Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,250)

Search Parameters:
Keywords = ultimate concern

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 580 KiB  
Review
The Alarming Effects of Per- and Polyfluoroalkyl Substances (PFAS) on One Health and Interconnections with Food-Producing Animals in Circular and Sustainable Agri-Food Systems
by Gerald C. Shurson
Sustainability 2025, 17(15), 6957; https://doi.org/10.3390/su17156957 (registering DOI) - 31 Jul 2025
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetically produced chemicals that are causing a major One Health crisis. These “forever chemicals” are widely distributed globally in air, water, and soil, and because they are highly mobile and extremely difficult to degrade in the environment. [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are synthetically produced chemicals that are causing a major One Health crisis. These “forever chemicals” are widely distributed globally in air, water, and soil, and because they are highly mobile and extremely difficult to degrade in the environment. They cause additional health concerns in a circular bioeconomy and food system that recycles and reuses by-products and numerous types of waste materials. Uptake of PFAS by plants and food-producing animals ultimately leads to the consumption of PFAS-contaminated food that is associated with numerous adverse health and developmental effects in humans. Contaminated meat, milk, and eggs are some of the main sources of human PFAS exposure. Although there is no safe level of PFAS exposure, maximum tolerable PFAS consumption guidelines have been established for some countries. However, there is no international PFAS monitoring system, and there are no standardized international guidelines and mechanisms to prevent the consumption of PFAS-contaminated foods. Urgent action is needed to stop PFAS production except for critical uses, implementing effective water-purification treatments, preventing spreading sewage sludge on land and pastures used to produce food, and requiring marketers and manufacturers to use packaging that is free of PFAS. Full article
29 pages, 6962 KiB  
Article
Mapping Drought Incidents in the Mediterranean Region with Remote Sensing: A Step Toward Climate Adaptation
by Aikaterini Stamou, Aikaterini Bakousi, Anna Dosiou, Zoi-Eirini Tsifodimou, Eleni Karachaliou, Ioannis Tavantzis and Efstratios Stylianidis
Land 2025, 14(8), 1564; https://doi.org/10.3390/land14081564 - 30 Jul 2025
Abstract
The Mediterranean region, identified by scientists as a ‘climate hot spot’, is experiencing warmer and drier conditions, along with an increase in the intensity and frequency of extreme weather events. One such extreme phenomena is droughts. The recent wildfires in this region are [...] Read more.
The Mediterranean region, identified by scientists as a ‘climate hot spot’, is experiencing warmer and drier conditions, along with an increase in the intensity and frequency of extreme weather events. One such extreme phenomena is droughts. The recent wildfires in this region are a concerning consequence of this phenomenon, causing severe environmental damage and transforming natural landscapes. However, droughts involve a two-way interaction: On the one hand, climate change and various human activities, such as urbanization and deforestation, influence the development and severity of droughts. On the other hand, droughts have a significant impact on various sectors, including ecology, agriculture, and the local economy. This study investigates drought dynamics in four Mediterranean countries, Greece, France, Italy, and Spain, each of which has experienced severe wildfire events in recent years. Using satellite-based Earth observation data, we monitored drought conditions across these regions over a five-year period that includes the dates of major wildfires. To support this analysis, we derived and assessed key indices: the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Normalized Difference Drought Index (NDDI). High-resolution satellite imagery processed within the Google Earth Engine (GEE) platform enabled the spatial and temporal analysis of these indicators. Our findings reveal that, in all four study areas, peak drought conditions, as reflected in elevated NDDI values, were observed in the months leading up to wildfire outbreaks. This pattern underscores the potential of satellite-derived indices for identifying regional drought patterns and providing early signals of heightened fire risk. The application of GEE offered significant advantages, as it allows efficient handling of long-term and large-scale datasets and facilitates comprehensive spatial analysis. Our methodological framework contributes to a deeper understanding of regional drought variability and its links to extreme events; thus, it could be a valuable tool for supporting the development of adaptive management strategies. Ultimately, such approaches are vital for enhancing resilience, guiding water resource planning, and implementing early warning systems in fire-prone Mediterranean landscapes. Full article
(This article belongs to the Special Issue Land and Drought: An Environmental Assessment Through Remote Sensing)
Show Figures

