Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (126)

Search Parameters:
Keywords = ultrasonic Lamb waves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 9107 KiB  
Article
Numerical Far-Field Investigation into Guided Waves Interaction at Weak Interfaces in Hybrid Composites
by Saurabh Gupta, Mahmood Haq, Konstantin Cvetkovic and Oleksii Karpenko
J. Compos. Sci. 2025, 9(8), 387; https://doi.org/10.3390/jcs9080387 - 22 Jul 2025
Viewed by 231
Abstract
Modern aerospace engineering places increasing emphasis on materials that combine low weight with high mechanical performance. Fiber metal laminates (FMLs), which merge metal layers with fiber-reinforced composites, meet this demand by delivering improved fatigue resistance, impact tolerance, and environmental durability, often surpassing the [...] Read more.
Modern aerospace engineering places increasing emphasis on materials that combine low weight with high mechanical performance. Fiber metal laminates (FMLs), which merge metal layers with fiber-reinforced composites, meet this demand by delivering improved fatigue resistance, impact tolerance, and environmental durability, often surpassing the performance of their constituents in demanding applications. Despite these advantages, inspecting such thin, layered structures remains a significant challenge, particularly when they are difficult or impossible to access. As with any new invention, they always come with challenges. This study examines the effectiveness of the fundamental anti-symmetric Lamb wave mode (A0) in detecting weak interfacial defects within Carall laminates, a type of hybrid fiber metal laminate (FML). Delamination detectability is analyzed in terms of strong wave dispersion observed downstream of the delaminated sublayer, within a region characterized by acoustic distortion. A three-dimensional finite element (FE) model is developed to simulate mode trapping and full-wavefield local displacement. The approach is validated by reproducing experimental results reported in prior studies, including the author’s own work. Results demonstrate that the A0 mode is sensitive to delamination; however, its lateral resolution depends on local position, ply orientation, and dispersion characteristics. Accurately resolving the depth and extent of delamination remains challenging due to the redistribution of peak amplitude in the frequency domain, likely caused by interference effects in the acoustically sensitive delaminated zone. Additionally, angular scattering analysis reveals a complex wave behavior, with most of the energy concentrated along the centerline, despite transmission losses at the metal-composite interfaces in the Carall laminate. The wave interaction with the leading and trailing edges of the delaminations is strongly influenced by the complex wave interference phenomenon and acoustic mismatched regions, leading to an increase in dispersion at the sublayers. Analytical dispersion calculations clarify how wave behavior influences the detectability and resolution of delaminations, though this resolution is constrained, being most effective for weak interfaces located closer to the surface. This study offers critical insights into how the fundamental anti-symmetric Lamb wave mode (A0) interacts with delaminations in highly attenuative, multilayered environments. It also highlights the challenges in resolving the spatial extent of damage in the long-wavelength limit. The findings support the practical application of A0 Lamb waves for structural health assessment of hybrid composites, enabling defect detection at inaccessible depths. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

30 pages, 2697 KiB  
Article
Explainable, Flexible, Frequency Response Function-Based Parametric Surrogate for Guided Wave-Based Evaluation in Multiple Defect Scenarios
by Paul Sieber, Rohan Soman, Wieslaw Ostachowicz, Eleni Chatzi and Konstantinos Agathos
Appl. Sci. 2025, 15(11), 6020; https://doi.org/10.3390/app15116020 - 27 May 2025
Viewed by 431
Abstract
Lamb waves offer a series of desirable features for Structural Health Monitoring (SHM) applications, such as the ability to detect small defects, allowing to detect damage at early stages of its evolution. On the downside, their propagation through media with multiple geometrical features [...] Read more.
Lamb waves offer a series of desirable features for Structural Health Monitoring (SHM) applications, such as the ability to detect small defects, allowing to detect damage at early stages of its evolution. On the downside, their propagation through media with multiple geometrical features results in complicated patterns, which complicate the task of damage detection, thus hindering the realization of their full potential. This is exacerbated by the fact that numerical models for Lamb waves, which could aid in both the prediction and interpretation of such patterns, are computationally expensive. The present paper provides a flexible surrogate to rapidly evaluate the sensor response in scenarios where Lamb waves propagate in plates that include multiple features or defects. To this end, an offline–online ray tracing approach is combined with Frequency Response Functions (FRFs) and transmissibility functions. Each ray is thereby represented either by a parametrized FRFs, if the origin of the ray lies in the actuator, or by a parametrized transmissibility function, if the origin of the ray lies in a feature. By exploiting the mechanical properties of propagating waves, it is possible to minimize the number of training simulations needed for the surrogate, thus avoiding the repeated evaluation of large models. The efficiency of the surrogate is demonstrated numerically, through an example, including different types of features, in particular through holes and notches, which result in both reflection and conversion of incident waves. For most sensor locations, the surrogate achieves an error between 1% and 4%, while providing a computational speedup of three to four orders of magnitude. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

