Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (183)

Search Parameters:
Keywords = ultrasonic casting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2337 KiB  
Article
Thermoplastic and Biocompatible Materials Based on Block Copolymers of Chitosan and Poly(ε-caprolactone)
by Ivan Lednev, Sergey Zaitsev, Ekaterina Maltseva, Roman Kovylin and Larisa Smirnova
Polysaccharides 2025, 6(3), 63; https://doi.org/10.3390/polysaccharides6030063 - 16 Jul 2025
Viewed by 420
Abstract
The development of materials based on chitosan and polyesters that possess thermoplastic, biocompatible, and biodegradable properties is a perspective for additive technologies in biomedicine. Research on obtaining such compositions is constrained because the polysaccharide content does not exceed 5 wt.%, which cannot ensure [...] Read more.
The development of materials based on chitosan and polyesters that possess thermoplastic, biocompatible, and biodegradable properties is a perspective for additive technologies in biomedicine. Research on obtaining such compositions is constrained because the polysaccharide content does not exceed 5 wt.%, which cannot ensure effective tissue regeneration. Herein, we propose a method for obtaining thermoplastic block copolymers based on chitosan and poly(ε-caprolactone) by ultrasonic irradiation of a homogeneous solution of a homopolymer mixture in dimethyl sulfoxide as a common solvent, achieving a yield of 99%. The distinctive feature of the method is the interaction between the components at the molecular level and provides obtaining copolymers at any component ratio. SEM images revealed a homogeneous structure without structural defects in both solvent-cast films and extruded filaments. The block copolymers were characterized by high mechanical property tensile strength of up to 60–70 MPa and elasticity of up to 35% for films and 25–40 MPa and elasticity of up to 50% for filaments. Cell adhesion of composition investigated on fibroblast cells (hTERT BJ-5TA) is at the level of chitosan and demonstrated the absence of cytotoxicity. Full article
Show Figures

Figure 1

17 pages, 4407 KiB  
Article
Effect of T6 and T8 Ageing on the Mechanical and Microstructural Properties of Graphene-Reinforced AA2219 Composites for Hydrogen Storage Tank Inner Liner Applications
by Bharathiraja Parasuraman, Ashwath Pazhani, Anthony Xavior Michael, Sudhagar Pitchaimuthu and Andre Batako
J. Compos. Sci. 2025, 9(7), 328; https://doi.org/10.3390/jcs9070328 - 25 Jun 2025
Viewed by 377
Abstract
This study examines the mechanical and microstructural properties of graphene-reinforced AA2219 composites developed for hydrogen storage tank inner liner applications. A novel processing route combining high-energy ball milling, ultrasonic-assisted stir casting, and squeeze casting was used to achieve homogeneous dispersion of 0.5 wt.% [...] Read more.
This study examines the mechanical and microstructural properties of graphene-reinforced AA2219 composites developed for hydrogen storage tank inner liner applications. A novel processing route combining high-energy ball milling, ultrasonic-assisted stir casting, and squeeze casting was used to achieve homogeneous dispersion of 0.5 wt.% graphene nanoplatelets and minimise agglomeration. The composites were subjected to T6 and T8 ageing treatments to optimize their properties. Microstructural analysis revealed refined grains, uniform Al2Cu precipitate distribution, and stable graphene retention. Mechanical testing showed that the as-cast composite exhibited a UTS of 308.6 MPa with 13.68% elongation. After T6 treatment, the UTS increased to 353.6 MPa with an elongation of 11.24%. T8 treatment further improved the UTS to 371.5 MPa, with an elongation of 8.54%. Hardness improved by 46%, from 89.6 HV (as-cast) to 131.3 HV (T8). Fractography analysis indicated a shift from brittle to ductile fracture modes after heat treatment. The purpose of this work is to develop lightweight, high-strength composites for hydrogen storage applications. The novelty of this study lies in the integrated processing approach, which ensures uniform graphene dispersion and superior mechanical performance. The results demonstrate the suitability of these composites for advanced aerospace propulsion systems. Full article
(This article belongs to the Special Issue Composite Materials for Hydrogen Storage)
Show Figures