Figure 1

25 pages, 3891 KiB  
Review
The Carbon Footprint of Milk Production on a Farm
by Mariusz Jerzy Stolarski, Kazimierz Warmiński, Michał Krzyżaniak, Ewelina Olba-Zięty and Paweł Dudziec
Appl. Sci. 2025, 15(15), 8446; https://doi.org/10.3390/app15158446 - 30 Jul 2025
Viewed by 62
Abstract
The environmental impact of milk production, particularly its share of greenhouse gas (GHG) emissions, is a topic under investigation in various parts of the world. This paper presents an overview of current knowledge on the carbon footprint (CF) of milk production at the [...] Read more.
The environmental impact of milk production, particularly its share of greenhouse gas (GHG) emissions, is a topic under investigation in various parts of the world. This paper presents an overview of current knowledge on the carbon footprint (CF) of milk production at the farm level, with a particular focus on technological, environmental and organisational factors affecting emission levels. The analysis is based on a review of, inter alia, 46 peer-reviewed publications and 11 environmental reports, legal acts and databases concerning the CF in different regions and under various production systems. This study identifies the main sources of emissions, including enteric fermentation, manure management, and the production and use of feed and fertiliser. It also demonstrates the significant variability of the CF values, which range, on average, from 0.78 to 3.20 kg CO2 eq kg−1 of milk, determined by the farm scale, nutritional strategies, local environmental and economic determinants, and the methodology applied. Moreover, this study stresses that higher production efficiency and integrated farm management could reduce the CF per milk unit, with further intensification having, however, diminishing effects. The application of life cycle assessment (LCA) methods is essential for a reliable assessment and comparison of the CF between systems. Ultimately, an effective CF reduction requires a comprehensive approach that combines improved nutritional practices, efficient use of resources, and implementation of technological innovations adjusted to regional and farm-specific determinants. The solutions presented in this paper may serve as guidelines for practitioners and decision-makers with regard to reducing GHG emissions. Full article
(This article belongs to the Special Issue Environmental Management in Milk Production and Processing)
Show Figures

Figure 1

21 pages, 2519 KiB  
Review
Distribution and Ecological Risk Assessment of Perfluoroalkyl and Polyfluoroalkyl Substances in Chinese Soils: A Review
by Junyi Wang, Otgontuya Tsogbadrakh, Jichen Tian, Faisal Hai, Chenpeng Lyu, Guangming Jiang and Guoyu Zhu
Water 2025, 17(15), 2246; https://doi.org/10.3390/w17152246 - 28 Jul 2025
Viewed by 258
Abstract
Per- and polyfluoroalkyl substances (PFASs) are emerging pollutants of global concern due to their high environmental persistence and bioaccumulative characteristics. This study investigates PFAS concentrations in soils from China through an extensive literature review, covering soil samples from seventeen provinces and the years [...] Read more.
Per- and polyfluoroalkyl substances (PFASs) are emerging pollutants of global concern due to their high environmental persistence and bioaccumulative characteristics. This study investigates PFAS concentrations in soils from China through an extensive literature review, covering soil samples from seventeen provinces and the years from 2009 to 2024. It was found that the total concentration of PFAS in soil ranged from 0.25 to 6240 ng/g, with the highest contamination levels observed in coastal provinces, particularly Fujian (620 ng/g) and Guangdong (1090 ng/g). Moreover, Fujian Province ranked the highest among multiple regions with a median PFAS concentration of 15.7 ng/g for individual compounds. Ecological risk assessment, focusing on areas where perfluorooctanoic acid (PFOA) or perfluorooctane sulfonate (PFOS) were identified as the primary soil PFAS compounds, showed moderate ecological risk from PFOA in Shanghai (0.24), while PFOS posed a high ecological risk in Fujian and Guangdong, with risk values of 43.3 and 1.4, respectively. Source analysis revealed that anthropogenic activities, including PFAS production, firefighting foam usage, and landfills, were the primary contributors to soil contamination. Moreover, soil PFASs tend to migrate into groundwater via adsorption and seepage, ultimately entering the human body through bioaccumulation or drinking water, posing health risks. These findings enhance our understanding of PFAS distribution and associated risks in Chinese soils, providing crucial insights for pollution management, source identification, and regulation strategies in diverse areas. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

