Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (908)

Search Parameters:
Keywords = typical metal material

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 2548 KB  
Review
Overview of Wear-Resistant Coatings in Marine Environments
by Fengming Du, Renhao Mo, Zhen Guo, Jinlong Wang, Yuxing Yang and Shuai Zhang
J. Mar. Sci. Eng. 2025, 13(11), 2121; https://doi.org/10.3390/jmse13112121 - 10 Nov 2025
Viewed by 471
Abstract
Marine engineering equipment operates under extreme conditions such as high salinity, humidity, and flow velocity during marine resource exploration. These harsh environments impose strict requirements on surface performance, especially in terms of wear and corrosion resistance. Wear-resistant coatings are increasingly regarded as a [...] Read more.
Marine engineering equipment operates under extreme conditions such as high salinity, humidity, and flow velocity during marine resource exploration. These harsh environments impose strict requirements on surface performance, especially in terms of wear and corrosion resistance. Wear-resistant coatings are increasingly regarded as a crucial surface engineering approach to mitigate multi-mechanism degradation and improve the long-term reliability of marine equipment. In this review, the typical wear mechanisms in marine environments are systematically analyzed. Corresponding to different service scenarios, the main categories of coating materials, such as metal matrix composite coatings, cermet coatings, functionally graded coatings, and nanolayered coatings are summarized in terms of their structure and performance characteristics. Furthermore, mainstream fabrication techniques, including high-velocity oxy-fuel (HVOF), high-velocity air-fuel (HVAF), laser cladding, cold spray, and physical/chemical vapor deposition (PVD/CVD), are reviewed with respect to their influence on coating micro-structure and properties. Standardized evaluation methods for coating performance are also discussed. Finally, the current research challenges are identified, and future development trends are outlined, with an emphasis on multifunctional, intelligent, and environmentally friendly coating systems. This work aims to provide a systematic reference and theoretical basis for the design and application of wear-resistant coatings in marine environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

12 pages, 3690 KB  
Article
Persistence of Psittacine Bornavirus-4 Viral RNA Is Temperature Dependent in Aqueous Environments and Material Dependent in Non-Aqueous Environments
by Caitlin P. Mencio, Kelsey Williams, Donald J. Brightsmith and Sarah A. Hamer
Vet. Sci. 2025, 12(11), 1065; https://doi.org/10.3390/vetsci12111065 - 6 Nov 2025
Viewed by 190
Abstract
Psittacine bornavirus type-4 (PaBV-4) causes proventricular dilatation disease and death among diverse birds, most notably caged parrots and related species, with no known cure or vaccine. Infected birds can shed virus in fecal matter, urine, and feather dander but it is unknown how [...] Read more.
Psittacine bornavirus type-4 (PaBV-4) causes proventricular dilatation disease and death among diverse birds, most notably caged parrots and related species, with no known cure or vaccine. Infected birds can shed virus in fecal matter, urine, and feather dander but it is unknown how well PaBV-4 survives outside of the host. This study focused on assessing the persistence of PaBV-4 in common environmental situations. The presence of viral RNA was examined in aqueous solutions at varying temperatures and recovery from typical avian husbandry materials (plastic, wood, metal, and cloth). Viral RNA persistence in aqueous samples was found to be 3 weeks at 37 °C, 2 months at 24 °C (room temperature), and 3 months at 4 °C. Viral RNA was also recovered from plastic and metal surfaces up to 72 h after inoculation. Also examined were disinfection protocols comparing coverage versus contact time for a reduction in viral RNA. Complete coverage by the disinfecting agent was more important for preventing recovery of viral RNA. Additionally, PaBV-4 RNA was transferable by paper towel. These results provide the first evidence of the robust nature of PaBV-4 in an aqueous environment and show that cleaning protocols need to be carefully curated to limit possible viral spread. Full article
Show Figures

