (S) waves, was used to assess the compressive strength (CS) of rubberized bricks. These innovative bricks were manufactured by blending lime kiln dust (LKD) waste with ground granulated blast furnace slag (GGBFS), sand, and fine waste tire crumb rubber (WTCR). This study introduces mathematical models to explain the relationships between the results of destructive tests (DTs), specifically compression strength (CS) tests, and non-destructive tests (NDTs) employing UPV. These models were subsequently used to conduct validation exercises to accurately predict the strength of the rubberized bricks produced. The outcomes of the validation tests underscore the effectiveness of the UPV method in predicting the CS of rubberized eco-friendly bricks produced using an LKD-GGBFS blend. Importantly, the prediction using the power model exhibited minimal errors, confirming the utility of the UPV method as a reliable tool for assessing the compressive strength of such sustainable construction materials. This research contributes to advancing the field of eco-friendly construction materials and highlights the practical applicability of non-destructive ultrasonic testing in assessing their structural properties. Full article
(This article belongs to the Special Issue Recent Advances in Geotechnical Engineering (2nd Edition))
Show Figures

Figure 1

17 pages, 13075 KiB  
Article
Micromechanics and Ultrasonic Propagation in Consolidated Earthen-Site Soils
by Yingmin Zhang, Guang Yang, Dongxu Liu, Wenwu Chen and Lizhi Sun
Materials 2023, 16(22), 7117; https://doi.org/10.3390/ma16227117 - 10 Nov 2023
Viewed by 1215
Abstract
Although nondestructive ultrasonic technologies have been applied in laboratory and field tests in the field of heritage conservation, few studies have quantified the relationship among the real microstructures, micromechanical properties, and macroscopic acoustic responses of earthen-site soils. This paper develops a micromechanics-based multiscale [...] Read more.
Although nondestructive ultrasonic technologies have been applied in laboratory and field tests in the field of heritage conservation, few studies have quantified the relationship among the real microstructures, micromechanical properties, and macroscopic acoustic responses of earthen-site soils. This paper develops a micromechanics-based multiscale model for quantitatively exploring the ultrasonic propagation characteristics of elastic waves in untreated and consolidated earthen-site soils. Scanning electron microscope images and image processing technology are integrated into the finite-element simulation. The effects of microstructure and wave features on the acoustic characteristics of soils are quantitatively investigated under pulsive loading. The simulation results of untreated and consolidated soils are efficiently compared to ultrasonic test data. It is demonstrated that the integration of microstructure image processing and multiscale modeling can predict the ultrasonic pulse velocity well, which improves the accuracy of laboratory testing and field monitoring and better serves the evaluation and implementation of engineering practice in the field of heritage conservation. Full article
(This article belongs to the Special Issue Smart Non-destructive Testing and Inspection of Engineering Materials)
Show Figures

Figure 1

20 pages, 2477 KiB  
Article
Stress-Dependent Petrophysical Properties of the Bakken Unconventional Petroleum System: Insights from Elastic Wave Velocities and Permeability Measurements
by Prasad Pothana, Ghoulem Ifrene and Kegang Ling
Fuels 2023, 4(4), 397-416; https://doi.org/10.3390/fuels4040025 - 30 Sep 2023
Cited by 6 | Viewed by 2202
Abstract
The net-effective stress is a fundamental physical property that undergoes dynamic changes in response to variations in pore pressure during production and injection activities. Petrophysical properties, including porosity, permeability, and wave velocities, play a critical role and exhibit strong dependence on the mechanical [...] Read more.
The net-effective stress is a fundamental physical property that undergoes dynamic changes in response to variations in pore pressure during production and injection activities. Petrophysical properties, including porosity, permeability, and wave velocities, play a critical role and exhibit strong dependence on the mechanical stress state of the formation. The Williston basin’s Bakken Formation represents a significant reservoir of hydrocarbons within the United States. To investigate this formation, we extracted core plugs from three distinct Bakken members, namely Upper Bakken, Middle Bakken, and Lower Bakken. Subsequently, we conducted a series of measurements of ultrasonic compressional and shear wave velocities, as well as pulse decay permeabilities using nitrogen, under various confining pressures employing the Autolab-1500 apparatus. Our experimental observations revealed that the ultrasonic wave velocities and permeability display a significant sensitivity to stress changes. We investigated existing empirical relationships on velocity-effective stress, compressional-shear wave velocities, and permeability-effective stress, and proposed the best models and associated fitting parameters applicable to the current datasets. In conjunction with the acquired datasets, these models have considerable potential for use in time-lapse seismic monitoring and the study of production decline behavior. The best fitting models can be used to forecast the petrophysical and geomechanical property changes as the reservoir pore pressure is depleted due to the production, which is critical to the production forecast for unconventional reservoirs. Full article
Show Figures

Figure 1

Back to TopTop