31 pages, 4179 KiB  
Review
Plant-Derived Vesicle-like Nanoparticles: Pioneering Sustainable and Effective Approaches for Tissue Repair and Regeneration
by Qinjing Wang, Zhijie Huang, Jiming Guo, Weixing Chen, Min Wang, Yue Ming, Hongyu Liu, Mingshu Huang, Yisheng Huang, Zhengming Tang and Bo Jia
Biomolecules 2025, 15(8), 1055; https://doi.org/10.3390/biom15081055 - 22 Jul 2025
Viewed by 383
Abstract
Plant-derived vesicle-like nanoparticles (PDVLNs) are bioactive nanovesicles secreted by plant cells, emerging as a novel therapeutic tool for tissue repair and regeneration due to their low immunogenicity, intrinsic bioactivity, and potential as drug delivery carriers. This review examines PDVLNs’ biogenesis mechanisms, isolation techniques, [...] Read more.
Plant-derived vesicle-like nanoparticles (PDVLNs) are bioactive nanovesicles secreted by plant cells, emerging as a novel therapeutic tool for tissue repair and regeneration due to their low immunogenicity, intrinsic bioactivity, and potential as drug delivery carriers. This review examines PDVLNs’ biogenesis mechanisms, isolation techniques, and compositional diversity, emphasizing their roles in promoting essential regenerative processes—cell proliferation, differentiation, migration, immune modulation, and angiogenesis. We explore their therapeutic applications across multiple tissue types, including skin, bone, neural, liver, gastrointestinal, cardiovascular, and dental tissues, using both natural and engineered PDVLNs in various disease models. Compared to mammalian exosomes, PDVLNs offer advantages such as reduced immune rejection and ethical concerns, enhancing their sustainability and appeal for regenerative medicine. However, challenges in clinical translation, including scalability, standardization, and safety remain. This paper consolidates current knowledge on PDVLNs, highlighting their versatility and providing insights into engineering strategies to optimize efficacy, ultimately outlining future research directions to advance their clinical potential. Plant vesicle-like nanoparticles (PDVLNs) may become a new avenue for the treatment of tissue injury, promoting tissue repair and regeneration through their intrinsic bioactivity or as drug delivery carriers. In addition, PDVLNs can be engineered and modified to achieve better results. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

35 pages, 7245 KiB  
Review
Engineering Nascent Disentangled Ultra-High-Molecular-Weight Polyethylene Based on Heterogeneous Catalytic Polymerization
by Lei Li
Organics 2025, 6(3), 32; https://doi.org/10.3390/org6030032 - 21 Jul 2025
Viewed by 261
Abstract
Ultra-high-molecular-weight polyethylene (UHMWPE) is a pivotal material in engineering and biomedical applications due to its exceptional mechanical strength, wear resistance, and impact performance. However, its extreme melt viscosity, caused by extensive chain entanglements, severely limits processability via conventional melt-processing techniques. Recent advances in [...] Read more.
Ultra-high-molecular-weight polyethylene (UHMWPE) is a pivotal material in engineering and biomedical applications due to its exceptional mechanical strength, wear resistance, and impact performance. However, its extreme melt viscosity, caused by extensive chain entanglements, severely limits processability via conventional melt-processing techniques. Recent advances in catalytic synthesis have enabled the production of disentangled UHMWPE (dis-UHMWPE), which exhibits enhanced processability while retaining superior mechanical properties. Notably, heterogeneous catalytic systems, utilizing supported fluorinated bis (phenoxy-imine) titanium (FI) catalysts, polyhedral oligomeric silsesquioxanes (POSS)-modified Z-N catalysts, and other novel catalysts, have emerged as promising solutions, combining structural control with industrial feasibility. Moreover, optimizing polymerization conditions further enhances chain disentanglement while maintaining ultra-high molecular weights. These systems utilize nanoscale supports and ligand engineering to spatially isolate active sites, tailor the chain propagation/crystallization kinetics, and suppress interchain entanglement during polymerization. Furthermore, characterization techniques such as melt rheology and differential scanning calorimetry (DSC) provide critical insights into chain entanglement, revealing distinct reorganization kinetics and bimodal melting behavior in dis-UHMWPE. This development of hybrid catalytic systems opens up new avenues for solid-state processing and industrial-scale production. This review highlights recent advances concerning interaction between catalyst design, polymerization control, and material performance, ultimately unlocking the full potential of UHMWPE for next-generation applications. Full article
Show Figures