Figure 1

16 pages, 2189 KB  
Article
Deep Removal of Fluoride Ions from Spent Ternary Lithium-Ion Batteries Leachate Using Porous La@Zr Adsorbent
by Zaoming Chen, Fupeng Liu, Bin Liao, Tao Zhang, Feixiong Chen, Jie Wang, Chunfa Liao and Shengming Xu
Inorganics 2025, 13(11), 369; https://doi.org/10.3390/inorganics13110369 - 3 Nov 2025
Viewed by 330
Abstract
Hydrometallurgy is currently the mainstream industrial process for recovering valuable components (nickel, cobalt, manganese, lithium, etc.) from spent ternary lithium-ion battery cathode materials. During the crushing of lithium batteries, cathode materials, anode materials (graphite), and electrolytes become mixed. Consequently, fluoride ions inevitably enter [...] Read more.
Hydrometallurgy is currently the mainstream industrial process for recovering valuable components (nickel, cobalt, manganese, lithium, etc.) from spent ternary lithium-ion battery cathode materials. During the crushing of lithium batteries, cathode materials, anode materials (graphite), and electrolytes become mixed. Consequently, fluoride ions inevitably enter the leaching solution during the hydrometallurgical recycling process, with concentrations as high as 100–300 mg/L. These fluoride ions not only adversely affect the quality of the recovered precursor products but also pose environmental risks. To address this issue, this study employs a synthesized lanthanum–zirconium (La@Zr) composite material, with a specific surface area of 67.41 m2/g and a pore size of 2–50 nm, which can reduce the fluoride ion concentration in the leaching solution to below 5 mg/L, significantly lower than the 20 mg/L or higher that is typically achieved with traditional calcium salt defluorination processes, without introducing new impurities. Under optimal adsorption conditions, the lanthanum–zirconium adsorbent exhibits a fluoride ion adsorption capacity of 193.4 mg/g in the leaching solution, surpassing that of many existing metal-based adsorbents. At the same time as the valuable metals, Li, Ni, and Co, are basically not adsorbed, the selective adsorption of fluoride ions can be achieved. Adsorption isotherm studies indicate that the adsorption process follows the Langmuir model, suggesting monolayer adsorption. The secondary adsorption process is primarily governed by chemical adsorption, and elevated temperatures facilitate the removal of fluoride ions. Kinetic studies demonstrate that the adsorption process is well described by the pseudo-second-order model. After desorption and regeneration with NaOH solution, the adsorbent still has a favorable fluoride removal performance, and the adsorption rate of fluoride ions can still reach 95% after four cycles of use. With its high capacity, rapid kinetics, and excellent selectivity, the adsorbent is highly promising for large-scale implementation. Full article
(This article belongs to the Special Issue Novel Materials in Li–Ion Batteries, 2nd Edition)
Show Figures

Graphical abstract

24 pages, 9113 KB  
Article
Selective Recovery of Rare Earth Elements from Electric Motors in End-of-Life Vehicles via Copper Slag for Sustainability
by Erdenebold Urtnasan, Chang-Jeong Kim, Yeon-Jun Chung and Jei-Pil Wang
Processes 2025, 13(11), 3502; https://doi.org/10.3390/pr13113502 - 31 Oct 2025
Viewed by 515
Abstract
Discarded NdFeB permanent magnets will become a significant source of rare earth elements (REEs) in the future. Electric vehicle (EV) motors utilize 2–5 kg of NdFeB magnets, and researchers are prioritizing the development of suitable extraction technologies. The objective of our research is [...] Read more.
Discarded NdFeB permanent magnets will become a significant source of rare earth elements (REEs) in the future. Electric vehicle (EV) motors utilize 2–5 kg of NdFeB magnets, and researchers are prioritizing the development of suitable extraction technologies. The objective of our research is to separate metal materials (Al, Cu, Fe and FEEs) from EV motors, based on their melting temperatures. REE magnets that pose the greatest challenge are melted together with the electrical steel of the motor, and the potential for extracting REEs in a selective manner from the molten steel was examined based on their significant oxidation potential using FeO–SiO2 compounds, which act as an oxidizing slag-forming agent, to test the extraction method. Fayalite (2FeO·SiO2) is the most easily created and ideal eutectic compound for carrying oxygen (FeO) and forming slag (SiO44), typically generated during copper smelting. In this experiment, copper slag was used and the results were compared to a smelting test, which had previously used a synthesized fayalite flux as a model. The smelting test, utilizing synthesized fayalite flux, yielded a 91% Nd recovery rate. The Nd recovery rate in the smelting test with copper slag hit a high of 64.81%, influenced by the smelting’s holding time. The steel contained 0.08% Nd. Iron was recovered from the copper slag at a rate of 73%. During the smelting test, it was observed that the reaction between Nd2O3 and the Al2O3 crucible resulted in the formation of a layer on the surface of the crucible, diffusion into the crucible itself, and a subsequent reduction in the efficiency of Nd recovery. Full article
Show Figures