Figure 1

23 pages, 7235 KiB  
Article
Corrosion Resistance Behavior of Mg-Zn-Ce/MWCNT Magnesium Nanocomposites Synthesized by Ultrasonication-Assisted Hybrid Stir–Squeeze Casting for Sacrificial Anode Applications
by S. C. Amith, Poovazhagan Lakshmanan, Gnanavelbabu Annamalai, Manoj Gupta and Arunkumar Thirugnanasambandam
Metals 2025, 15(6), 673; https://doi.org/10.3390/met15060673 - 17 Jun 2025
Viewed by 310
Abstract
The influence of multiwall carbon nanotube (MWCNT) reinforcements on electrochemical corrosion investigations at varying NaCl concentrations (0.4 M, 0.6 M, 0.8 M, 1 M) of Mg-Zn-Ce nanocomposites is studied in this work. The Mg-Zn-Ce/MWCNT nanocomposites were developed by using an ultrasonication-assisted hybrid stir–squeeze [...] Read more.
The influence of multiwall carbon nanotube (MWCNT) reinforcements on electrochemical corrosion investigations at varying NaCl concentrations (0.4 M, 0.6 M, 0.8 M, 1 M) of Mg-Zn-Ce nanocomposites is studied in this work. The Mg-Zn-Ce/MWCNT nanocomposites were developed by using an ultrasonication-assisted hybrid stir–squeeze (UHSS) casting method with different MWCNT concentrations (0, 0.4, 0.8, 1.2 wt.%) in a Mg-Zn-Ce magnesium alloy matrix. The microstructural characterizations shown using X-ray diffraction revealed the presence of secondary phases (MgZn2, Mg12Ce), T-phase (Mg7Zn3RE), α-Mg, and MWCNT peaks. Optical microscopy results showed grain refinement in the case of nanocomposites. Transmission electron microscope studies revealed well-dispersed MWCNT, indicating the good selection of processing parameters. The uniform dispersion of MWCNTs was achieved due to a hybrid stirring mechanism along with transient cavitation, ultrasonic streaming, and squeeze effect. The higher Ecorr value of −1.39 V, lower Icorr value (5.81 µA/cm2), and lower corrosion rate of 0.1 mm/Yr (↑77%) were obtained by 0.8% nanocomposite at 0.4 M NaCl concentration, when compared to the monolithic alloy. The Mg(OH)2 passive film formation on 0.8 wt.% nanocomposite was denser, attributed to the refined grains. At higher NaCl concentration, the one-dimensional morphological advantage of MWCNT helped to act as a barrier for further Mg exposure to excessive Cl attack, which reduced the formation of MgCl2. Therefore, the UHSS-casted Mg-Zn-Ce/MWCNT nanocomposites present a good potential as sacrificial anodes for use in a wide range of industrial applications. Full article
(This article belongs to the Special Issue Advances in Corrosion and Protection of Materials (Third Edition))
Show Figures