Figure 1

18 pages, 4709 KiB  
Article
Nano-Titanium Dioxide Induces Ovarian Function Damage in Mice by Mediating Granulosa Cell Apoptosis
by Jie Chen, Yaxuan Zhang, Shengbo Zhang, Changbao Wu, Jingyu Ren, Xiaoxiao You and Yanfeng Dai
Int. J. Mol. Sci. 2025, 26(14), 6981; https://doi.org/10.3390/ijms26146981 - 20 Jul 2025
Viewed by 235
Abstract
The accumulation of nanoparticles (NPs) in the female body has raised global concerns regarding potential effects on the reproductive system. This study aimed to investigate the toxic effects of nano-titanium dioxide (nano-TiO2) exposure on the ovaries and the underlying mechanisms. By [...] Read more.
The accumulation of nanoparticles (NPs) in the female body has raised global concerns regarding potential effects on the reproductive system. This study aimed to investigate the toxic effects of nano-titanium dioxide (nano-TiO2) exposure on the ovaries and the underlying mechanisms. By establishing a nano-TiO2 accumulation model in mice, our research systematically evaluated the effects of different concentrations of nano-TiO2 exposure on the development and reproductive endocrine functions of mice. The results showed that nano-TiO2 exposure significantly reduced the littering rate, sex hormone levels, and ovarian index of mice, and the effects were dose-dependent. Studies on the mechanisms involved revealed that nano-TiO2 induces an excessive production of reactive oxygen species (ROS), leading to the potential collapse of the mitochondrial membrane and an increase in the apoptosis rate of granulosa cells, thereby triggering oxidative stress and inhibiting the expression of ovarian-specific genes and granulosa-cell function genes. This study reveals the “dual blow” mechanism of nano-TiO2-mediated ovarian morphology and function through oxidative stress in granulosa cells, namely directly disrupting cellular homeostasis and interfering with the reproductive-related gene network, ultimately leading to decreased ovarian function. This provides experimental evidence for assessing the reproductive risks of nanomaterials in women. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Figure 1

17 pages, 1618 KiB  
Article
Can Biochar Alleviate Machinery-Induced Soil Compaction? A Field Study in a Tuscan Vineyard
by Fabio De Francesco, Giovanni Mastrolonardo, Gregorio Fantoni, Fabrizio Ungaro and Silvia Baronti
Soil Syst. 2025, 9(3), 81; https://doi.org/10.3390/soilsystems9030081 - 19 Jul 2025
Viewed by 232
Abstract
Soil compaction from mechanized agriculture is a major concern, as frequent machinery use degrades soil structure, reduces porosity, and ultimately impairs crop productivity. Among potential mitigation strategies to enhance soil resilience to machinery-induced compaction, biochar has shown promise in laboratory settings but remains [...] Read more.
Soil compaction from mechanized agriculture is a major concern, as frequent machinery use degrades soil structure, reduces porosity, and ultimately impairs crop productivity. Among potential mitigation strategies to enhance soil resilience to machinery-induced compaction, biochar has shown promise in laboratory settings but remains untested under real field conditions. To address this, we monitored soil in a Tuscan vineyard where biochar was applied at 16 and 32 Mg ha−1, compared to control, on both flat and sloped plots. Soil compaction was induced by 20 passes of a wheeled orchard tractor. Soil bulk density (BD) was measured before, immediately after, and one year following the initial passes, during which 19 additional machine passes occurred as part of the vineyard’s routine agronomic management. Initial results showed a significant BD increase (up to 12.8%) across all treatments, though biochar significantly limited soil compaction, regardless of the applied dose. After one year, in which the soil underwent further compaction, BD further increased across all treatments (up to 20.2%), with the steepest increase observed on the sloped terrain. At this stage, the mitigating effect of biochar on soil compaction was no longer evident. Our findings suggest that biochar may offer some short-term relief from compaction, but further investigations are needed to clarify its long-term effectiveness under field conditions. Full article
(This article belongs to the Special Issue Research on Soil Management and Conservation: 2nd Edition)
Show Figures