Graphical abstract

16 pages, 2038 KB  
Article
Separation of Silver and Cellulosic Fibers for Recycling and Reuse of Printed Electronic Devices Components
by Ramzi Khiari, Nathalie Marlin, Denis Curtil, Marc Aurousseau, Lenka Svecová and Nadège Reverdy-Bruas
Recycling 2025, 10(6), 201; https://doi.org/10.3390/recycling10060201 - 29 Oct 2025
Viewed by 331
Abstract
The printed electronics sector is experiencing significant growth driven by societal expectations. The use of cellulosic substrates is an excellent strategy that offers interesting research prospects, but also sets challenges in terms of management and recycling of these new wastes to avoid their [...] Read more.
The printed electronics sector is experiencing significant growth driven by societal expectations. The use of cellulosic substrates is an excellent strategy that offers interesting research prospects, but also sets challenges in terms of management and recycling of these new wastes to avoid their accumulation. This work investigates the recycling ability of paper-based printed electronics (a simple RFID antenna printed on paper), containing silver particles in the functional ink, using processes already applied in conventional paper and board recycling lines. These operations, commonly used in the papermaking industry, are pulping, screening, centrifugal cleaning, and flotation. The efficiency of each unit operation was evaluated. Mass balances between the inlet and the outlet of each studied operation have been established in order to evaluate the separation efficiency of Ag and cellulosic fibers, the objective being to reuse the fibers to manufacture a recycled paper, and to recover Ag in another fraction for further valorization. The results are encouraging, with more than 70% of silver and over 80% of cellulose fibers recovered, demonstrating a higher recovery efficiency compared to typical recycling methods reported in the literature. Thus, it has been shown that existing processes used in conventional recycling lines can be adapted to efficiently separate functional materials from cellulosic fibers, offering an improvement in both metal and fibers’ recovery. Full article
Show Figures