Figure 1

23 pages, 15965 KiB  
Article
Parametric Optimization of Dry Sliding Wear Attributes for AlMg1SiCu Hybrid MMCs: A Comparative Study of GRA and Entropy-VIKOR Methods
by Krishna Prafulla Badi, Srinivasa Rao Putti, Maheswara Rao Chapa and Muralimohan Cheepu
J. Compos. Sci. 2025, 9(6), 297; https://doi.org/10.3390/jcs9060297 - 10 Jun 2025
Viewed by 499
Abstract
In recent days, aluminum-based hybrid composites have garnered more interest than monolithic alloys owing to their remarkable properties, encompassing a high strength-to-weight ratio, excellent corrosion resistance, and impressive wear durability. The present study attempts to optimize the multiple wear attribute characteristics of Al6061/SiC/Al [...] Read more.
In recent days, aluminum-based hybrid composites have garnered more interest than monolithic alloys owing to their remarkable properties, encompassing a high strength-to-weight ratio, excellent corrosion resistance, and impressive wear durability. The present study attempts to optimize the multiple wear attribute characteristics of Al6061/SiC/Al2O3 hybrid composites using grey and entropy-based VIKOR techniques. The composites were produced by adding equal proportions of SiC/Al2O3 (0–12 wt.%) ceramics through the stir-casting process, using an ultrasonication setup. Dry sliding wear experiments were executed with tribometer variants, namely reinforcement content (wt.%), load (N), sliding velocity (v), and sliding distance (SD), following L27 OA. The optimal combination of process variables for achieving high GRG values from grey analysis was found to be A3-B3-C3-D3. The S/N ratios and ANOVA results for GRG indicated that RF content (wt.%) is the predominant component determining multiple outcomes, followed by sliding distance, load, and sliding velocity. The multi-order regression model formulated for the VIKOR index (Qi) displayed high significance and more accuracy, with a variance of 0.0216 and a coefficient of determination (R2), and adjusted R2 values of 99.60% and 99.14%. Subsequent morphological studies indicated that plowing, abrasion, and adhesion mechanisms are the dominant modes of wear. Full article
(This article belongs to the Special Issue Recent Progress in Hybrid Composites)
Show Figures

Figure 1

15 pages, 6253 KiB  
Article
Performance and Mechanism on Sand Mold Ultrasonic Milling
by Bailiang Zhuang, Zhongde Shan, Zhuozhi Zhu, Di Ding and Qi Zhao
Coatings 2025, 15(6), 633; https://doi.org/10.3390/coatings15060633 - 25 May 2025
Viewed by 405
Abstract
Sand mold milling plays a critical role in digital mold-free casting, but it is prone to damage such as corner collapse, collapse, and cracks during the machining process. To address this issue, ultrasonic vibration was used for sand mold milling in this study. [...] Read more.
Sand mold milling plays a critical role in digital mold-free casting, but it is prone to damage such as corner collapse, collapse, and cracks during the machining process. To address this issue, ultrasonic vibration was used for sand mold milling in this study. By incorporating the solid–liquid transition model for sand mold cutting and considering the deformation characteristics of the shear zone, a prediction model for ultrasonic milling forces in sand mold was developed and experimentally validated. The results demonstrate that increasing the spindle speed and decreasing the feed rate lead to a decrease in cutting force. At high speeds, there is a 15% error between the dynamic milling force model and experimental values. Compared with conventional processing methods, ultrasonic processing reduces cutting force by 19.5% at a frequency of 25.8 kHz and amplitude of 2.97 μm, minimizes defects like sand particle detachment pits on the surface of sand mold, significantly improves surface quality, and enables precise, stable, high-precision, and efficient sand mold processing. Full article
(This article belongs to the Special Issue Cutting Performance of Coated Tools)
Show Figures