Figure 1

23 pages, 3021 KiB  
Article
A Long-Term Overview of Elasmobranch Fisheries in an Oceanic Archipelago: A Case Study of the Madeira Archipelago
by Mafalda Freitas, Filipa Pinho-Duarte, Madalena Gaspar, Pedro Ideia, João Delgado, Sara C. Cerqueira and Ricardo Sousa
Fishes 2025, 10(7), 358; https://doi.org/10.3390/fishes10070358 - 19 Jul 2025
Viewed by 260
Abstract
Elasmobranch species are considered a global conservation priority due to their susceptibility to fishing pressure. In the Madeira Archipelago, Northeastern Atlantic, most elasmobranch species are caught as bycatch in artisanal drifting longline fishery targeting scabbardfishes. All commercial elasmobranch landings carried out in this [...] Read more.
Elasmobranch species are considered a global conservation priority due to their susceptibility to fishing pressure. In the Madeira Archipelago, Northeastern Atlantic, most elasmobranch species are caught as bycatch in artisanal drifting longline fishery targeting scabbardfishes. All commercial elasmobranch landings carried out in this archipelago over three decades (1990–2020) were analysed, aiming to provide a reliable overview of Madeira’s elasmobranch fisheries and their evolution. A total of 2316 tonnes of elasmobranchs were landed during the study period, corresponding to approximately EUR 2.1 million in first-sale value. The most representative period occurred from 2003 to 2013, corresponding to 75.21% of the total elasmobranch landings. A general pattern of supply and demand was evident, with mean price values typically showing an inverse trend to landed tonnage. At the species level, Centrophorus squamosus appears as the dominant species, representing about 89% of the total elasmobranch species landed, followed by Prionace glauca, with approximately 3%. The high dominance of C. squamosus in the scabbardfish fishery raises significant ecological and management concerns, as this deep-water shark species is known for its vulnerability to overexploitation. Management measures currently in place need to be updated and ought to be based on studies on the type and size of hooks for each fishery, to ultimately infer about species-specific survival rates, as well as the fishing gears’ soak time. Moreover, studies on the enhancement of food supply through fisheries discards are still missing, even though it is highly likely that this input may alter the dynamics of marine food webs. Full article
(This article belongs to the Special Issue Biology and Conservation of Elasmobranchs)
Show Figures