Figure 1

32 pages, 2334 KB  
Review
Recent Advances in SERS-Based Detection of Organophosphorus Pesticides in Food: A Critical and Comprehensive Review
by Kaiyi Zheng, Xianwen Shang, Zhou Qin, Yang Zhang, Jiyong Shi, Xiaobo Zou and Meng Zhang
Foods 2025, 14(21), 3683; https://doi.org/10.3390/foods14213683 - 29 Oct 2025
Viewed by 698
Abstract
Surface-enhanced Raman spectroscopy (SERS) has rapidly emerged as a powerful analytical technique for the sensitive and selective detection of organophosphorus pesticides (OPPs) in complex food matrices. This review summarizes recent advances in substrate engineering, emphasizing structure–performance relationships between nanomaterial design and molecular enhancement [...] Read more.
Surface-enhanced Raman spectroscopy (SERS) has rapidly emerged as a powerful analytical technique for the sensitive and selective detection of organophosphorus pesticides (OPPs) in complex food matrices. This review summarizes recent advances in substrate engineering, emphasizing structure–performance relationships between nanomaterial design and molecular enhancement mechanisms. Functional groups such as P=O, P=S, and aromatic rings are highlighted as key determinants of Raman activity through combined chemical and electromagnetic effects. State-of-the-art substrates, including noble metals, carbon-based materials, bimetallic hybrids, MOF-derived systems, and emerging liquid metals, are critically evaluated with respect to sensitivity, stability, and applicability in typical matrices such as fruit and vegetable surfaces, juices, grains, and agricultural waters. Reported performance commonly achieves sub-μg L−1 to low μg L−1 detection limits in liquids and 10−3 to 10 μg cm−2 on surfaces, with reproducibility often in the 5–15% RSD range under optimized conditions. Persistent challenges are also emphasized, including substrate variability, quantitative accuracy under matrix interference, and limited portability for real-world applications. Structure–response correlation models and data-driven strategies are discussed as tools to improve substrate predictability. Although AI and machine learning show promise for automated spectral interpretation and high-throughput screening, current applications remain primarily proof-of-concept rather than routine workflows. Future priorities include standardized fabrication protocols, portable detection systems, and computation-guided multidimensional designs to accelerate translation from laboratory research to practical deployment in food safety and environmental surveillance. Full article
(This article belongs to the Special Issue Non-Destructive Analysis for the Detection of Contaminants in Food)
Show Figures

Graphical abstract

26 pages, 652 KB  
Review
Coagulation–Sedimentation in Water and Wastewater Treatment: Removal of Pesticides, Pharmaceuticals, PFAS, Microplastics, and Natural Organic Matter
by Ewelina Łukasiewicz
Water 2025, 17(21), 3048; https://doi.org/10.3390/w17213048 - 24 Oct 2025
Viewed by 1709
Abstract
Coagulation–sedimentation remains a widely used process in drinking and wastewater treatment, yet its performance for emerging contaminants requires further evaluation. This review summarizes recent advances in conventional and novel coagulant systems for the removal of pesticides, pharmaceuticals, per- and polyfluoroalkyl substances (PFAS), natural [...] Read more.
Coagulation–sedimentation remains a widely used process in drinking and wastewater treatment, yet its performance for emerging contaminants requires further evaluation. This review summarizes recent advances in conventional and novel coagulant systems for the removal of pesticides, pharmaceuticals, per- and polyfluoroalkyl substances (PFAS), natural organic matter (NOM), and micro- and nanoplastics (MNPs). The efficiency of conventional aluminum- and iron-based coagulants typically ranges from 30–90% for NOM and pesticides, 10–60% for pharmaceuticals, <20% for PFAS, and up to 95% for microplastics. Modified and hybrid materials, including titanium-based and bio-derived coagulants, demonstrate superior performance through combined mechanisms of charge neutralization, adsorption, and complexation. The zeta potential of particles was identified as a key factor in optimizing MNP removal. The ability of iron and titanium to form complexes with organic ligands significantly influences the removal of organic pollutants and metal–organic interactions in water matrices. While most research remains at the laboratory scale, promising developments in hybrid and electrocoagulation systems indicate potential for field-scale application. The review highlights that coagulation is best applied as a pretreatment step in integrated systems, enhancing subsequent adsorption, oxidation, or membrane processes. Future studies should focus on large-scale validation, energy efficiency, and the recovery of metal oxides (e.g., TiO2) from residual sludge to improve sustainability. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