Figure 1

13 pages, 4270 KiB  
Article
Fabricating a Three-Dimensional Surface-Enhanced Raman Scattering Substrate Using Hydrogel-Loaded Freeze-Induced Silver Nanoparticle Aggregates for the Highly Sensitive Detection of Organic Pollutants in Seawater
by Hai Liu, Yufeng Hu and Zhiyang Zhang
Sensors 2025, 25(8), 2575; https://doi.org/10.3390/s25082575 - 18 Apr 2025
Cited by 2 | Viewed by 556
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy faces challenges in achieving both high sensitivity and reproducibility for the detection of real samples, particularly in high-salinity matrices. In this study, we developed a high-performance, salt-resistant three-dimensional (3D) SERS substrate by integrating physically induced colloidal silver nanoparticle [...] Read more.
Surface-enhanced Raman scattering (SERS) spectroscopy faces challenges in achieving both high sensitivity and reproducibility for the detection of real samples, particularly in high-salinity matrices. In this study, we developed a high-performance, salt-resistant three-dimensional (3D) SERS substrate by integrating physically induced colloidal silver nanoparticle aggregates (AgNAs) with an agarose hydrogel. AgNAs were prepared using a freeze–thaw–ultrasonication method to minimize interference in SERS signals while significantly enhancing the detection efficiency of trace pollutants. The incorporation of the agarose hydrogel not only improved the substrate’s pollutant enrichment capability, but also effectively prevented the aggregation and sedimentation of AgNAs in salt solutions. The developed SERS substrate exhibited an ultralow detection limit of 10−12 M for Nile Blue (NB), with a 100-fold increase in sensitivity compared to colloidal AgNAs and drop-cast AgNAs solid substrates. The analytical enhancement factor (AEF) for malachite green (MG) achieved a value of 1.4 × 107. Furthermore, the substrate demonstrated excellent signal uniformity, with a relative standard deviation (RSD) of 6.74% within a 200 μm × 200 μm detection area and also show a satisfactory RSD of only 9.38% within a larger area of 1 mm × 1 mm. Notably, the 3D SERS substrate exhibited excellent stability under high-salinity conditions (0.5 M NaCl) and successfully detected a model pollutant (MG) in real seawater samples using the standard addition method. This study provides a novel strategy for highly sensitive SERS detection of trace pollutants in saline environments, offering promising applications in environmental monitoring and marine pollution analysis. Full article
(This article belongs to the Special Issue Optical Nanosensors for Environmental and Biomedical Monitoring)
Show Figures

Figure 1

41 pages, 8599 KiB  
Review
Intermetallic Phase Control in Cast Aluminum Alloys by Utilizing Heterogeneous Nucleation on Oxides
by Gábor Gyarmati and János Erdélyi
Metals 2025, 15(4), 404; https://doi.org/10.3390/met15040404 - 4 Apr 2025
Viewed by 1026
Abstract
With the increasing demand for premium-quality aluminum alloy castings that can be used as safety-critical structural components, as well as the rising urge to utilize sustainable materials during the manufacturing process, novel technologies need to be developed and implemented during the treatment of [...] Read more.
With the increasing demand for premium-quality aluminum alloy castings that can be used as safety-critical structural components, as well as the rising urge to utilize sustainable materials during the manufacturing process, novel technologies need to be developed and implemented during the treatment of liquid alloys. Impurity and alloying elements accumulate in recycled aluminum alloys, which frequently results in the formation of coarse intermetallic compound (IMC) particles in the microstructure that have a detrimental effect on the ductility of cast products. One successful approach to alleviate this negative effect relies on affecting the phase selection and refinement of IMC phases. A growing body of literature has shown that the crystallization process of IMCs is affected by the native oxide phases present in the liquid alloys. It has also been demonstrated that by appropriate technologies, harmful oxide inclusion (like oxide bifilms) can be transformed into small-sized oxide particles that can be dispersed throughout the liquid alloy to serve as heterogeneous nucleation sites for different phases. In this way, the adverse effects of oxide inclusions and IMCs are simultaneously mitigated. This contribution aims to review the recent progress of experimental and theoretical work related to intermetallic particle refinement by oxide phases. Emerging technological solutions capable of refining intermetallics through transforming harmful oxide inclusions into numerous, well-dispersed heterogeneous nucleation sites are comprehensively reviewed. Besides analyzing the current state of these techniques, this discussion evaluates their future implications and the potential challenges that may arise in their application and development. Full article
Show Figures

Figure 1

21 pages, 50829 KiB  
Article
Strengthening the Cavitation Resistance of Cylinder Liners Using Surface Treatment with Electroless Ni-P (ENP) Plating and High-Temperature Heat Treatment
by Wenjuan Zhang, Hao Gao, Qianting Wang, Dong Liu and Enlai Zhang
Materials 2025, 18(5), 1087; https://doi.org/10.3390/ma18051087 - 28 Feb 2025
Cited by 1 | Viewed by 689
Abstract
As internal combustion engines (ICEs) develop towards higher explosion pressures and lower weights, their structures need to be more compact; thus, the wall thickness of their cylinder liners is reducing. However, intense vibrations in the cylinder liner can lead to coolant cavitation and, [...] Read more.
As internal combustion engines (ICEs) develop towards higher explosion pressures and lower weights, their structures need to be more compact; thus, the wall thickness of their cylinder liners is reducing. However, intense vibrations in the cylinder liner can lead to coolant cavitation and, in severe cases, penetration of the liner, posing a significant reliability issue for ICEs. Therefore, research on cylinder liner cavitation has attracted increasing interest. Gray cast iron is widely used in cylinder liners for its hardness and wear resistance; however, additional surface plating is necessary to improve cavitation resistance. This study developed a novel surface-modification technology using electroless Ni-P plating combined with high-temperature heat treatment to create cylinder liners with refined grains, low weight loss rate, and high hardness. The heat-treatment temperature ranged from 100 to 600 °C. An ultrasonic cavitation tester was used to simulate severe cavitation conditions, and we analyzed and compared Ni-P-plated and heat-treated Ni-P-plated surfaces. The findings showed that the combination of Ni-P plating with high-temperature heat treatment led to smoother, more refined surface grains and the formation of cellular granular structures. After heat treatment, the plating structure converted from amorphous to crystalline. From 100 to 600 °C, the weight loss of specimens was within the range of 0.162% to 0.573%, and the weight loss (80.2% lower than the plated surface) and weight loss rate at 600 °C were the smallest. Additionally, cavitation resistance improved by 80.1%. The microhardness of the heat-treated plated surface reached 895 HV at 600 °C, constituting a 306 HV (65.8%) increase compared with that of the unplated surface, and a 560 HV increase compared with that of the maximum hardness of the plated surface without heat treatment of 335 HV, with an enhancement rate of 62.6%. Full article
(This article belongs to the Special Issue Research on Performance Improvement of Advanced Alloys)
Show Figures

Figure 1

56 pages, 16932 KiB  
Review
Study of the Influence of Nanoparticle Reinforcement on the Mechanical and Tribological Performance of Aluminum Matrix Composites—A Review
by Varun Singhal, Daksh Shelly, Abhishek Saxena, Rahul Gupta, Vipin Kumar Verma and Appurva Jain
Lubricants 2025, 13(2), 93; https://doi.org/10.3390/lubricants13020093 - 19 Feb 2025
Cited by 7 | Viewed by 1978
Abstract
This study investigates the influence of nano-sized reinforcements on aluminum matrix composites’ mechanical and tribological properties. Microstructural analysis revealed that introducing nanoparticles led to grain refinement, reducing the grain size from 129.7 μm to 41.3 μm with 2 wt.% TiO2 addition. Furthermore, [...] Read more.
This study investigates the influence of nano-sized reinforcements on aluminum matrix composites’ mechanical and tribological properties. Microstructural analysis revealed that introducing nanoparticles led to grain refinement, reducing the grain size from 129.7 μm to 41.3 μm with 2 wt.% TiO2 addition. Furthermore, ultrasonic-assisted squeeze casting of AA6061 composites reinforced with TiO2 and Al2O3 resulted in a 52% decrease in grain size, demonstrating nano-reinforcements’ effectiveness in refining the matrix structure. Despite these advantages, the high surface energy of nanoparticles causes agglomeration, which can undermine composite performance. However, ultrasonic-assisted stir casting reduced agglomeration by approximately 80% compared to conventional stir casting, and cold isostatic pressing improved dispersion uniformity by 27%. The incorporation of nano-reinforcements such as SiC, Al2O3, and TiC significantly enhanced the material properties, with hardness increasing by ~30% and ultimate tensile strength improving by ~80% compared to pure Al. The hardness of nano-reinforced composites substantially rose from 83 HV (pure Al) to 117 HV with 1.0 vol.% CNT reinforcement. Additionally, TiC-reinforced AA7075 composites improved hardness from 94.41 HB to 277.55 HB after 10 h of milling, indicating a nearly threefold increase. The wear resistance of Al-Si alloys was notably improved, with wear rates reduced by up to 52%, while the coefficient of friction decreased by 20–40% with the incorporation of graphene and CNT reinforcements. These findings highlight the potential of nano-reinforcements in significantly improving the mechanical and tribological performance of n-AMCs, making them suitable for high-performance applications in aerospace, automotive, and structural industries. Full article
Show Figures

Figure 1

27 pages, 9924 KiB  
Article
Optimization of Mucoadhesive Film Reinforced with Functionalized Nanostructured Lipid Carriers (NLCs) for Enhanced Triamcinolone Acetonide Delivery via Buccal Administration: A Box–Behnken Design Approach
by Patteera Sodata, Sureewan Duangjit, Narong Sarisuta and Pakorn Kraisit
Sci 2025, 7(1), 22; https://doi.org/10.3390/sci7010022 - 18 Feb 2025
Viewed by 1002
Abstract
This research aimed to develop mucoadhesive buccal films incorporating nanostructured lipid carriers (NLCs) loaded with triamcinolone acetonide (TN-films). A Box–Behnken design was employed as a systematic approach to optimize the formulation. Key components of the NLCs—spermaceti, soybean oil, and polysorbate 80—were considered independent [...] Read more.
This research aimed to develop mucoadhesive buccal films incorporating nanostructured lipid carriers (NLCs) loaded with triamcinolone acetonide (TN-films). A Box–Behnken design was employed as a systematic approach to optimize the formulation. Key components of the NLCs—spermaceti, soybean oil, and polysorbate 80—were considered independent variables. The NLCs were prepared and size-reduced using a combination of hot homogenization and ultrasonic probe techniques. Films were cast using hydroxypropyl methylcellulose (HPMC) as the film-forming agent. The TN-films were characterized based on weight, thickness, tensile strength, elongation at break, contact angle, and surface free energy. Linear regression showed that spermaceti increased film weight and thickness, while polysorbate 80 decreased them. The mechanical strength of the films was primarily influenced by spermaceti; higher concentrations of spermaceti resulted in decreased film strength. Additionally, all independent variables contributed positively to the lipophilicity of the films. The TN-films were found to sustain drug release via a Fickian diffusion mechanism, exhibiting rapid swelling and favorable mucoadhesive properties. Moreover, the TN-films demonstrated superior drug release and permeation to pastes and films loaded with emulsions. These findings suggest that the TN-films represent a promising and effective approach for the buccal delivery of triamcinolone acetonide. Full article
Show Figures

Figure 1

16 pages, 6643 KiB  
Article
Mechanical Properties and Corrosion Resistance of La2O3/A356 Composites Fabricated by Ultrasonic-Assisted Casting
by Hao Wan, Luming Shuai, Lishibao Ling, Zhi Hu and Hong Yan
Metals 2025, 15(2), 184; https://doi.org/10.3390/met15020184 - 11 Feb 2025
Cited by 1 | Viewed by 786
Abstract
Mechanical properties and corrosion resistance of La2O3/A356 composites with different contents of La2O3 were investigated by optical microscopy, X-ray diffractometry, scanning electron microscopy, electrochemical tests, and immersion corrosion tests. The results show that the addition of [...] Read more.
Mechanical properties and corrosion resistance of La2O3/A356 composites with different contents of La2O3 were investigated by optical microscopy, X-ray diffractometry, scanning electron microscopy, electrochemical tests, and immersion corrosion tests. The results show that the addition of La2O3 refined the α-Al phase of the A356 matrix, and the long stripe-like Si phase and β-Al5FeSi phase were transformed into short rod-like forms. The La2O3/A356 composites with 1.0 wt.% La2O3 exhibited the most optimal mechanical properties and corrosion resistance. The yield strength, ultimate tensile strength, and elongation of La2O3/A356 composites with 1.0 wt.% La2O3 were higher than those of the matrix. The results of electrochemical experiments and the immersion corrosion test show that the corrosion potential of La2O3/A356 composites with 1.0 wt.% La2O3 was 72 mV higher than that of the matrix, the corrosion current density was 84.8% lower than that of the matrix, and the impedance Z was improved by 59.1% compared to the matrix. The addition of La2O3 improved the mechanical properties of the A356 matrix by refining the grains, inhibiting the nucleation of eutectic Si, and promoting the twinning growth mechanism. Moreover, the effect of La2O3 on the micro-galvanic corrosion behavior of A356 was discussed. Full article
(This article belongs to the Special Issue Design and Development of Metal Matrix Composites)
Show Figures