Figure 1

18 pages, 706 KiB  
Article
A Design Architecture for Decentralized and Provenance-Assisted eHealth Systems for Enhanced Personalized Medicine
by Wagno Leão Sergio, Victor Ströele and Regina Braga
J. Pers. Med. 2025, 15(7), 325; https://doi.org/10.3390/jpm15070325 - 19 Jul 2025
Viewed by 273
Abstract
Background/Objectives: Electronic medical record systems play a crucial role in the operation of modern healthcare institutions, enabling the foundational data necessary for advancements in personalized medicine. Despite their importance, the software supporting these systems frequently experiences data availability and integrity issues, particularly concerning [...] Read more.
Background/Objectives: Electronic medical record systems play a crucial role in the operation of modern healthcare institutions, enabling the foundational data necessary for advancements in personalized medicine. Despite their importance, the software supporting these systems frequently experiences data availability and integrity issues, particularly concerning patients’ personal information. This study aims to present a decentralized architecture that integrates both clinical and personal patient data, with a provenance mechanism to enable data tracing and auditing, ultimately supporting more precise and personalized healthcare decisions. Methods: A system implementation based on the solution was developed, and a feasibility study was conducted with synthetic medical records data. Results: The system was able to correctly receive data of 190 instances of the entities designed, which included different types of medical records, and generate 573 provenance entries that captured in detail the context of the associated medical information. Conclusions: For the first cycle of the research, the system developed served to validate the main features of the solution, and through that, it was possible to infer the feasibility of a decentralized EHR and PHR health system with formal provenance data tracking. Such a system lays a robust foundation for secure and reliable data management, which is essential for the effective implementation and future development of personalized medicine initiatives. Full article
Show Figures

Graphical abstract

83 pages, 3818 KiB  
Systematic Review
Explainability and Interpretability in Concept and Data Drift: A Systematic Literature Review
by Daniele Pelosi, Diletta Cacciagrano and Marco Piangerelli
Algorithms 2025, 18(7), 443; https://doi.org/10.3390/a18070443 - 18 Jul 2025
Viewed by 394
Abstract
Explainability and interpretability have emerged as essential considerations in machine learning, particularly as models become more complex and integral to a wide range of applications. In response to increasing concerns over opaque “black-box” solutions, the literature has seen a shift toward two distinct [...] Read more.
Explainability and interpretability have emerged as essential considerations in machine learning, particularly as models become more complex and integral to a wide range of applications. In response to increasing concerns over opaque “black-box” solutions, the literature has seen a shift toward two distinct yet often conflated paradigms: explainable AI (XAI), which refers to post hoc techniques that provide external explanations for model predictions, and interpretable AI, which emphasizes models whose internal mechanisms are understandable by design. Meanwhile, the phenomenon of concept and data drift—where models lose relevance due to evolving conditions—demands renewed attention. High-impact events, such as financial crises or natural disasters, have highlighted the need for robust interpretable or explainable models capable of adapting to changing circumstances. Against this backdrop, our systematic review aims to consolidate current research on explainability and interpretability with a focus on concept and data drift. We gather a comprehensive range of proposed models, available datasets, and other technical aspects. By synthesizing these diverse resources into a clear taxonomy, we intend to provide researchers and practitioners with actionable insights and guidance for model selection, implementation, and ongoing evaluation. Ultimately, this work aspires to serve as a practical roadmap for future studies, fostering further advancements in transparent, adaptable machine learning systems that can meet the evolving needs of real-world applications. Full article
(This article belongs to the Special Issue Machine Learning for Pattern Recognition (3rd Edition))
Show Figures