13 pages, 3647 KiB  
Article
A New Signal Processing Method for Time-of-Flight and Center Frequency Estimation
by Olgirdas Tumšys
Appl. Sci. 2025, 15(10), 5721; https://doi.org/10.3390/app15105721 - 20 May 2025
Viewed by 350
Abstract
Ultrasonic signal processing methodologies use many signal parameters to be investigated, one of which is time-of-flight (ToF). There are many and various methods used to determine ToF, such as threshold detection, peak-based methods, cross-correlation, zero-crossing tracking algorithms, etc. The application of most of [...] Read more.
Ultrasonic signal processing methodologies use many signal parameters to be investigated, one of which is time-of-flight (ToF). There are many and various methods used to determine ToF, such as threshold detection, peak-based methods, cross-correlation, zero-crossing tracking algorithms, etc. The application of most of these methods becomes problematic when the background noise becomes high and the signal amplitude, frequency, or propagation velocity changes. In order to partially solve these problems, this paper proposes a new and simple method to determine the time-of-flight and center frequency of signals based on the use of zero-crossing times of filtered signals to calculate these parameters. Taking advantage of the idea that these zero-crossing times are concentrated around the maximum of the signal envelope, they were used as the time-of-flight of the signal. Together with the ToF, the center frequency of the signal was also determined. The proposed method was adapted to the processing of experimental signals obtained during various ultrasound investigations. By processing S0 mode signals propagating in the sheet molding compound plate, the propagation velocity of this mode was calculated. Its value was compared with the value obtained by the 2D FFT method. The obtained results differed by 0.9%. Using simulated signals propagating in 1 mm-thick aluminum, the phase and group velocity segments of the A0 mode were calculated. Their values differed by 0.7% from the theoretically calculated values of the dispersion curves by the SAFE method. Full article
(This article belongs to the Special Issue Noise Measurement, Acoustic Signal Processing and Noise Control)
Show Figures

Figure 1

13 pages, 5723 KiB  
Article
Delamination Detection in CFRP Stringers with A0-Mode Lamb Wave Curvature
by Gaozheng Zhao, Yike Zeng, Zhenyang Yu, Kaihua Sun and Jian Chen
Sensors 2025, 25(6), 1915; https://doi.org/10.3390/s25061915 - 19 Mar 2025
Cited by 1 | Viewed by 500
Abstract
Ultrasonic detection of delamination in stringer-stiffened panels made of carbon fiber-reinforced plastics (CFRPs) presents a critical challenge due to their complex geometry, complicated properties and large size. In this work, a delamination detection method using the wavefield curvature of the A0-mode [...] Read more.
Ultrasonic detection of delamination in stringer-stiffened panels made of carbon fiber-reinforced plastics (CFRPs) presents a critical challenge due to their complex geometry, complicated properties and large size. In this work, a delamination detection method using the wavefield curvature of the A0-mode Lamb wave is proposed. Firstly, the underlying mechanism is numerically investigated to examine the interactions between the A0-mode Lamb wave and delamination at different sites of the stringer. Then, the wavefield curvature sensitive to local anomalies is revealed owing to the higher-order derivative nature. Thereafter, the proposed method is utilized to detect delamination in the fabricated CFRP specimens and the results are compared with X-ray computed tomography, confirming the feasibility and effectiveness of the proposed method. This viable method, capable of detecting delamination in larger CFRP stringers, will find great potential in the efficient non-destructive testing of CFRP structures in different applications. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