Figure 1

19 pages, 4365 KiB  
Article
Effect of Minor Reinforcement with Ultrafine Industrial Microsilica Particles and T6 Heat Treatment on Mechanical Properties of Aluminum Matrix Composites
by Maxat Abishkenov, Ilgar Tavshanov, Nikita Lutchenko, Kayrosh Nogaev, Daniyar Kalmyrzayev, Assylbek Abdirashit and Nazira Aikenbayeva
Appl. Sci. 2025, 15(3), 1329; https://doi.org/10.3390/app15031329 - 27 Jan 2025
Viewed by 852
Abstract
This study examines the use of ultrafine (~128 nm) microsilica (composed of a mixture of amorphous and microcrystalline silicon dioxide phases) particles, an industrial waste product, as a reinforcing material to create aluminum matrix composites (AMCs) via ultrasonic-assisted stir casting followed by T6 [...] Read more.
This study examines the use of ultrafine (~128 nm) microsilica (composed of a mixture of amorphous and microcrystalline silicon dioxide phases) particles, an industrial waste product, as a reinforcing material to create aluminum matrix composites (AMCs) via ultrasonic-assisted stir casting followed by T6 heat treatment. This study aimed to improve the mechanical properties of pure aluminum, which has insufficient strength for most engineering applications. The main objective of this study is to develop environmentally and economically efficient AMCs with improved properties, namely, the balance between strength and ductility, for further application in caliber rolling processes. Attention is also paid to minor reinforcements using a low concentration of microsilica (~0.36%wt), which minimizes the problems with the wettability of the reinforcing material particles. The composites reinforced with ultrafine microsilica exhibited enhanced mechanical performance, including a 59.7% increase in Vickers microhardness and a significant improvement in tensile strength, reaching 73 MPa. Additionally, T6 heat treatment synergistically improved ductility to 60.3% elongation while maintaining high strength, achieving a balanced performance suitable for forming processes. The study results confirm that using microsilica as a reinforcing material is an effective way to improve the performance of aluminum alloys, while minimizing costs and solving environmental problems. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

17 pages, 6271 KiB  
Article
Investigation into the Prediction of the Service Life of the Electrical Contacting of a Wheel Hub Drive
by Markus Hempel, Niklas Umland and Matthias Busse
World Electr. Veh. J. 2025, 16(2), 68; https://doi.org/10.3390/wevj16020068 - 25 Jan 2025
Viewed by 745
Abstract
This article examines contacting by means of ultrasonic welding between a cast aluminum winding and a copper conductor of a wheel hub drive for a passenger car. The effect of thermal stress on the formation and growth of intermetallic phases (IMC) in the [...] Read more.
This article examines contacting by means of ultrasonic welding between a cast aluminum winding and a copper conductor of a wheel hub drive for a passenger car. The effect of thermal stress on the formation and growth of intermetallic phases (IMC) in the contact is analyzed. By using microscopy, the growth constant under the specific load conditions can be identified with the help of the parabolic time law and offer a possibility for predicting the service life of the corresponding contacts. As a result, it can be stated that the increase in electrical resistance of the present contact at load temperatures of 120 °C, 150 °C, and 180 °C does not reach a critical value. The growth rates of the IMC also show no critical tendencies at the usual operating temperatures (120 °C and 150 °C, e.g., at 150 °C = 4.59 × 10−7 μm2/s). The activation energy calculated using the Arrhenius plot of 155 kJ/mol (1.61 eV) can be classified as high in comparison to similar studies. In addition, it was found that future investigations of the IMC growth of corresponding electrical contacts should rather be carried out with electric current. The 180 °C sample series were carried out in the oven and with electric current; the samples in the oven did not show clear IMC, while the samples exposed to electric current already showed IMC under the microscope. Full article
Show Figures

Figure 1

29 pages, 13056 KiB  
Review
Ultrasonic Melt Processing: Progress, Applications, and Future Directions
by Shuang Yang, Yu Weng, Qin Zhao, Gang Wu, Zhian Deng and Ling Qin
Materials 2025, 18(3), 522; https://doi.org/10.3390/ma18030522 - 23 Jan 2025
Cited by 1 | Viewed by 1395
Abstract
Ultrasonic melt processing (UMP) has garnered significant attention from both academic and industrial communities as a promising solution to critical challenges in the metal casting industry. This technique offers a clean, environmentally friendly, and energy-efficient approach to improving melt quality and achieving structural [...] Read more.
Ultrasonic melt processing (UMP) has garnered significant attention from both academic and industrial communities as a promising solution to critical challenges in the metal casting industry. This technique offers a clean, environmentally friendly, and energy-efficient approach to improving melt quality and achieving structural refinement. However, due to the opaque nature of metals, understanding the fundamental mechanisms governing the interactions among ultrasonic bubbles, acoustic streaming, and the melt remains still challenging. This review traces the evolution of UMP research, from its inception in the mid-20th century to recent advancements, with particular emphasis on the application of state-of-the-art synchrotron X-ray imaging and computational modeling. These approaches have been instrumental in unraveling the complex, multiscale dynamics occurring across both temporal and spatial scales. Key findings in various metallic alloy systems are critically reviewed, focusing on new insights into cavitation bubbles, acoustic streaming, and the interactions of growing solid phases in different alloys. Additionally, the review discusses the resulting phenomena, including grain refinement, fragmentation, and the mitigation of solidification defects, in detail. The review concludes by identifying critical research gaps and emerging trends, underscoring the indispensable role of in situ studies and robust theoretical frameworks in advancing UMP. These developments are poised to reshape the future of innovation in materials science and engineering. Full article
Show Figures

Figure 1

13 pages, 6921 KiB  
Article
Effect of Ultrasonic Power on the Microstructure and Properties of a Semi-Solid Slurry of SnSbCu11-6 Alloy
by Lei Wang, Xiaobin Luo, Yuanwei Jia, Yongkun Li, Rongfeng Zhou, Hao Zhang, Dingdong Huo and Yao Li
Crystals 2025, 15(1), 19; https://doi.org/10.3390/cryst15010019 - 27 Dec 2024
Viewed by 655
Abstract
In this paper, the ultrasonic vibration treatment (UVT) technique was used to prepare a SnSbCu11-6 alloy semi-solid slurry, and the effects of ultrasonic power on its microstructure size, distribution and properties were studied. The results show that the UVT technique significantly refines the [...] Read more.
In this paper, the ultrasonic vibration treatment (UVT) technique was used to prepare a SnSbCu11-6 alloy semi-solid slurry, and the effects of ultrasonic power on its microstructure size, distribution and properties were studied. The results show that the UVT technique significantly refines the Cu6Sn5 phase and SnSb phase and improves their distribution uniformity. Interestingly, the second SnSb phase is also well refined to nearly 100 °C below the melting point; furthermore, the morphology is transformed from coarse petal-like to fine regular cubic, and the average grain size is refined to 48.8 ± 8.8 μm. The alloy’s comprehensive properties are best when the ultrasonic power is 1200 W. The yield strength, tensile strength, elongation and microhardness reach 60.6 MPa, 70.3 MPa, 4.9% and 27.4 HV, respectively, which represent increases of 4.7%, 6.0%, 113% and 23.4%, respectively, compared with conventional liquid casting. This may be attributed to the grain size refinement and distribution uniformity enhancement of the Cu6Sn5 phase and the SnSb phase. This work provides a feasible and effective method for the preparation of high-performance tin-based babbitt alloys by UVT technology. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

Back to TopTop