Figure 1

10 pages, 229 KiB  
Article
The Incidence of Oncocytoma and Angiomyolipoma in Patients Undergoing Nephron-Sparing Surgery for Small Renal Masses
by Stelian Ianiotescu, Constantin Gingu, Irina Balescu, Nicolae Bacalbasa, Cristian Balalau and Ioanel Sinescu
J. Mind Med. Sci. 2025, 12(2), 38; https://doi.org/10.3390/jmms12020038 - 16 Jul 2025
Viewed by 219
Abstract
Background: Oncocytoma and angiomyolipoma (AML) are benign renal tumors that may mimic malignant lesions on imaging. With the increasing use of partial nephrectomy (PN) for renal masses, accurate preoperative characterization of these lesions is essential. This study highlights the role of partial nephrectomy [...] Read more.
Background: Oncocytoma and angiomyolipoma (AML) are benign renal tumors that may mimic malignant lesions on imaging. With the increasing use of partial nephrectomy (PN) for renal masses, accurate preoperative characterization of these lesions is essential. This study highlights the role of partial nephrectomy as a valuable diagnostic tool in situations where imaging is inconclusive or raises concern for malignancy without definitive confirmation. In the absence of a reliable preoperative diagnosis, partial nephrectomy provides direct histologic verification with minimal perioperative morbidity. Moreover, it offers curative potential when malignancy is present. By achieving both diagnostic certainty and renal preservation, this approach is well-suited for clinical scenarios in which imaging ambiguity might otherwise result in overtreatment through radical surgery or undertreatment Material and methods: in this retrospective study, we reviewed our 5-year experience (2019–2024), 188 partial nephrectomies—including bilateral procedures and operations on solitary kidneys—using robotic and open approaches. All of these 30 tumors were solid renal masses with indeterminate imaging features or suspicious characteristics suggestive of malignancy, further underscoring the limitations of current preoperative diagnostic modalities. Results: Histopathological evaluation confirmed benign renal tumors in 30 cases, with oncocytoma diagnosed in 18 cases (16 robotic, 2 open) and AML in 12 cases (9 robotic, 3 open). Conclusions: Even when imaging raises suspicion of malignancy or remains inconclusive, many small renal masses are ultimately confirmed as benign upon histopathological examination. This study underscores the diagnostic uncertainty associated with small renal tumors and highlights the value of partial nephrectomy as a decisive diagnostic intervention. In situations where non-invasive modalities fail to provide definitive answers, partial nephrectomy offers tissue confirmation with minimal morbidity. Furthermore, when malignancy is present, this approach ensures appropriate oncologic management while preserving renal function. Our findings support the integration of this strategy into routine clinical practice, particularly when diagnostic clarity is essential for guiding safe and effective treatment. Full article
24 pages, 1164 KiB  
Review
The Aryl Hydrocarbon Receptor in Neurotoxicity: An Intermediator Between Dioxins and Neurons in the Brain
by Eiki Kimura
Toxics 2025, 13(7), 596; https://doi.org/10.3390/toxics13070596 - 16 Jul 2025
Viewed by 514
Abstract
Industrial development has increased environmental dioxin concentrations, sparking concern about human health impacts. Examining dioxin neurotoxicity has highlighted associations with cognitive impairment and behavioral abnormality. Dioxins are ligands of the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor; it is speculated that dioxin-induced [...] Read more.
Industrial development has increased environmental dioxin concentrations, sparking concern about human health impacts. Examining dioxin neurotoxicity has highlighted associations with cognitive impairment and behavioral abnormality. Dioxins are ligands of the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor; it is speculated that dioxin-induced AHR activation is pivotal for toxic effects. Accurate AHR-expressing cell identification is therefore indispensable for understanding the molecular and cellular mechanisms of dioxin toxicity. Herein, current knowledge regarding AHR expression in the mammalian brain is summarized, and dioxin neurotoxicity mechanisms are discussed. Histological studies show AHR-expressing neurons in multiple brain regions, including the hippocampus and cerebral cortex. Dopaminergic and noradrenergic neurons exhibit AHR expression, suggesting possible roles in the monoaminergic system. AHR overactivation evokes dendritic arborization atrophy, whereas its deficiency increases complexity, implying that AHR-mediated signaling is crucial for neuronal growth and maturation. AHR is also involved in neurogenesis and neuronal precursor migration. Collectively, these findings support the notion that dioxin-induced AHR overactivation in individual neurons disrupts neural circuit structure, ultimately leading to impaired brain function. However, as AHR downstream signaling is intertwined with various molecules and pathways, the precise mechanisms remain unclear. Further studies on the expression, signaling, and roles of AHR are needed to clarify dioxin neurotoxicity. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
Show Figures