25 pages, 4924 KB  
Review
Recent Progress in Low-Power-Consumption Metal Oxide Semiconductor Gas Sensors
by Yu Zhang, Renbo Li, Ruqi Guo, Mingzhi Jiao, Gang Wang and Zhikai Zhao
Materials 2025, 18(21), 4864; https://doi.org/10.3390/ma18214864 - 24 Oct 2025
Viewed by 637
Abstract
Metal oxide semiconductor (MOS) gas sensors offer several advantages, including low cost, high accuracy, and ease of miniaturization. Thus, they are excellent candidates for environmental monitoring and food spoilage detection applications, particularly in the safe Internet of Things field or for portable instruments. [...] Read more.
Metal oxide semiconductor (MOS) gas sensors offer several advantages, including low cost, high accuracy, and ease of miniaturization. Thus, they are excellent candidates for environmental monitoring and food spoilage detection applications, particularly in the safe Internet of Things field or for portable instruments. Typically, there are two general routes for realizing low-power-consumption MOS gas sensors: room-temperature MOS gas sensors or MEMS MOS gas sensors. The review focuses on the detection of four typical gases, namely methane, hydrogen, carbon monoxide, and nitrogen dioxide, systematically summarizing and analyzing the most recent results of low-power-consumption MOS gas sensors. The 2D materials, MOS composites, and 3D structured composites exhibit excellent room-temperature gas detection capabilities. The mechanism of the room-temperature gas sensors is also discussed in detail. Another route is MEMS MOS gas sensors. First, the progress of the micro-hotplate research is introduced. Then, several of the latest reported MEMS MOS gas sensors are shown and compared. The gas sensing mechanism of these MEMS MOS gas sensors is also given. The paper will provide a valuable guide for researchers in the MOS gas sensor field, particularly for those working towards low-power-consumption MOS gas sensors. Full article
Show Figures

Figure 1

12 pages, 3916 KB  
Article
Pore Structure Modification of the Mixed Metal Oxides Derived from Co-Al Layered Double Hydroxides and Catalytic Performance Enhancement for Aerobic Oxidation of Benzyl Alcohol
by Qian Zhang, Xia Tan, Yinjie Hu, Haonan Cui, Xiao Lin, Fei Li, Huibin Lei and Ou Zhuo
Catalysts 2025, 15(11), 1002; https://doi.org/10.3390/catal15111002 - 22 Oct 2025
Viewed by 465
Abstract
The mixed metal oxides (MMOs) derived from layered double hydroxides (LDHs) are a typical class of porous materials and have attracted significant attention across various fields due to their high surface area, rich porous structures and various compositions. Regulating the pore structure of [...] Read more.
The mixed metal oxides (MMOs) derived from layered double hydroxides (LDHs) are a typical class of porous materials and have attracted significant attention across various fields due to their high surface area, rich porous structures and various compositions. Regulating the pore structure of MMOs remains an urgent need because of the growing demand for numerous applications including adsorption, catalysis, and energy conversion. Controlling the lateral size of the lamellar crystals in the Co–Al LDH precursor allowed us to engineer the pore structure of Co–Al MMO, an architecture formed by the stacking of these lamellar flakes. The pore size distribution of the Co–Al MMO has been adjusted in the range from several nanometer to hundreds of nanometers. The sample with the optimized pore sizes exhibited a much higher catalytic reaction rate in the aerobic oxidation reaction of benzyl alcohol, about 4.2 times that of the control sample. Further research demonstrated that the high activity was favored by the improved mass transfer rate in the optimized pore architecture. Moreover, sodium silicate was employed as a cross-linking agent to enhance the cohesion within the secondary particles, which consist of stacked lamellar flakes. The resulting silicate-modified Co–Al MMO demonstrated significantly improved catalytic durability, maintaining stable performance over five consecutive reuse cycles—the performance that substantially exceeded that of its un-modified counterpart. Full article
(This article belongs to the Topic Advanced Materials in Chemical Engineering)
Show Figures

Graphical abstract

44 pages, 2436 KB  
Review
Microbial-Based Green Synthesis of Silver Nanoparticles: A Comparative Review of Bacteria- and Fungi-Mediated Approaches
by Emir Akdaşçi, Furkan Eker, Hatice Duman, Mikhael Bechelany and Sercan Karav
Int. J. Mol. Sci. 2025, 26(20), 10163; https://doi.org/10.3390/ijms262010163 - 19 Oct 2025
Viewed by 945
Abstract
The growing demand for sustainable and eco-friendly technologies has driven the development of green and bio-based synthesis methods for metallic nanoparticles. Among these, the microbial synthesis of silver nanoparticles (AgNPs) has emerged as a promising alternative to conventional chemical methods, which often rely [...] Read more.
The growing demand for sustainable and eco-friendly technologies has driven the development of green and bio-based synthesis methods for metallic nanoparticles. Among these, the microbial synthesis of silver nanoparticles (AgNPs) has emerged as a promising alternative to conventional chemical methods, which often rely on hazardous reagents and harsh conditions. Bacteria and fungi are particularly attractive due to their ability to produce AgNPs with tunable size, shape, and surface properties through natural enzymatic and metabolic processes. This review provides a comparative analysis of bacterial and fungal synthesis routes, focusing on their distinct advantages, limitations, and optimal applications. Bacterial synthesis offers faster growth, simpler culture requirements, and greater potential for genetic manipulation, enabling precise control over nanoparticle (NP) characteristics. In contrast, fungal synthesis typically yields higher nanoparticle stability and is well suited for extracellular, scalable production. The review also summarizes key synthesis parameters (e.g., pH, temperature, reaction time), addresses reproducibility and scalability challenges, and highlights emerging research areas, including antibacterial bio-hybrid materials and bacterial-supported metallic catalysts. Overall, this comparative perspective provides a clear framework for selecting appropriate microbial systems for different technological applications and identifies future research directions to advance green nanotechnology. Full article
(This article belongs to the Special Issue Innovative Nanomaterials from Functional Molecules)
Show Figures

Figure 1

27 pages, 16085 KB  
Article
The Mechanical Properties, Microstructure Analysis and Damage Behavior of AlMg7 Matrix Composites Reinforced with α-Al2O3 Particles
by Adam Kurzawa
Appl. Sci. 2025, 15(20), 11173; https://doi.org/10.3390/app152011173 - 18 Oct 2025
Viewed by 377
Abstract
This research investigated the influence of volume fraction (30 vol.% and 40 vol.%) and particle size α-Al2O3 on the physical and mechanical properties of AlMg7 composites manufactured by the squeeze casting technique. The aim of the study was to characterize [...] Read more.
This research investigated the influence of volume fraction (30 vol.% and 40 vol.%) and particle size α-Al2O3 on the physical and mechanical properties of AlMg7 composites manufactured by the squeeze casting technique. The aim of the study was to characterize the microstructure, hardness, density, tensile strength (σmax), compressive strength (σcmax), and impact strength, with a discussion of the mechanisms of destruction. The obtained materials exhibited very low porosity (below 2%), confirming the high efficiency of the ceramic preforms infiltration process. It was found that both hardness and tensile strength increase with decreasing size of the reinforcing particles. The highest growth in hardness at 113% was observed for the composite with 40 vol.% of F1200 particles, while the highest tensile strength, 341 MPa, was noted for materials with 30 vol.% of the same fraction of α-Al2O3 particles. In the case of compressive strength, the opposite relationship was observed, where an increase in volume fraction to 40% resulted in a significant rise in σcmax to 522 MPa. The tests also indicated that an increase in the proportion of the brittle ceramic phase radically reduces the impact strength of composites compared to the matrix, which is typical for composite materials with a metallic matrix. Microstructure analysis of the fractures revealed that the mechanism of destruction depends on the type of load and the size and proportion of particles, which is reflected in the transition from transcrystalline cracking to delamination at the phase boundary. The results confirm that the strengthening processes of composites depend on the effective transfer of stresses at the microscopic level. Full article
(This article belongs to the Special Issue Recent Advances in Foundry Engineering and Technology)
Show Figures

Figure 1

17 pages, 2126 KB  
Article
Thin Film Fragmentation Testing: A Refined Screening Method for Estimating Relative Intrinsic Ductility of Refractory Metals
by Taohid Bin Nur Tuhser and Thomas John Balk
Metals 2025, 15(10), 1144; https://doi.org/10.3390/met15101144 - 15 Oct 2025
Viewed by 418
Abstract
Refractory metals typically exhibit limited room temperature ductility, hampering their widespread application. Recent advances in refractory high-entropy alloys have focused on finding optimum combinations of strength and ductility but require exploring vast compositional spaces. To facilitate such a search process, a method for [...] Read more.
Refractory metals typically exhibit limited room temperature ductility, hampering their widespread application. Recent advances in refractory high-entropy alloys have focused on finding optimum combinations of strength and ductility but require exploring vast compositional spaces. To facilitate such a search process, a method for fast assessment of intrinsic ductility would be highly advantageous. Herein, we propose a novel approach to screen for a refractory alloy’s ‘intrinsic ductility’ by leveraging the established technique of thin film fragmentation testing, which has been successfully used to evaluate stretchability of flexible electronics. We conducted in-depth investigations of sputtered tungsten thin films to identify the processing-induced extrinsic variables that can affect the crack onset strain (COS) under uniaxial loading. By tuning the process parameters for film deposition, Nb, Mo, Ta and W samples were fabricated with comparable thicknesses and residual stress levels. The films’ COS values were compared to the ductility levels of bulk counterpart materials, and the conditions for meaningful comparison are discussed. This approach offers a simple, inexpensive, and rapid means of screening based on relative intrinsic ductility of thin metal films and should also be applicable to the study of high-entropy alloy films. Full article
(This article belongs to the Special Issue Fracture and Fatigue of Advanced Metallic Materials)
Show Figures

Figure 1

14 pages, 45103 KB  
Article
Tensile Performance Sensitivity to Variations of Standard 17-4 PH Heat Treatments on LPBF-Produced Material
by Ben Brown, Cory Read, Joseph Newkirk and Frank Liou
Metals 2025, 15(10), 1141; https://doi.org/10.3390/met15101141 - 14 Oct 2025
Viewed by 440
Abstract
Standard heat treatments for metals of a particular composition are typically designed with the assumption of a conventional starting microstructure, such as that produced by casting or wrought processing. When applied to metals fabricated by Laser Powder Bed Fusion (LPBF) metal additive manufacturing [...] Read more.
Standard heat treatments for metals of a particular composition are typically designed with the assumption of a conventional starting microstructure, such as that produced by casting or wrought processing. When applied to metals fabricated by Laser Powder Bed Fusion (LPBF) metal additive manufacturing (AM), these heat treatments can produce inconsistent performance due to the unique as-built microstructures. This study investigates how modifications to standard heat treatments for 17-4 PH steel influence the microstructure and mechanical properties of LPBF-fabricated material. Specimens were produced and subjected to varying solutionizing and homogenizing treatments followed by standard aging treatments. Microstructures were characterized using optical microscopy, Electron Backscatter Diffraction (EBSD), and X-ray diffraction (XRD), and mechanical properties were evaluated through uniaxial tensile testing. Based on these results, recommendations are provided for achieving improved wrought-like performance in LPBF 17-4 PH steel. Full article
(This article belongs to the Special Issue Advances in Laser Processing of Metals and Alloys)
Show Figures

Graphical abstract

18 pages, 5708 KB  
Article
Directly Heated Solid Media Thermal Energy Storage System for Heat Supply in Battery Electric Vehicles: A Holistic Evaluation
by Thorsten Ott and Volker Dreißigacker
Energies 2025, 18(20), 5354; https://doi.org/10.3390/en18205354 - 11 Oct 2025
Viewed by 424
Abstract
Battery electric vehicles (BEVs) play a key role in reducing CO2 emissions and enabling a climate-neutral economy. However, they suffer from reduced range in cold conditions due to electric cabin heating. Electrically heated thermal energy storage (TES) systems can decouple heat generation [...] Read more.
Battery electric vehicles (BEVs) play a key role in reducing CO2 emissions and enabling a climate-neutral economy. However, they suffer from reduced range in cold conditions due to electric cabin heating. Electrically heated thermal energy storage (TES) systems can decouple heat generation from demand, thereby preventing a loss of range. For this purpose, a novel concept based on a directly electrically heated ceramic solid media TES is investigated, aiming to achieve high storage density while enabling both high charging and discharging powers. To assess the feasibility of the proposed TES concept in BEVs, a holistic evaluation of central aspects is conducted, including experimental characterization for material selection, experimental investigations on electrical contacting, and simulations of the electrothermal charging and thermal discharging processes under vehicle-relevant conditions. As a result of the material characterization, a promising material—a silicon carbide-based composite—was identified, which meets the electrothermal requirements under typical household charging conditions and allows reliable operation with silver-metallized electrodes. Design studies with this material show gravimetric energy densities—including thermal insulation demand—exceeding 100 Wh/kg, storage utilization of up to 90%, and fast charging within 25 min, while offering 5 kW at flexible temperature levels for cabin heating during thermal discharging. These results show that the basic prerequisites for such storage systems are met, while further development—particularly in terms of material improvements—remains necessary. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

28 pages, 8557 KB  
Article
Surface Optimization of Additively Manufactured (AM) Stainless Steel Components Using Combined Chemical and Electrochemical Post-Processing
by Pablo Edilberto Sanchez Guerrero, Andrew Grizzle, Daniel Fulford, Juan Estevez Hernandez, Lucas Rice and Pawan Tyagi
Coatings 2025, 15(10), 1197; https://doi.org/10.3390/coatings15101197 - 11 Oct 2025
Viewed by 489
Abstract
The design and production of goods have been completely transformed by additive manufacturing (AM), which makes it possible to create components with intricate and complex geometries that were previously impossible or impractical to produce. However, current technologies continue to produce coarse-surfaced metal components [...] Read more.
The design and production of goods have been completely transformed by additive manufacturing (AM), which makes it possible to create components with intricate and complex geometries that were previously impossible or impractical to produce. However, current technologies continue to produce coarse-surfaced metal components that typically exhibit fatigue properties, resulting in component failure and unfavorable friction coefficients on the printed part. Therefore, to improve the surface quality of the fabricated parts, post-processing of AM-created components is required. With emphasis on electroless nickel plating, ChemPolishing (CP), and ElectroPolishing (EP), this study investigates post-processing methods for stainless steel that is additively manufactured (AM). The rough surfaces created by additive manufacturing (AM) restrict direct use. While ElectroPolishing (EP) achieves high material removal rates but may not be consistent, ChemPolishing (CP) offers uniform smoothening. Nickel plating enhances additive manufacturing (AM) products’ resistance to wear and scratches and corrosion protection. To optimize nickel deposition, medium (6%–9%) and high (10%–13%) phosphorus nickel was tested using the L9 Taguchi design of experiments (DOE). Mechanical properties, including scratch resistance and adhesion, were evaluated using the TABER 5900 reciprocating (Taber Industries, North Tonawanda, NY, USA) abraser apparatus, a 5 N scratch test, and ASTM B-733 thermal shock method. Surface analysis was performed with the KEYENCE VHX-7000 microscope (Keyence Corporation, Itasca, IL, USA), and chemical composition before and after nickel deposition was assessed via the ThermoFisher Phenom XL scanning electron microscope (SEM, Thermo Fisher Scientific, Waltham, MA, USA) Optimal processing conditions, determined using Qualitek-4 software, Version 20.1.0 revealed improvements in both surface finish and mechanical robustness. This comprehensive analysis underscores the potential of nickel-coated additive manufacturing (AM) parts for enhanced performance, offering a pathway to more durable and efficient additive manufacturing (AM) applications. Full article
(This article belongs to the Special Issue Recent Advances in Surface Functionalisation, 2nd Edition)
Show Figures

Figure 1

Back to TopTop