20 pages, 16271 KiB  
Article
Nonlinear Ultrasonic Characterization of Processing Defects in Wire Arc Additive Manufacturing 316L Stainless Steel
by Pengfei Wang, Jia Zeng, Dong Lou, Wenjian Zheng, Sanlong Zheng, Bingbing Chen and Zengliang Gao
Materials 2025, 18(4), 805; https://doi.org/10.3390/ma18040805 - 12 Feb 2025
Cited by 2 | Viewed by 814
Abstract
Wire Arc Additive Manufacturing (WAAM) 316L stainless steel unavoidably introduces defects such as porosity, oxide inclusions, and lack of fusion due to the inherent characteristics of the process. These defects can significantly affect the mechanical properties and service reliability of the material. This [...] Read more.
Wire Arc Additive Manufacturing (WAAM) 316L stainless steel unavoidably introduces defects such as porosity, oxide inclusions, and lack of fusion due to the inherent characteristics of the process. These defects can significantly affect the mechanical properties and service reliability of the material. This study focused on evaluating the defects in WAAM 316L stainless steel by nonlinear ultrasonic testing based on Lamb waves. The effects of FCAW (flux cored arc welding) parameters, including shielding gases (98% Ar + 2% O2 and 100% CO2) and welding speeds (20, 30, and 40 cm/min), on the columnar grain, porosity, and defect types were systematically analyzed. The formed specimens were then subjected to nonlinear ultrasonic testing, and the results showed that the ultrasonic nonlinear parameters exhibited high sensitivity to changes in porosity. This suggests that nonlinear ultrasonic testing can effectively assess processing defects in WAAM 316L stainless steel. The findings provide valuable insights for optimizing the WAAM process and improving the reliability of additive manufacturing components. Full article
(This article belongs to the Special Issue Advancements in Ultrasonic Testing for Metallurgical Materials)
Show Figures

Figure 1

14 pages, 4813 KiB  
Article
Characterization of Micro-Crack Orientation in a Thin Plate Using Quasi-Static Component Generated by Incident Ultrasonic Lamb Waves
by Liang Zhao, Jun Zhou, Weifeng Yuan, Bin Gu, Mingxi Deng, Caibin Xu, Xiangyan Ding, Zhengpan Qi, Jishuo Wang and Qin Ying
Sensors 2025, 25(1), 222; https://doi.org/10.3390/s25010222 - 2 Jan 2025
Viewed by 1157
Abstract
The directivity of the quasi-static component (QSC) is quantitatively investigated for evaluating the orientation of a micro-crack buried in a thin solid plate using the numerical simulation method. Based on the bilinear stress–strain constitutive model, a three-dimensional (3D) finite element model (FEM) is [...] Read more.
The directivity of the quasi-static component (QSC) is quantitatively investigated for evaluating the orientation of a micro-crack buried in a thin solid plate using the numerical simulation method. Based on the bilinear stress–strain constitutive model, a three-dimensional (3D) finite element model (FEM) is built for investigating the nonlinear interaction between primary Lamb waves and the micro-crack. When the primary Lamb waves at A0 mode impinge on the micro-crack, under the modulation of the contact acoustic nonlinearity (CAN), the micro-crack itself will induce QSC. The amplitude of the QSC generated can be used for directly charactering the micro-crack orientation. The finite element simulation results show that the directivity of the QSC radiated by the micro-crack is closely related to the orientation of the micro-crack, allowing for the characterization of micro-crack orientation without the need for baseline signals. The results indicate that the directionality of the QSC can be used for characterizing the orientation of the micro-crack. The amplitude of the QSC is affected by the contact area between two surfaces of the micro-crack. It is demonstrated that the proposed method is a feasible means for the characterization of micro-crack orientation. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

22 pages, 5345 KiB  
Article
Detection of Defects in Polyethylene and Polyamide Flat Panels Using Airborne Ultrasound-Traditional and Machine Learning Approach
by Artur Krolik, Radosław Drelich, Michał Pakuła, Dariusz Mikołajewski and Izabela Rojek
Appl. Sci. 2024, 14(22), 10638; https://doi.org/10.3390/app142210638 - 18 Nov 2024
Cited by 1 | Viewed by 1396
Abstract
This paper presents the use of noncontact ultrasound for the nondestructive detection of defects in two plastic plates made of polyamide (PA6) and polyethylene (PE). The aim of the study was to: (1) assess the presence of defects as well as their size, [...] Read more.
This paper presents the use of noncontact ultrasound for the nondestructive detection of defects in two plastic plates made of polyamide (PA6) and polyethylene (PE). The aim of the study was to: (1) assess the presence of defects as well as their size, type, and orientation based on the amplitudes of Lamb ultrasonic waves measured in plates made of polyamide (PA6) and polyethylene (PE) due to their homogeneous internal structure, which mainly determined the selection of such model materials for testing; and (2) verify the possibilities of building automatic quality control and defect detection systems based on ML based on the results of the above-mentioned studies within the Industry 4.0/5.0 paradigm. Tests were conducted on plates with generated synthetic defects resembling defects found in real materials such as delamination and cracking at the edge of the plate and a crack (discontinuity) in the center of the plate. Defect sizes ranged from 1 mm to 15 mm. Probes at 30 kHz were used to excite Lamb waves in the slab material. This method is sensitive to the slightest changes in material integrity. A significant decrease in signal amplitude was observed, even for defects of a few millimeters in length. In addition to traditional methods, machine learning (ML) was used for the analysis, allowing an initial assessment of the method’s potential for building cyber-physical systems and digital twins. By training ML models on ultrasonic data, algorithms can distinguish subtle differences between signals reflected from normal and defective areas of the material. Defect types such as voids, cracks, or weak bonds often produce distinct acoustic signatures, which ML models can learn to recognize with high accuracy. Using techniques like feature extraction, ML can process these high-dimensional ultrasonic datasets, identifying patterns that human inspectors might overlook. Furthermore, ML models are adaptable, allowing the same trained algorithms to work on various material batches or panel types with minimal retraining. This combination of automation and precision significantly enhances the reliability and efficiency of quality control in industrial manufacturing settings. The achieved accuracy results, 0.9431 in classification and 0.9721 in prediction, are comparable to or better than the AI-based quality control results in other noninvasive methods of flat surface defect detection, and in the presented ultrasonic method, they are the first described in this way. This approach demonstrates the novelty and contribution of artificial intelligence (AI) methods and tools, significantly extending and automating existing applications of traditional methods. The susceptibility to augmentation by AI/ML may represent an important new property of traditional methods crucial to assessing their suitability for future Industry 4.0/5.0 applications. Full article
(This article belongs to the Special Issue Automation and Digitization in Industry: Advances and Applications)
Show Figures

Figure 1

13 pages, 3223 KiB  
Article
Coil-Only High-Frequency Lamb Wave Generation in Nickel Sheets
by Yini Song, Yihua Kang, Kai Wang, Yizhou Guo, Jun Tu and Bo Feng
Sensors 2024, 24(22), 7141; https://doi.org/10.3390/s24227141 - 6 Nov 2024
Viewed by 1947
Abstract
This study presents a novel, coil-only magnetostrictive ultrasonic detection method that operates effectively without permanent magnets, introducing a simpler alternative to conventional designs. The system configuration is streamlined, consisting of a single meander coil, an excitation source, and a nickel sheet, with both [...] Read more.
This study presents a novel, coil-only magnetostrictive ultrasonic detection method that operates effectively without permanent magnets, introducing a simpler alternative to conventional designs. The system configuration is streamlined, consisting of a single meander coil, an excitation source, and a nickel sheet, with both the bias magnetic field and ultrasonic excitation achieved by a composite excitation containing both DC and AC components. This design offers significant advantages, enabling high-frequency Lamb wave generation in nickel sheets for ultrasonic detection while reducing device complexity. Experimental validation demonstrated that an S0-mode Lamb wave at a frequency of 2.625 MHz could be effectively excited in a 0.2 mm nickel sheet using a double-layer meander coil. The experimentally measured wave velocity was 4.9946 m/s, with a deviation of only 0.4985% from the theoretical value, confirming the accuracy of the method. Additionally, this work provides a theoretical basis for future development of flexible MEMS-based magnetostrictive ultrasonic transducers, expanding the potential for miniaturized magnetostrictive patch transducers. Full article
(This article belongs to the Special Issue Advances and Applications of Magnetic Sensors)
Show Figures

Figure 1

13 pages, 5081 KiB  
Article
Low-Power Field-Deployable Interdigital Transducer-Based Scanning Laser Doppler Vibrometer for Wall-Thinning Detection in Plates
by To Kang, Soonwoo Han, Yun-Taek Yeom and Ho-Yong Lee
Materials 2024, 17(20), 5098; https://doi.org/10.3390/ma17205098 - 18 Oct 2024
Viewed by 798
Abstract
Lamb waves have become a focal point in ultrasonic testing owing to their potential for long-range and inaccessible detection. However, accurately estimating the flaws in plates using Lamb waves remains challenging because of scattering, mode conversion, and dispersion effects. Recent advances in laser [...] Read more.
Lamb waves have become a focal point in ultrasonic testing owing to their potential for long-range and inaccessible detection. However, accurately estimating the flaws in plates using Lamb waves remains challenging because of scattering, mode conversion, and dispersion effects. Recent advances in laser ultrasonic wave techniques have introduced innovative visualization methods that exploit the dispersion effect of Lamb waves to visualize defects via, for example, acoustic wavenumber spectroscopy. In this study, we developed an interdigital transducer (IDT)-based scanning laser Doppler vibrometer (SLDV) system without a power amplifier using a low-power IDT fabricated from lead magnesium niobate–lead zirconate titanate single crystals. To validate the proposed low-power IDT-based SLDV, four different defective plates were measured for defects. A comparison between a conventional IDT-based SLDV, a dry-coupled IDT-based SLDV, and the proposed method demonstrated that the latter is highly reliable for measuring thin plate defects. Full article
Show Figures

Figure 1

14 pages, 5623 KiB  
Article
Ultrasonic Guided Wave Health Monitoring of High-Temperature Aircraft Structures Based on Variational Mode Decomposition and Fuzzy Entropy
by Feiting Zhang, Kaifu Zhang, Hui Cheng, Dongyue Gao and Keyi Cai
Actuators 2024, 13(10), 411; https://doi.org/10.3390/act13100411 - 12 Oct 2024
Viewed by 1210
Abstract
This paper presents an innovative approach to high-temperature health monitoring of aircraft structures utilizing an ultrasonic guided wave transmission and reception system integrated with a zirconia heat buffer layer. Aiming to address the challenges posed by environmental thermal noise and the installation of [...] Read more.
This paper presents an innovative approach to high-temperature health monitoring of aircraft structures utilizing an ultrasonic guided wave transmission and reception system integrated with a zirconia heat buffer layer. Aiming to address the challenges posed by environmental thermal noise and the installation of heat buffers, which can introduce structural nonlinearities into guided wave signals, a composite guided wave consisting of longitudinal and Lamb waves was proposed for online damage detection within thermal protection systems. To effectively analyze these complex signals, a hybrid damage monitoring technique combining variational mode decomposition (VMD) and fuzzy entropy (FEN) was introduced. The VMD was employed to isolate the principal components of the guided wave signals, while the fuzzy entropy of these components served as a quantitative damage factor, characterizing the extent of the structural damage. Furthermore, this study validated the feasibility of piezoelectric probes equipped with heat buffer layers for both exciting and receiving ultrasonic guided wave signals in a dual heat buffer layer, a one-transmit-one-receive configuration. The experimental results demonstrated the efficacy of the proposed VMD-FEN damage factor for real-time monitoring of damage in aircraft thermal protection systems, both at ambient and elevated temperatures (up to 150 °C), showcasing its potential for enhancing the safety and reliability of aerospace structures operating under extreme thermal conditions. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

19 pages, 13652 KiB  
Article
Research on Microstructural Evolution Behavior of Ni-Based Single-Crystal Alloy with Re Based on Non-Linear Ultrasonic Lamb Wave and Molecular Dynamics Method
by Ben Li, Yilin Zhang, Hongyan Zhou and Xuewu Li
Metals 2024, 14(9), 1016; https://doi.org/10.3390/met14091016 - 5 Sep 2024
Viewed by 1211
Abstract
Interface dislocation networks have a great influence on the mechanical properties of the new Ni-based single-crystal alloy (NSC) containing Re, but it is difficult to find out the structural evolution behaviors at the micro-level. Thus, molecular dynamics (MD) simulation is used to analyze [...] Read more.
Interface dislocation networks have a great influence on the mechanical properties of the new Ni-based single-crystal alloy (NSC) containing Re, but it is difficult to find out the structural evolution behaviors at the micro-level. Thus, molecular dynamics (MD) simulation is used to analyze the atomic potential energy change and dislocation evolution mechanism, and non-linear characteristic parameters are used to analyze the microstructure evolution of NSC. First, a new model of Ni-Al-Re that is closer to the real properties of the material is established using the MD method according to the optimal volume ratio of matrix phase to precipitate phase. Then, the MD models of NSC with different contents of Re are calculated and analyzed under compressive and tensile loads. The results show that with an increase in Re atoms, the atomic potential energy at the interface dislocation networks is reduced; thus, the stability of the system is enhanced, and the hindrance of the interface dislocation networks to the dislocation movement of the matrix phase is strengthened. At the same time, the number of HCP structures and OISs formed by the destruction of the intact FCC structures also decreases. In the non-linear ultrasonic experiment, with the increase in Re atoms, the non-linear enhancement of the microstructure of the NSC leads to an increase in the corresponding non-linear characteristic parameters. Accordingly, the microstructural evolution behaviors of the phase interface of the new NSC can be effectively explored using the combination of MD simulation and non-linear ultrasonic experimentation. The results of this study lay a foundation for the subsequent research of the microscopic defects of NSCs by using ultrasonic phased-array technology. Full article
(This article belongs to the Special Issue Characterization and Processing Technology of Superalloys)
Show Figures

Figure 1

18 pages, 9338 KiB  
Article
Detection of Debonding Defects in Carbon Fiber-Reinforced Polymer (CFRP)–Rubber Bonded Structures Based on Active Lamb Wave Energy Analysis
by Zhenze Yang, Yongfeng Ren, Qiang Shi, Dapeng Cui and Jieqing Liu
Sensors 2024, 24(17), 5567; https://doi.org/10.3390/s24175567 - 28 Aug 2024
Cited by 3 | Viewed by 1877
Abstract
Carbon fiber-reinforced polymers (CFRPs) are widely used in the fabrication of solid rocket motor casings due to their exceptional performance. However, the bonding interface between CFRP and viscoelastic materials (rubber) is prone to debonding damage during service and storage under complex environmental conditions, [...] Read more.
Carbon fiber-reinforced polymers (CFRPs) are widely used in the fabrication of solid rocket motor casings due to their exceptional performance. However, the bonding interface between CFRP and viscoelastic materials (rubber) is prone to debonding damage during service and storage under complex environmental conditions, which poses a significant threat to the structural integrity and reliability of the engine. Existing nondestructive testing (NDT) methods, such as X-ray imaging, infrared thermography, and ultrasonic testing, although somewhat effective, exhibit significant limitations in detecting interfacial defects in deep or multilayered composite materials, particularly under the challenging conditions of service and storage. This study proposes an innovative method based on active Lamb wave energy analysis and introduces the Damage Evolution Factor (DEF), specifically designed to detect and evaluate interfacial debonding defects in CFRP–rubber bonded structures within solid rocket motors during service and storage. Through numerical simulations and experimental validation, we selected the A0 mode Lamb wave, which is more sensitive to interfacial damage, as the incident wave and excited it on the surface of the structure. Displacement time-history response signals at observation points under different damage models were extracted and analyzed, and DEF values were calculated. The results show that DEF values increase with the size of the interfacial debonding damage. Similar trends were observed in experimental studies, further validating the effectiveness of this method and demonstrating that DEF can be used for the quantitative evaluation of interfacial debonding defects in CFRP–rubber bilayer bonded structures. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

20 pages, 10825 KiB  
Article
Investigation of the Zero-Frequency Component of Nonlinear Lamb Waves in a Symmetrical Undulated Plate
by Xiaoqiang Sun and Guoshuang Shui
Sensors 2024, 24(15), 4878; https://doi.org/10.3390/s24154878 - 27 Jul 2024
Cited by 3 | Viewed by 1106
Abstract
When an ultrasonic pulse propagates in a thin plate, nonlinear Lamb waves with higher harmonics and a zero-frequency component (ZFC) will be generated because of the nonlinearity of materials. The ZFC, also known as the static displacement or static component, has its unique [...] Read more.
When an ultrasonic pulse propagates in a thin plate, nonlinear Lamb waves with higher harmonics and a zero-frequency component (ZFC) will be generated because of the nonlinearity of materials. The ZFC, also known as the static displacement or static component, has its unique application on the evaluation of early-stage damages in the elastic symmetrical undulated plate. In this study, analysis of the excitation mechanism of the ZFC and the second harmonic component (SHC) was theoretically and numerically investigated, and the material early-stage damage of a symmetrical undulated was characterized by studying the propagation of nonlinear Lamb waves. Both the ZFC and SHC can be effectively employed in monitoring the material damages of the undulated plate in its early stage. However, several factors must be considered for the propagation of the SHC in an undulated plate because of the geometric curvature and interference between the second harmonics during propagation, preventing efficient application of this technique. If the fundamental wave can propagate in the plate regardless of the plate boundary conditions, an accumulative effect always exists for the ZFC in a thin plate, indicating that the ZFC is independent of the structural geometry. This study reveals that the ZFC-based inspection technique is more efficient and powerful in characterizing the damages of a symmetrical undulated plate in the early stage of service compared to the second harmonic method. Full article
(This article belongs to the Special Issue Ultrasound Imaging and Sensing for Nondestructive Testing)
Show Figures

Figure 1

12 pages, 2311 KiB  
Article
Explore Ultrasonic-Induced Mechanoluminescent Solutions towards Realising Remote Structural Health Monitoring
by Marilyne Philibert and Kui Yao
Sensors 2024, 24(14), 4595; https://doi.org/10.3390/s24144595 - 16 Jul 2024
Viewed by 3069
Abstract
Ultrasonic guided waves, which are often generated and detected by piezoelectric transducers, are well established to monitor engineering structures. Wireless solutions are sought to eliminate cumbersome wire installation. This work proposes a method for remote ultrasonic-based structural health monitoring (SHM) using mechanoluminescence (ML). [...] Read more.
Ultrasonic guided waves, which are often generated and detected by piezoelectric transducers, are well established to monitor engineering structures. Wireless solutions are sought to eliminate cumbersome wire installation. This work proposes a method for remote ultrasonic-based structural health monitoring (SHM) using mechanoluminescence (ML). Propagating guided waves transmitted by a piezoelectric transducer attached to a structure induce elastic deformation that can be captured by elastico-ML. An ML coating composed of copper-doped zinc sulfide (ZnS:Cu) particles embedded in PVDF on a thin aluminium plate can be used to achieve the elastico-ML for the remote sensing of propagating guided waves. The simulation and experimental results indicated that a very high voltage would be required to reach the threshold pressure applied to the ML particles, which is about 1.5 MPa for ZnS particles. The high voltage was estimated to be 214 Vpp for surface waves and 750 Vpp for Lamb waves for the studied configuration. Several possible technical solutions are suggested for achieving ultrasonic-induced ML for future remote SHM systems. Full article
(This article belongs to the Special Issue Sensors in Civil Structural Health Monitoring)
Show Figures

Figure 1

17 pages, 9391 KiB  
Article
Digital Image Correlation and Ultrasonic Lamb Waves for the Detection and Prediction of Crack-Type Damage in Fiber-Reinforced Polymer Composite Laminates
by Elena Jasiūnienė, Tomas Vaitkūnas, Justina Šeštokė and Paulius Griškevičius
Polymers 2024, 16(14), 1980; https://doi.org/10.3390/polym16141980 - 11 Jul 2024
Cited by 2 | Viewed by 1436
Abstract
The possibility of using the Digital Image Correlation (DIC) technique, along with Lamb wave analysis, was investigated in this study for damage detection and characterization of polymer carbon fiber (CFRP) composites with the help of numerical modeling. The finite element model (FEM) of [...] Read more.
The possibility of using the Digital Image Correlation (DIC) technique, along with Lamb wave analysis, was investigated in this study for damage detection and characterization of polymer carbon fiber (CFRP) composites with the help of numerical modeling. The finite element model (FEM) of the composite specimen with artificial damage was developed in ANSYS and validated by the results of full-field DIC strain measurements. A quantitative analysis of the damage detection capabilities of DIC structure surface strain measurements in the context of different defect sizes, depths, and orientation angles relative to the loading direction was conducted. For Lamb wave analysis, a 2D spatial-temporal spectrum analysis and FEM using ABAQUS software were conducted to investigate the interaction of Lamb waves with the different defects. It was demonstrated that the FEM updating procedure could be used to characterize damage shape and size from the composite structure surface strain field from DIC. DIC defect detection capabilities for different loadings are demonstrated for the CFRP composite. For the identification of any composite defect, its characterization, and possible further monitoring, a methodology based on initial Lamb wave analysis followed by DIC testing is proposed. Full article
(This article belongs to the Special Issue Multiscale Modeling and Simulation of Polymer-Based Composites)
Show Figures

Figure 1

Back to TopTop