Figure 1

18 pages, 3225 KiB  
Article
Autonomous Tracking of Steel Lazy Wave Risers Using a Hybrid Vision–Acoustic AUV Framework
by Ali Ghasemi and Hodjat Shiri
J. Mar. Sci. Eng. 2025, 13(7), 1347; https://doi.org/10.3390/jmse13071347 - 15 Jul 2025
Viewed by 270
Abstract
Steel lazy wave risers (SLWRs) are critical in offshore hydrocarbon transport for linking subsea wells to floating production facilities in deep-water environments. The incorporation of buoyancy modules reduces curvature-induced stress concentrations in the touchdown zone (TDZ); however, extended operational exposure under cyclic environmental [...] Read more.
Steel lazy wave risers (SLWRs) are critical in offshore hydrocarbon transport for linking subsea wells to floating production facilities in deep-water environments. The incorporation of buoyancy modules reduces curvature-induced stress concentrations in the touchdown zone (TDZ); however, extended operational exposure under cyclic environmental and operational loads results in repeated seabed contact. This repeated interaction modifies the seabed soil over time, gradually forming a trench and altering the riser configuration, which significantly impacts stress patterns and contributes to fatigue degradation. Accurately reconstructing the riser’s evolving profile in the TDZ is essential for reliable fatigue life estimation and structural integrity evaluation. This study proposes a simulation-based framework for the autonomous tracking of SLWRs using a fin-actuated autonomous underwater vehicle (AUV) equipped with a monocular camera and multibeam echosounder. By fusing visual and acoustic data, the system continuously estimates the AUV’s relative position concerning the riser. A dedicated image processing pipeline, comprising bilateral filtering, edge detection, Hough transform, and K-means clustering, facilitates the extraction of the riser’s centerline and measures its displacement from nearby objects and seabed variations. The framework was developed and validated in the underwater unmanned vehicle (UUV) Simulator, a high-fidelity underwater robotics and pipeline inspection environment. Simulated scenarios included the riser’s dynamic lateral and vertical oscillations, in which the system demonstrated robust performance in capturing complex three-dimensional trajectories. The resulting riser profiles can be integrated into numerical models incorporating riser–soil interaction and non-linear hysteretic behavior, ultimately enhancing fatigue prediction accuracy and informing long-term infrastructure maintenance strategies. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 5009 KiB  
Article
Combined Behavior of Reinforced Concrete Out-of-Plane Parts Beams Encased with Steel Section
by Hasan M. A. Albegmprli, Doaa T. Hashim and Muthanna A. N. Abbu
Buildings 2025, 15(14), 2473; https://doi.org/10.3390/buildings15142473 - 15 Jul 2025
Viewed by 330
Abstract
This research investigated and compared the structural behavior of reinforced concrete straight beams and beams made with out-of-plane parts. This study focused on the influence of the location and number of out-of-plane parts, as well as encasing the beams with a steel section, [...] Read more.
This research investigated and compared the structural behavior of reinforced concrete straight beams and beams made with out-of-plane parts. This study focused on the influence of the location and number of out-of-plane parts, as well as encasing the beams with a steel section, on the ultimate strength, deflection, and rotation in addition to the ductility, energy absorption, and failure mode. A total of nine beams were modelized numerically, divided into three series. The first one included one straight beam, while the remaining two series included four beams each made with out-of-plane parts with and without steel sections. The beams with out-of-plane parts connected the two, three, four, and five concrete segments. The outcomes revealed that the beams made with out-of-plane parts showed less strength than straight beams, which increased the connected segments and reduced the ultimate strength capacity. The regular beam’s linearity was dissimilar to the zigzag beams, which showed a linearity of 32% and was reduced to 22%, 20%, 19.67%, and 16% for beam out-of-plane parts made with two, three, four, and five segments, respectively. Forming a zigzag in the plane of the beams reduced the cracking load, but the decrement depended on the number of parts, which led to more reduction in the yielding load. Concerning the deflection and deformations, the concrete straight beams failed in flexure, with maximum deflection occurring at the midspan of the beam, which was different for beams without plane parts, which showed a combined shear-torsional failure for which the maximum deformation occurred at the midspan with inclination of connected parts on the interior perpendicular axis. Encasing the beams’ out-of-plane parts with steel sections enhanced the structural behavior. The ductility and energy absorption of the out-of-plane parts beams were less than the straight ones, but encasing the beams with a steel section improved the ductility and energy absorption twice. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop