Coagulation–Sedimentation in Water and Wastewater Treatment: Removal of Pesticides, Pharmaceuticals, PFAS, Microplastics, and Natural Organic Matter
Abstract
1. Introduction
2. Development of Technology and New Coagulation Materials
Titanium-Based Coagulants and Hybrid Reagents
3. Organic Pollutants Removed by Coagulation
3.1. PFOS and PFOA
3.2. Natural and Dissolved Organic Matter (NOM/DOM)
3.3. Micro- and Nanoplastics (MNPs)
3.4. Pesticides
3.5. Pharmaceuticals
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| ACE | Acetaminophen |
| AOPs | Advanced Oxidation Processes |
| BAC | Biologically Activated Carbon |
| BDD | Boron-Doped Diamond |
| BOD | Biochemical Oxygen Demand |
| CBZ | Carbamazepine |
| CCD | Central Composite Design |
| COD | Chemical Oxygen Demand |
| COA | Coagulation |
| CTAB | Cetyltrimethylammonium Bromide |
| CTAC | Cetyltrimethylammonium Chloride |
| CW | Coagulation Water |
| CW-UF | Combined Coagulation–Ultrafiltration |
| DBPs | Disinfection By-Products |
| DCF | Diclofenac |
| DCAN | Dichloroacetonitrile |
| DHAs | Dissolved Humic Acids |
| DOC | Dissolved Organic Carbon |
| DOM | Dissolved Organic Matter |
| EC | Electrocoagulation |
| EO | Electrooxidation |
| E2 | 17β-estradiol |
| FeCl3 | Ferric Chloride |
| FeSO4·7H2O | Ferrous Sulfate Heptahydrate |
| GAC | Granular Activated Carbon |
| HANs | Haloacetonitriles |
| HWW | Hospital Wastewater |
| LC–MS/MS | Liquid Chromatography–Tandem Mass Spectrometry |
| LMW | Low-Molecular-Weight |
| MAC | Magnetic Adsorption Coagulation |
| MNPs | Micro- and Nanoplastics |
| N-DBPs | Nitrogenous Disinfection By-Products |
| NOM | Natural Organic Matter |
| nZVI | Nanoscale Zero-Valent Iron |
| PAC | Powdered Activated Carbon |
| PACl | Polyaluminum Chloride |
| PAFs | Polyferric Aluminum Sulfate |
| PA | Polyamide |
| PE | Polyethylene |
| PFAS | Per- and Polyfluoroalkyl Substances |
| PFBA | Perfluorobutanoic Acid |
| PFBS | Perfluorobutanesulfonic Acid |
| PFHpA | Perfluoroheptanoic Acid |
| PFHxA | Perfluorohexanoic Acid |
| PFOS | Perfluorooctanesulfonic Acid |
| PFOA | Perfluorooctanoic Acid |
| PFPeA | Perfluoropentanoic Acid |
| PS | Polystyrene |
| PS-NPs | Polystyrene Nanoplastics |
| RSM | Response Surface Methodology |
| TCM | Trichloromethane |
| TCNM | Trichloronitromethane |
| THMs | Trihalomethanes |
| TOC | Total Organic Carbon |
| TP | Total Phosphorus |
| UF | Ultrafiltration |
| WW | Wastewater |
| WWTPs | Wastewater Treatment Plants |
References
- World Health Organization. WHO Water Quality and Health Strategy 2013–2020; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Kumar Sharma, S. Adsorptive Iron Removal from Groundwater 2001; Wageningen University & Research: Wageningen, The Netherland, 2001. [Google Scholar]
- Garcia - Mendieta, A.; Solache-Riosm, M.; Olguin, M.T. Evaluation of the sorption properties of a Mexican clinoptilolite-rich tuff for iron, manganese and iron–manganese systems. Microporous Mesoporous Mater. 2009, 118, 489–495. [Google Scholar] [CrossRef]
- Liang, Z.; Soranno, P.A.; Wagner, T. The Role of Phosphorus and Nitrogen on Chlorophyll a: Evidence from Hundreds of Lakes. Water Res. 2020, 185, 116236. [Google Scholar] [CrossRef]
- Roy, M.; van Genuchten, C.M.; Rietveld, L.; van Halem, D. Groundwater-Native Fe(II) Oxidation Prior to Aeration with H2O2 to Enhance As(III) Removal. Water Res. 2022, 223, 119007. [Google Scholar] [CrossRef]
- Podgórni, E.; Rząsa, M. Investigation of the Effects of Salinity and Temperature on the Removal of Iron from Water by Aeration, Filtration, and Coagulation. Pol. J. Environ. Stud. 2014, 23, 2157–2161. [Google Scholar] [CrossRef]
- Łukasiewicz, E.; Rząsa, M. Examination of Coagulant Additives on Qualitative Composition of Selected Thermal Waters. E3S Web Conf. 2017, 19, 02013. [Google Scholar] [CrossRef]
- Tzoupanos, N.D.; Zouboulis, A.I. Coagulation-Flocculation Processes in Water/Wastewater Treatment: The Application of New Generation of Chemical Reagents. In Proceedings of the 6th IASME/WSEAS International Conference on HEAT TRANSFER, THERMAL ENGINEERING and ENVIRONMENT, Rhodes, Greece, 20–22 August 2008. [Google Scholar]
- Sizochenko, N.; Mikolajczyk, A.; Syzochenko, M.; Puzyn, T.; Leszczynski, J. Zeta Potentials (ζ) of Metal Oxide Nanoparticles: A Meta-Analysis of Experimental Data and a Predictive Neural Networks Modeling. NanoImpact 2021, 22, 100317. [Google Scholar] [CrossRef]
- Bjelopavlic, M.; Newcombe, G.; Hayes, R. Adsorption of NOM onto Activated Carbon: Effect of Surface Charge, Ionic Strength, and Pore Volume Distribution. J. Colloid Interface Sci. 1999, 210, 271–280. [Google Scholar] [CrossRef]
- Genz, A.; Baumgarten, B.; Goernitz, M.; Jekel, M. NOM Removal by Adsorption onto Granular Ferric Hydroxide: Equilibrium, Kinetics, Filter and Regeneration Studies. Water Res. 2008, 42, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Fabris, R.; Chow, C.W.K.; Drikas, M.; Eikebrokk, B. Comparison of NOM Character in Selected Australian and Norwegian Drinking Waters. Water Res. 2008, 42, 4188–4196. [Google Scholar] [CrossRef] [PubMed]
- Biswas, B.; Goel, S. Electrocoagulation and Electrooxidation Technologies for Pesticide Removal from Water or Wastewater: A Review. Chemosphere 2022, 302, 134709. [Google Scholar] [CrossRef]
- Akinapally, S.; Dheeravath, B.; Panga, K.K.; Vurimindi, H.; Sanaga, S. Treatment of Pesticide Intermediate Industrial Wastewater Using Hybrid Methodologies. Appl. Water Sci. 2021, 11, 56. [Google Scholar] [CrossRef]
- Fadali, O.; Farrag, T.; Abdelbasier, A. Pesticides Removal from Wastewater by Electrocoagulation Technique Using Stainless Steel (Ss-Ss) Plate Electrodes. Bull. Fac. Eng. Mansoura Univ. 2020, 40, 1–10. [Google Scholar] [CrossRef]
- Fent, K.; Weston, A.A.; Caminada, D. Ecotoxicology of Human Pharmaceuticals. Aquat. Toxicol. 2006, 76, 122–159. [Google Scholar] [CrossRef]
- Valcárcel, Y.; González Alonso, S.; Rodríguez-Gil, J.L.; Gil, A.; Catalá, M. Detection of Pharmaceutically Active Compounds in the Rivers and Tap Water of the Madrid Region (Spain) and Potential Ecotoxicological Risk. Chemosphere 2011, 84, 1336–1348. [Google Scholar] [CrossRef]
- Alazaiza, M.; Albahnasawi, A.; Ali, G.; Bashir, M.; Nassani, D.; Al Maskari, T.; Amr, S.; Abujazar, M. Application of Natural Coagulants for Pharmaceutical Removal from Water and Wastewater: A Review. Water 2022, 14, 140. [Google Scholar] [CrossRef]
- Huber, M.M.; Korhonen, S.; Ternes, T.A.; Von Gunten, U. Oxidation of Pharmaceuticals during Water Treatment with Chlorine Dioxide. Water Res. 2005, 39, 3607–3617. [Google Scholar] [CrossRef]
- Biden, J. PFAS National Primary Drinking Water Regulation: Final Rule; United States Environmental Protection Agency: Washington, DC, USA, 2024. [Google Scholar]
- Dixit, F.; Dutta, R.; Barbeau, B.; Berube, P.; Mohseni, M. PFAS Removal by Ion Exchange Resins: A Review. Chemosphere 2021, 272, 129777. [Google Scholar] [CrossRef] [PubMed]
- Technical Overview of the PFAS National Primary Drinking Water Regulation (NPDWR). 2024. Available online: https://www.federalregister.gov/documents/2024/04/26/2024-07773/pfas-national-primary-drinking-water-regulation (accessed on 21 October 2025).
- Xin, Z.; Ruan, C.; Wang, J.; Tong, J.; Deng, Z.; Zhang, H.; Zhang, C.; Zhang, Y.; Shi, J. Nut Shell Biochar Effectively Repairs Mixed Pollution of Heavy Metal Anions and PFAS in Soil. J. Environ. Chem. Eng. 2025, 13, 118241. [Google Scholar] [CrossRef]
- López-Maldonado, E.A.; Khan, N.A.; Singh, S.; Ramamurthy, P.C.; Kabak, B.; Baudrit, J.R.V.; Alkahtani, M.Q.; Álvarez-Torrellas, S.; Varshney, R.; Serra-Pérez, E.; et al. Magnetic Polymeric Composites: Potential for Separating and Degrading Micro/Nano Plastics. Desalination Water Treat. 2024, 317, 100198. [Google Scholar] [CrossRef]
- Haldar, S.; Muralidaran, Y.; Míguez, D.; Mulla, S.I.; Mishra, P. Eco-Toxicity of Nano-Plastics and Its Implication on Human Metabolism: Current and Future Perspective. Sci. Total Environ. 2023, 861, 160571. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, J.-J.; Liu, L.-Y.; Li, Z.; Zeng, E.Y. Drinking Boiled Tap Water Reduces Human Intake of Nanoplastics and Microplastics. Environ. Sci. Technol. Lett. 2024, 11, 273–279. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, X.; Wei, W.; Chen, H.; Ni, B.J. Removal of Microplastics and Nanoplastics from Urban Waters: Separation and Degradation. Water Res. 2022, 221, 118820. [Google Scholar] [CrossRef]
- Dai, Y.; Li, L.; Guo, Z.; Yang, X.; Dong, D. Emerging Isolation and Degradation Technology of Microplastics and Nanoplastics in the Environment. Environ. Res. 2024, 243, 117864. [Google Scholar] [CrossRef]
- Kouchakipour, S.; Hosseinzadeh, M.; Qaretapeh, M.Z.; Dashtian, K. Sustainable Large-Scale Fe3O4/Carbon for Enhanced Polystyrene Nanoplastics Removal through Magnetic Adsorption Coagulation. J. Water Process. Eng. 2024, 58, 104919. [Google Scholar] [CrossRef]
- Apul, O.G.; Zhou, Y.; Karanfil, T. Mechanisms and Modeling of Halogenated Aliphatic Contaminant Adsorption by Carbon Nanotubes. J. Hazard. Mater. 2015, 295, 138–144. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Su, F.; Wang, Y.; Peng, L.; Liu, D. Adsorption Behaviour of Microplastics on the Heavy Metal Cr(VI) before and after Ageing. Chemosphere 2022, 302, 134865. [Google Scholar] [CrossRef]
- Wang, J.; Sun, C.; Huang, Q.X.; Chi, Y.; Yan, J.H. Adsorption and Thermal Degradation of Microplastics from Aqueous Solutions by Mg/Zn Modified Magnetic Biochars. J. Hazard. Mater. 2021, 419, 126486. [Google Scholar] [CrossRef]
- Graumans, M.H.F.; Hoeben, W.F.L.M.; Russel, F.G.M.; Scheepers, P.T.J. Oxidative Degradation of Cyclophosphamide Using Thermal Plasma Activation and UV/H2O2 Treatment in Tap Water. Environ. Res. 2020, 182, 109046. [Google Scholar] [CrossRef]
- Zhao, Z.; Zheng, X.; Han, Z.; Yang, S.; Zhang, H.; Lin, T.; Zhou, C. Response Mechanisms of Chlorella Sorokiniana to Microplastics and PFOA Stress: Photosynthesis, Oxidative Stress, Extracellular Polymeric Substances and Antioxidant System. Chemosphere 2023, 323, 138256. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, Y.; Wang, Y.; Wang, Z.; Huang, Q. Electrochemical Oxidation Combined with UV Irradiation for Synergistic Removal of Perfluorooctane Sulfonate (PFOS) in Water. J. Hazard. Mater. 2022, 436, 129091. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Sun, F.; Shang, W.; Zhang, X.; Dong, W.; Dong, Z.; Zhao, S. Removal Mechanisms of Perfluorinated Compounds (PFCs) by Nanofiltration: Roles of Membrane-Contaminant Interactions. Chem. Eng. J. 2021, 406, 126814. [Google Scholar] [CrossRef]
- Bahi, A.; Shao, J.; Mohseni, M.; Ko, F.K. Membranes Based on Electrospun Lignin-Zeolite Composite Nanofibers. Sep. Purif. Technol. 2017, 187, 207–213. [Google Scholar] [CrossRef]
- Kumar Dey, T.; Hou, J.; Sillanpää, M.; Kumar Pramanik, B. Metal-Organic Framework Membrane for Waterborne Micro/Nanoplastics Treatment. Chem. Eng. J. 2023, 474, 145715. [Google Scholar] [CrossRef]
- Hara-Yamamura, H.; Inoue, K.; Matsumoto, T.; Honda, R.; Ninomiya, K.; Yamamura, H. Rejection of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) by Severely Chlorine Damaged RO Membranes with Different Salt Rejection Ratios. Chem. Eng. J. 2022, 446, 137398. [Google Scholar] [CrossRef]
- Vijayaraghavan, G.; Sivakumar, T.; Kumar, A.V. Application of Plant Based Coagulants for Waste Water Treatment. Int. J. Adv. Eng. Res. Stud. 2011, 1, 88–92. [Google Scholar]
- Azizi, N.; Pirsaheb, M.; Jaafarzadeh, N.; Nabizadeh Nodehi, R. Microplastics Removal from Aquatic Environment by Coagulation: Selecting the Best Coagulant Based on Variables Determined from a Systematic Review. Heliyon 2023, 9, e15664. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Li, X.; Zhang, J.; Chen, W.; Lu, P.; Tang, Y.; Li, L. Efficient PFOA Degradation by Persulfate-Assisted Photocatalytic Ozonation. Sep. Purif. Technol. 2018, 207, 255–261. [Google Scholar] [CrossRef]
- Karwowska, B.; Sperczyńska, E. Coagulation Enhanced with Adsorption and Ozonation Processes in Surface Water Treatment. Sustainability 2023, 15, 16956. [Google Scholar] [CrossRef]
- Bergamasco, R.; Konradt-Moraes, L.C.; Vieira, M.F.; Fagundes-Klen, M.R.; Vieira, A.M.S. Performance of a Coagulation-Ultrafiltration Hybrid Process for Water Supply Treatment. Chem. Eng. J. 2011, 166, 483–489. [Google Scholar] [CrossRef]
- Wang, F.; Gao, B.; Ma, D.; Yue, Q.; Li, R.; Wang, Q. Reduction of Disinfection By-Product Precursors in Reservoir Water by Coagulation and Ultrafiltration. Environ. Sci. Pollut. Res. 2016, 23, 22914–22923. [Google Scholar] [CrossRef]
- Sheng, C.; Nnanna, A.G.A.; Liu, Y.; Vargo, J.D. Removal of Trace Pharmaceuticals from Water Using Coagulation and Powdered Activated Carbon as Pretreatment to Ultrafiltration Membrane System. Sci. Total Environ. 2016, 550, 1075–1083. [Google Scholar] [CrossRef]
- Boleda, M.R.; Galceran, M.T.; Ventura, F. Behavior of Pharmaceuticals and Drugs of Abuse in a Drinking Water Treatment Plant (DWTP) Using Combined Conventional and Ultrafiltration and Reverse Osmosis (UF/RO) Treatments. Environ. Pollut. 2011, 159, 1584–1591. [Google Scholar] [CrossRef] [PubMed]
- Rodil, R.; Quintana, J.B.; Concha-Graña, E.; López-Mahía, P.; Muniategui-Lorenzo, S.; Prada-Rodríguez, D. Emerging Pollutants in Sewage, Surface and Drinking Water in Galicia (NW Spain). Chemosphere 2012, 86, 1040–1049. [Google Scholar] [CrossRef]
- Lapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S. Emerging Organic Contaminants in Groundwater: A Review of Sources, Fate and Occurrence. Environ. Pollut. 2012, 163, 287–303. [Google Scholar] [CrossRef]
- Niu, Z.; Na, J.; Xu, W.; Wu, N.; Zhang, Y. The Effect of Environmentally Relevant Emerging Per- and Polyfluoroalkyl Substances on the Growth and Antioxidant Response in Marine Chlorella Sp. Environ. Pollut. 2019, 252, 103–109. [Google Scholar] [CrossRef]
- Mintoo, M.J.; Kousar, R. Reports of Microplastic in Human Blood. In Microplastic Pollution; Springer Nature: Singapore, 2024; pp. 263–270. [Google Scholar]
- Eerkes-Medrano, D.; Leslie, H.A.; Quinn, B. Microplastics in Drinking-Water; Elsevier: Geneva, Switzerland, 2019. [Google Scholar]
- Lu, Y.; Li, M.C.; Lee, J.; Liu, C.; Mei, C. Microplastic Remediation Technologies in Water and Wastewater Treatment Processes: Current Status and Future Perspectives. Sci. Total Environ. 2023, 868, 161618. [Google Scholar] [CrossRef]
- Bayarkhuu, B.; Byun, J. Optimization of Coagulation and Sedimentation Conditions by Turbidity Measurement for Nano- and Microplastic Removal. Chemosphere 2022, 306, 135572. [Google Scholar] [CrossRef]
- Humbert, H.; Gallard, H.; Suty, H.; Croué, J.P. Natural Organic Matter (NOM) and Pesticides Removal Using a Combination of Ion Exchange Resin and Powdered Activated Carbon (PAC). Water Res. 2008, 42, 1635–1643. [Google Scholar] [CrossRef]
- Saini, R.; Kumar, P. Simultaneous Removal of Methyl Parathion and Chlorpyrifos Pesticides from Model Wastewater Using Coagulation/Flocculation: Central Composite Design. J. Environ. Chem. Eng. 2016, 4, 673–680. [Google Scholar] [CrossRef]
- Silva, J.R.; Oliveira, D.S. Water Treatment with Clean Technologies Using Moringa oleifera Seeds in Alternative Low-Cost Clarification Units. Clean Technol. 2024, 6, 625–645. [Google Scholar] [CrossRef]
- Chales, G.G.; Tihameri, B.S.; Milhan, N.V.M.; Koga-Ito, C.Y.; Antunes, M.L.P.; Reis, A.G. dos Impact of Moringa Oleifera Seed-Derived Coagulants Processing Steps on Physicochemical, Residual Organic, and Cytotoxicity Properties of Treated Water. Water 2022, 14, 2058. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Dave, N.P. Removal of Iron for Safe Drinking Water. Desal 2012, 303, 1–11. [Google Scholar] [CrossRef]
- Wu, J.; Cao, M.; Tong, D.; Finkelstein, Z.; Hoek, E.M.V. A Critical Review of Point-of-Use Drinking Water Treatment in the United States. NPJ Clean Water 2021, 4, 40. [Google Scholar] [CrossRef]
- Wang, W.; Li, J.; Li, S.; Zhang, W. In Situ Characterization of Aggregates of Nanoscale Zero-Valent Iron (NZVI) in Water: An Engineering Aspect. Environ. Sci. Nano 2022, 9, 3331–3342. [Google Scholar] [CrossRef]
- Pasinszki, T.; Krebsz, M. Synthesis and Application of Zero-Valent Iron Nanoparticles in Water Treatment, Environmental Remediation, Catalysis, and Their Biological Effects. Nanomaterials 2020, 10, 917. [Google Scholar] [CrossRef] [PubMed]
- Toli, A.; Mystrioti, C.; Papassiopi, N. From Nano Zero-Valent Iron to Nanocomposite Materials for Sustainable Water Treatment. Sustainability 2024, 16, 2728. [Google Scholar] [CrossRef]
- Pontius, F.W. Chitosan as a Drinking Water Treatment Coagulant. Am. J. Civ. Eng. 2016, 4, 205. [Google Scholar] [CrossRef]
- Teng, W.; Yang, K.; Chen, J.; Li, H.; Han, J. Application and Mechanism of Various Modified Nano Zero-Valent Iron in Wastewater Treatment: A Critical Review. Green. Chem. 2025, 27, 10045–10070. [Google Scholar] [CrossRef]
- Tsoutsa, E.K.; Tolkou, A.K.; Kyzas, G.Z.; Katsoyiannis, I.A. New Trends in Composite Coagulants for Water and Wastewater Treatment. Macromol 2024, 4, 509–532. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Zhou, Z.; Feng, J.; Sun, Y.; Ren, J.; Lu, Z. New Insights into Biopolymers: In Situ Collection and Reuse for Coagulation Aiding in Drinking Water Treatment Plants and Microbial Mechanism. Sep. Purif. Technol. 2024, 337, 126448. [Google Scholar] [CrossRef]
- Yu, Y.; Zhao, C.; Yu, L.; Li, P.; Wang, T.; Xu, Y. Removal of Perfluorooctane Sulfonates from Water by a Hybrid Coagulation-Nanofiltration Process. Chem. Eng. J. 2016, 289, 7–16. [Google Scholar] [CrossRef]
- Zhao, H.Z.; Wang, L.; Chang, Y.Y.; Xu, Y. High-Efficiency Removal of Perfluorooctanoic Acid from Water by Covalently Bound Hybrid Coagulants (CBHyC) Bearing a Hydrophobic Quaternary Ammonium Group. Sep. Purif. Technol. 2016, 158, 9–15. [Google Scholar] [CrossRef]
- Gan, Y.; Li, J.; Zhang, L.; Wu, B.; Huang, W.; Li, H.; Zhang, S. Potential of Titanium Coagulants for Water and Wastewater Treatment: Current Status and Future Perspectives. Chem. Eng. J. 2021, 406, 126837. [Google Scholar] [CrossRef]
- Kuzin, E. Synthesis and Use of Complex Titanium-Containing Coagulant in Water Purification Processes. Inorganics 2025, 13, 9. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Shon, H.K.; Phuntsho, S.; Gao, B.Y. Removal of Natural Organic Matter by Titanium Tetrachloride: The Effect of Total Hardness and Ionic Strength. J. Environ. Manag. 2014, 134, 20–29. [Google Scholar] [CrossRef]
- Jeong, S.; Okour, Y.; Nguyen, T.V.; Shon, H.K.; Vigneswaran, S. Ti-Salt Flocculation for Dissolved Organic Matter Removal in Seawater. Desalination Water Treat. 2013, 51, 3591–3596. [Google Scholar] [CrossRef]
- Aziz, M.T.; Granger, C.O.; Westerman, D.C.; Putnam, S.P.; Ferry, J.L.; Richardson, S.D. Microseira Wollei and Phormidium Algae More than Doubles DBP Concentrations and Calculated Toxicity in Drinking Water. Water Res. 2022, 216, 118316. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.; Bąk, J.; Królikowska, J. Efficiency of Titanium Salts as Alternative Coagulants in Water and Wastewater Treatment: Short Review. Desalination Water Treat. 2020, 208, 261–272. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, Y.; Gao, B.; Zhao, Q. Enhanced Algae Removal by Ti-Based Coagulant: Comparison with Conventional Al- and Fe-Based Coagulants. Environ. Sci. Pollut. Res. 2018, 25, 13147–13158. [Google Scholar] [CrossRef]
- Thacharodi, A.; Meenatchi, R.; Hassan, S.; Hussain, N.; Bhat, M.A.; Arockiaraj, J.; Ngo, H.H.; Le, Q.H.; Pugazhendhi, A. Microplastics in the Environment: A Critical Overview on Its Fate, Toxicity, Implications, Management, and Bioremediation Strategies. J. Environ. Manag. 2024, 349, 119433. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, X.; Hu, Y.; Wang, R.; Chen, M.; Wu, J.; Wang, Y.; Kang, S.; Sun, Y.; Zhu, M. Behavior, Remediation Effect and Toxicity of Nanomaterials in Water Environments. Environ. Res. 2019, 174, 54–60. [Google Scholar] [CrossRef]
- Srivastav, A.L.; Patel, N.; Chaudhary, V.K. Disinfection By-Products in Drinking Water: Occurrence, Toxicity and Abatement. Environ. Pollut. 2020, 267, 115474. [Google Scholar] [CrossRef]
- Wang, Y.; Niu, J.; Zhang, L.; Shi, J. Toxicity Assessment of Perfluorinated Carboxylic Acids (PFCAs) towards the Rotifer Brachionus Calyciflorus. Sci. Total Environ. 2014, 491–492, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zheng, X.; Zhang, L.; Li, J.; Li, Y.; Huang, H.; Fan, Z. Joint Toxicity Mechanisms of Binary Emerging PFAS Mixture on Algae (Chlorella pyrenoidosa) at Environmental Concentration. J. Hazard. Mater. 2022, 437, 129355. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency Per- and Polyfluoroalkyl Substances (PFAS). PFAS Strategic Roadmap: EPA’s Commitments to Action 2021–2024. Available online: https://www.epa.gov/system/files/documents/2021-10/pfas-roadmap_final-508.pdf (accessed on 21 October 2025).
- Secondary Drinking Water Standards: Guidance for Nuisance Chemicals 2025. Available online: https://www.epa.gov/sdwa/secondary-drinking-water-standards-guidance-nuisance-chemicals (accessed on 21 October 2025).
- Schymanski, E.L.; Zhang, J.; Thiessen, P.A.; Chirsir, P.; Kondic, T.; Bolton, E.E. Per- and Polyfluoroalkyl Substances (PFAS) in PubChem: 7 Million and Growing. Environ. Sci. Technol. 2023, 57, 16918–16928. [Google Scholar] [CrossRef]
- Whitehead, H.D.; Venier, M.; Wu, Y.; Eastman, E.; Urbanik, S.; Diamond, M.L.; Shalin, A.; Schwartz-Narbonne, H.; Bruton, T.A.; Blum, A.; et al. Fluorinated Compounds in North American Cosmetics. Environ. Sci. Technol. Lett. 2021, 8, 538–544. [Google Scholar] [CrossRef]
- Buck, R.C.; Franklin, J.; Berger, U.; Conder, J.M.; Cousins, I.T.; de Voogt, P.; Jensen, A.A.; Kannan, K.; Mabury, S.A.; van Leeuwen, S.P. Perfluoroalkyl and Polyfluoroalkyl Substances in the Environment: Terminology, Classification, and Origins. Integr. Environ. Assess. Manag. 2011, 7, 513–541. [Google Scholar] [CrossRef]
- Munoz, G.; Budzinski, H.; Babut, M.; Drouineau, H.; Lauzent, M.; Le Menach, K.; Lobry, J.; Selleslagh, J.; Simonnet-Laprade, C.; Labadie, P. Evidence for the Trophic Transfer of Perfluoroalkylated Substances in a Temperate Macrotidal Estuary. Environ. Sci. Technol. 2017, 51, 8450–8459. [Google Scholar] [CrossRef]
- Zahm, S.; Bonde, J.P.; Chiu, W.A.; Hoppin, J.; Kanno, J.; Abdallah, M.; Blystone, C.R.; Calkins, M.M.; Dong, G.-H.; Dorman, D.C.; et al. Carcinogenicity of Perfluorooctanoic Acid and Perfluorooctanesulfonic Acid. Lancet Oncol. 2024, 25, 16–17. [Google Scholar] [CrossRef] [PubMed]
- DeWitt, J.C.; Glüge, J.; Cousins, I.T.; Goldenman, G.; Herzke, D.; Lohmann, R.; Miller, M.; Ng, C.A.; Patton, S.; Trier, X.; et al. Zürich II Statement on Per- and Polyfluoroalkyl Substances (PFASs): Scientific and Regulatory Needs. Environ. Sci. Technol. Lett. 2024, 11, 786–797. [Google Scholar] [CrossRef]
- Wang, P.; An, G.; Carra, I.; Hassard, F.; Campo Moreno, P.; Sakar, H.; Jodkowska, M.; Wang, D.; Jefferson, B.; Chu, W.; et al. Removal of Perfluorooctanoic Acid (PFOA) and Perfluorooctanesulfonic Acid (PFOS) by Coagulation: Influence of Coagulant and Dosing Conditions. Sep. Purif. Technol. 2025, 355, 129562. [Google Scholar] [CrossRef]
- Xiao, F.; Simcik, M.F.; Gulliver, J.S. Mechanisms for Removal of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) from Drinking Water by Conventional and Enhanced Coagulation. Water Res. 2013, 47, 49–56. [Google Scholar] [CrossRef]
- Xiao, F.; Simcik, M.F.; Halbach, T.R.; Gulliver, J.S. Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) in Soils and Groundwater of a U.S. Metropolitan Area: Migration and Implications for Human Exposure. Water Res. 2015, 72, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Halbach, T.R.; Simcik, M.F.; Gulliver, J.S. Input Characterization of Perfluoroalkyl Substances in Wastewater Treatment Plants: Source Discrimination by Exploratory Data Analysis. Water Res. 2012, 46, 3101–3109. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Wang, J.; Su, Z.; Tian, L.; Huang, F.; Liu, T.; Graham, N.; Li, G.; Yu, W. Per- and Polyfluoroalkyl Substances (PFAS) at Low Concentration Improve Coagulation Efficiency but Induce Higher Membrane Fouling in Drinking Water Treatment. Environ. Pollut. 2024, 363, 125201. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Q.; Xu, L.; Siddique, M.S.; Yu, W. Impacts of Water Hardness on Coagulation-UF-NF Process Using Aluminum Salts. Sep. Purif. Technol. 2023, 314, 123611. [Google Scholar] [CrossRef]
- Kim, M.K.; Kim, T.; Kim, T.K.; Joo, S.W.; Zoh, K.D. Degradation Mechanism of Perfluorooctanoic Acid (PFOA) during Electrocoagulation Using Fe Electrode. Sep. Purif. Technol. 2020, 247, 116911. [Google Scholar] [CrossRef]
- Kim, S.K.; Im, J.K.; Kang, Y.M.; Jung, S.Y.; Kho, Y.L.; Zoh, K.D. Wastewater Treatment Plants (WWTPs)-Derived National Discharge Loads of Perfluorinated Compounds (PFCs). J. Hazard. Mater. 2012, 201–202, 82–91. [Google Scholar] [CrossRef]
- Maroli, A.S.; Zhang, Y.; Lubiantoro, J.; Venkatesan, A.K. Surfactant-Enhanced Coagulation and Flocculation Improves the Removal of Perfluoroalkyl Substances from Surface Water. Environ. Sci. Adv. 2024, 3, 1714–1721. [Google Scholar] [CrossRef]
- Deng, S.; Zhou, Q.; Yu, G.; Huang, J.; Fan, Q. Removal of Perfluorooctanoate from Surface Water by Polyaluminium Chloride Coagulation. Water Res. 2011, 45, 1774–1780. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Niu, J.; Xu, Z.; Gao, D.; Shi, J.; Sun, X.; Huang, Q. Removal of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) from Water by Coagulation: Mechanisms and Influencing Factors. J. Colloid Interface Sci. 2014, 434, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, N.; Kobayashi, M. Effects of Three Additives on the Removal of Perfluorooctane Sulfonate (PFOS) by Coagulation Using Ferric Chloride or Aluminum Sulfate. Water Sci. Technol. 2016, 73, 2971–2977. [Google Scholar] [CrossRef]
- Pietrzyk, A.; Papciak, D. Effect Of Organic Compounds On The Efficiency Of Water Treatment Processes—Theoretical Basics. J. Civ. Eng. Environ. Archit. 2017, XXXIV, 107–120. [Google Scholar]
- Golea, D.M.; Upton, A.; Jarvis, P.; Moore, G.; Sutherland, S.; Parsons, S.A.; Judd, S.J. THM and HAA Formation from NOM in Raw and Treated Surface Waters. Water Res. 2017, 112, 226–235. [Google Scholar] [CrossRef]
- Chen, F.; Peldszus, S.; Elhadidy, A.M.; Legge, R.L.; Van Dyke, M.I.; Huck, P.M. Kinetics of Natural Organic Matter (NOM) Removal during Drinking Water Biofiltration Using Different NOM Characterization Approaches. Water Res. 2016, 104, 361–370. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Sillanpää, M. Removal of Natural Organic Matter (NOM) and Its Constituents from Water by Adsorption—A Review. Chemosphere 2017, 166, 497–510. [Google Scholar] [CrossRef] [PubMed]
- Riyadh, A.; Peleato, N.M. Natural Organic Matter Character in Drinking Water Distribution Systems: A Review of Impacts on Water Quality and Characterization Techniques. Water 2024, 16, 446. [Google Scholar] [CrossRef]
- Álvarez-Uriarte, J.I.; Iriarte-Velasco, U.; Chimeno-Alanís, N.; González-Velasco, J.R. The Effect of Mixed Oxidants and Powdered Activated Carbon on the Removal of Natural Organic Matter. J. Hazard. Mater. 2010, 181, 426–431. [Google Scholar] [CrossRef]
- An, C.; Yang, S.; Huang, G.; Zhao, S.; Zhang, P.; Yao, Y. Removal of Sulfonated Humic Acid from Aqueous Phase by Modified Coal Fly Ash Waste: Equilibrium and Kinetic Adsorption Studies. Fuel 2016, 165, 264–271. [Google Scholar] [CrossRef]
- Anirudhan, T.S.; Ramachandran, M. Surfactant-Modified Bentonite as Adsorbent for the Removal of Humic Acid from Wastewaters. Appl. Clay Sci. 2007, 35, 276–281. [Google Scholar] [CrossRef]
- Bouras, H.D.; Benturki, O.; Bouras, N.; Attou, M.; Donnot, A.; Merlin, A.; Addoun, F.; Holtz, M.D. The Use of an Agricultural Waste Material from Ziziphus Jujuba as a Novel Adsorbent for Humic Acid Removal from Aqueous Solutions. J. Mol. Liq. 2015, 211, 1039–1046. [Google Scholar] [CrossRef]
- Levchuk, I.; Rueda Márquez, J.J.; Sillanpää, M. Removal of Natural Organic Matter (NOM) from Water by Ion Exchange—A Review. Chemosphere 2018, 192, 90–104. [Google Scholar] [CrossRef]
- Tak, S.; Vellanki, B.P. Natural Organic Matter as Precursor to Disinfection Byproducts and Its Removal Using Conventional and Advanced Processes: State of the Art Review. J. Water Health 2018, 16, 681–703. [Google Scholar] [CrossRef]
- Jutaporn, P.; Armstrong, M.D.; Coronell, O. Assessment of C-DBP and N-DBP Formation Potential and Its Reduction by MIEX® DOC and MIEX® GOLD Resins Using Fluorescence Spectroscopy and Parallel Factor Analysis. Water Res. 2020, 172, 115460. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Gao, B.; Yue, Q.; Bu, F.; Shen, X. Effects of Ozonation, Powdered Activated Carbon Adsorption, and Coagulation on the Removal of Disinfection by-Product Precursors in Reservoir Water. Environ. Sci. Pollut. Res. 2017, 24, 17945–17954. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Awad, J.; Sarkar, B.; Chow, C.W.K.; Duan, J.; van Leeuwen, J. Coagulation of Dissolved Organic Matter in Surface Water by Novel Titanium (III) Chloride: Mechanistic Surface Chemical and Spectroscopic Characterisation. Sep. Purif. Technol. 2019, 213, 213–223. [Google Scholar] [CrossRef]
- Keerthana Devi, M.; Karmegam, N.; Manikandan, S.; Subbaiya, R.; Song, H.; Kwon, E.E.; Sarkar, B.; Bolan, N.; Kim, W.; Rinklebe, J.; et al. Removal of Nanoplastics in Water Treatment Processes: A Review. Sci. Total Environ. 2022, 845, 157168. [Google Scholar] [CrossRef]
- Sajid, M.; Ihsanullah, I.; Tariq Khan, M.; Baig, N. Nanomaterials-Based Adsorbents for Remediation of Microplastics and Nanoplastics in Aqueous Media: A Review. Sep. Purif. Technol. 2023, 305, 122453. [Google Scholar] [CrossRef]
- Thacharodi, A.; Hassan, S.; Meenatchi, R.; Bhat, M.A.; Hussain, N.; Arockiaraj, J.; Ngo, H.H.; Sharma, A.; Nguyen, H.T.; Pugazhendhi, A. Mitigating Microplastic Pollution: A Critical Review on the Effects, Remediation, and Utilization Strategies of Microplastics. J. Environ. Manag. 2024, 351, 119988. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X.; Li, Y.; Wang, H.; Shi, Y.; Li, Y.; Zhang, Y. Improving Nanoplastic Removal by Coagulation: Impact Mechanism of Particle Size and Water Chemical Conditions. J. Hazard. Mater. 2022, 425, 127962. [Google Scholar] [CrossRef]
- Ojha, P.C.; Satpathy, S.S.; Ojha, R.; Dash, J.; Pradhan, D. Insight into the Removal of Nanoplastics and Microplastics by Physical, Chemical, and Biological Techniques. Environ. Monit. Assess. 2024, 196, 1055. [Google Scholar] [CrossRef]
- Chellasamy, G.; Kiriyanthan, R.M.; Maharajan, T.; Radha, A.; Yun, K. Remediation of Microplastics Using Bionanomaterials: A Review. Environ. Res. 2022, 208, 112724. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Shi, C.; Nie, Y.; Xing, B.; Wen, X.; Cheng, S. Separation Experiment and Mechanism Study on PVC Microplastics Removal from Aqueous Solutions Using High-Gradient Magnetic Filter. J. Water Process Eng. 2023, 51, 103495. [Google Scholar] [CrossRef]
- Padervand, M.; Lichtfouse, E.; Robert, D.; Wang, C. Removal of Microplastics from the Environment. A Review. Environ. Chem. Lett. 2020, 18, 807–828. [Google Scholar] [CrossRef]
- Perren, W.; Wojtasik, A.; Cai, Q. Removal of Microbeads from Wastewater Using Electrocoagulation. ACS Omega 2018, 3, 3357–3364. [Google Scholar] [CrossRef]
- He, J.; Zhang, Y.; Ni, F.; Tian, D.; Zhang, Y.; Long, L.; He, Y.; Chen, C.; Zou, J. Understanding and Characteristics of Coagulation Removal of Composite Pollution of Microplastic and Norfloxacin during Water Treatment. Sci. Total Environ. 2022, 831, 154826. [Google Scholar] [CrossRef]
- Girish, N.; Parashar, N.; Hait, S. Coagulative Removal of Microplastics from Aqueous Matrices: Recent Progresses and Future Perspectives. Sci. Total Environ. 2023, 899, 165723. [Google Scholar] [CrossRef]
- Jang, M.H.; Kim, M.S.; Han, M.; Kwak, D.H. Experimental Application of a Zero-Point Charge Based on PH as a Simple Indicator of Microplastic Particle Aggregation. Chemosphere 2022, 299, 134388. [Google Scholar] [CrossRef]
- Li, H.; Wang, F.; Li, J.; Deng, S.; Zhang, S. Adsorption of Three Pesticides on Polyethylene Microplastics in Aqueous Solutions: Kinetics, Isotherms, Thermodynamics, and Molecular Dynamics Simulation. Chemosphere 2021, 264, 128556. [Google Scholar] [CrossRef]
- Rytelewska-Chilczuk, N. How to Effectively Combat Pesticides? 5 July 2017. Available online: https://www.teraz-srodowisko.pl/aktualnosci/jak-skutecznie-zwalczac-pestycydy-3521.html (accessed on 21 October 2025).
- Cao, S.; Chen, L.; Zhao, M.; Liu, A.; Wang, M.; Sun, Y. Advanced Treatment of Phosphorus Pesticide Wastewater Using an Integrated Process of Coagulation and Ozone Catalytic Oxidation. Catalysts 2022, 12, 103. [Google Scholar] [CrossRef]
- Narayanan, N.; Gupta, S.; Gajbhiye, V.T. Decontamination of Pesticide Industrial Effluent by Adsorption–Coagulation–Flocculation Process Using Biopolymer-Nanoorganoclay Composite. Int. J. Environ. Sci. Technol. 2020, 17, 4775–4786. [Google Scholar] [CrossRef]
- Soufan, M.; Deborde, M.; Legube, B. Aqueous Chlorination of Diclofenac: Kinetic Study and Transformation Products Identification. Water Res. 2012, 46, 3377–3386. [Google Scholar] [CrossRef]
- Zhang, Y.; Geißen, S.U.; Gal, C. Carbamazepine and Diclofenac: Removal in Wastewater Treatment Plants and Occurrence in Water Bodies. Chemosphere 2008, 73, 1151–1161. [Google Scholar] [CrossRef]
- Świacka, K.; Szaniawska, A.; Caban, M. Evaluation of Bioconcentration and Metabolism of Diclofenac in Mussels Mytilus Trossulus—Laboratory Study. Mar. Pollut. Bull. 2019, 141, 249–255. [Google Scholar] [CrossRef]
- Rigobello, E.S.; Dantas, A.D.B.; Di Bernardo, L.; Vieira, E.M. Removal of Diclofenac by Conventional Drinking Water Treatment Processes and Granular Activated Carbon Filtration. Chemosphere 2013, 92, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Erkurt, F.E.; Basibuyuk, M. Investigation of Diclofenac Removal from Drinking Water by Coagulation Method. Turk. J. Occup./Environ. Med. Saf. 2017, 2, 111–121. [Google Scholar]
- Simazaki, D.; Fujiwara, J.; Manabe, S.; Matsuda, M.; Asami, M.; Kunikane, S. Removal of Selected Pharmaceuticals by Chlorination, Coagulation–Sedimentation and Powdered Activated Carbon Treatment. Water Sci. Technol. 2008, 58, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
- Mir-Tutusaus, J.A.; Parladé, E.; Llorca, M.; Villagrasa, M.; Barceló, D.; Rodriguez-Mozaz, S.; Martinez-Alonso, M.; Gaju, N.; Caminal, G.; Sarrà, M. Pharmaceuticals Removal and Microbial Community Assessment in a Continuous Fungal Treatment of Non-Sterile Real Hospital Wastewater after a Coagulation-Flocculation Pretreatment. Water Res. 2017, 116, 65–75. [Google Scholar] [CrossRef]
- Yang, W.; Wu, Y.; Zhang, L.; Jiang, J.; Feng, L. Removal of Five Selected Pharmaceuticals by Coagulation in the Presence of Dissolved Humic Acids and Kaolin. Desalination Water Treat. 2015, 54, 1134–1140. [Google Scholar] [CrossRef]
- Pojana, G.; Fantinati, A.; Marcomini, A. Occurrence of Environmentally Relevant Pharmaceuticals in Italian Drinking Water Treatment Plants. Int. J. Environ. Anal. Chem. 2011, 91, 537–552. [Google Scholar] [CrossRef]
- Ikehata, K.; Jodeiri Naghashkar, N.; Gamal El-Din, M. Degradation of Aqueous Pharmaceuticals by Ozonation and Advanced Oxidation Processes: A Review. Ozone Sci. Eng. 2006, 28, 353–414. [Google Scholar] [CrossRef]
- Croué, J.P.; Violleau, D.; Bodaire, C.; Legube, B. Removal of Hydrophobic and Hydrophilic Constituents by Anion Exchange Resin. Water Sci. Technol. 1999, 40, 207–214. [Google Scholar] [CrossRef]
- Kumar, V.; Lakkaboyana, S.K.; Sharma, N.; Chakraborty, P.; Umesh, M.; Pasrija, R.; Thomas, J.; Kalebar, V.U.; Jayaraj, I.; Awasthi, M.K.; et al. A Critical Assessment of Technical Advances in Pharmaceutical Removal from Wastewater—A Critical Review. Case Stud. Chem. Environ. Eng. 2023, 8, 100363. [Google Scholar] [CrossRef]
- Quintana, J.B.; Weiss, S.; Reemtsma, T. Pathways and Metabolites of Microbial Degradation of Selected Acidic Pharmaceutical and Their Occurrence in Municipal Wastewater Treated by a Membrane Bioreactor. Water Res. 2005, 39, 2654–2664. [Google Scholar] [CrossRef] [PubMed]
- Mansour, F.; Al-Hindi, M.; Yahfoufi, R.; Ayoub, G.M.; Ahmad, M.N. The Use of Activated Carbon for the Removal of Pharmaceuticals from Aqueous Solutions: A Review. Rev. Environ. Sci. Biotechnol. 2018, 17, 109–145. [Google Scholar] [CrossRef]
- Quintana, J.B.; Rodil, R.; López-Mahía, P.; Muniategui-Lorenzo, S.; Prada-Rodríguez, D. Investigating the Chlorination of Acidic Pharmaceuticals and By-Product Formation Aided by an Experimental Design Methodology. Water Res. 2010, 44, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Bjørke-Monsen, A.L.; Holstad, K.; Huber, S.; Averina, M.; Bolann, B.; Brox, J. PFAS Exposure Is Associated with an Unfavourable Metabolic Profile in Infants Six Months of Age. Environ. Int. 2024, 193, 109121. [Google Scholar] [CrossRef]
- Adamson, D.T.; Kulkarni, P.R.; Nickerson, A.; Higgins, C.P.; Field, J.; Schwichtenberg, T.; Newell, C.; Kornuc, J.J. Characterization of Relevant Site-Specific PFAS Fate and Transport Processes at Multiple AFFF Sites. Environ. Adv. 2022, 7, 100167. [Google Scholar] [CrossRef]
- Buckley, T.; Karanam, K.; Han, H.; Vo, H.N.P.; Shukla, P.; Firouzi, M.; Rudolph, V. Effect of Different Co-Foaming Agents on PFAS Removal from the Environment by Foam Fractionation. Water Res. 2023, 230, 119532. [Google Scholar] [CrossRef]
- Zhang, Y.; Qv, Z.; Wang, J.; Yang, Y.; Chen, X.; Wang, J.; Zhang, Y.; Zhu, L. Natural Biofilm as a Potential Integrative Sample for Evaluating the Contamination and Impacts of PFAS on Aquatic Ecosystems. Water Res. 2022, 215, 118233. [Google Scholar] [CrossRef]
- Liu, Y.L.; Sun, M. Ion Exchange Removal and Resin Regeneration to Treat Per- and Polyfluoroalkyl Ether Acids and Other Emerging PFAS in Drinking Water. Water Res. 2021, 207, 117781. [Google Scholar] [CrossRef]
- Agarwal, M.; Dubey, S.; Gupta, A.B. Coagulation Process for Fluoride Removal by Comparative Evaluation of Alum and PACl Coagulants with Subsequent Membrane Micro-Filtration. Int. J. Environ. Technol. Manag. 2017, 20, 200. [Google Scholar] [CrossRef]
- Hidayaturrahman, H.; Lee, T.G. A Study on Characteristics of Microplastic in Wastewater of South Korea: Identification, Quantification, and Fate of Microplastics during Treatment Process. Mar. Pollut. Bull. 2019, 146, 696–702. [Google Scholar] [CrossRef]
- Eriksen, M.; Mason, S.; Wilson, S.; Box, C.; Zellers, A.; Edwards, W.; Farley, H.; Amato, S. Microplastic Pollution in the Surface Waters of the Laurentian Great Lakes. Mar. Pollut. Bull. 2013, 77, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Ghernaout, D.; Boucherit, A. Review of Coagulation’s Rapid Mixing for NOM Removal. J. Res. Dev. Chem. 2015, 2, 926518. [Google Scholar] [CrossRef]
- Lee, K.E.; Morad, N.; Teng, T.T.; Poh, B.T. Development, Characterization and the Application of Hybrid Materials in Coagulation/Flocculation of Wastewater: A Review. Chem. Eng. J. 2012, 203, 370–386. [Google Scholar] [CrossRef]

| Coagulant Type | Main Composition/Examples | Key Mechanism | Typical Removal Efficiency | Advantages | Limitations |
|---|---|---|---|---|---|
| Aluminum-based | Al2(SO4)3, PACl | Charge neutralization, sweep flocculation | 60–90% (NOM, turbidity) | Widely used, cost-effective | Limited removal of emerging pollutants |
| Iron-based | FeCl3, Fe2(SO4)3 | Complexation with organics, charge neutralization | 50–85% (pesticides, NOM) | Effective for organic-rich waters | Produces more sludge |
| Titanium-based | TiCl4, TiCl3 | Hydrolysis → Ti(OH)4, adsorption | 70–95% (organics, microplastics) | High activity, potential sludge reuse | Cost, limited full-scale use |
| Bio-based | Chitosan, Moringa oleifera | Bridging, hydrogen bonding | 50–90% (dyes, NOM, microplastics) | Renewable, biodegradable | Variable efficiency |
| Composite/hybrid | Fe–Ti, Al–bio | Combined mechanisms | 70–98% | High adaptability | More complex synthesis |
| Contaminant Group | Representative Compounds | Typical Coagulants Studied | Removal Efficiency Range | Notes |
|---|---|---|---|---|
| PFAS | PFOA, PFOS | FeCl3, TiCl4, PAC | <20–60% | Improved with electrocoagulation |
| NOM/DOM | Humic acids, fulvic acids | Al2(SO4)3, PACl, TiCl4 | 50–90% | Strong dependence on pH and dose |
| Micro- & nanoplastics | PE, PS, PET | FeCl3, chitosan, TiCl4 | 70–99% | Removal enhanced at zeta ≈ 0 mV |
| Pesticides | Atrazine, glyphosate | FeCl3, PAC, TiCl4 | 40–95% | Electrocoagulation most effective |
| Pharmaceuticals | Diclofenac, carbamazepine | FeCl3, PAC, bio-based | 10–80% | Strongly compound dependent |
| No. | Water Type | Coagulant & Dose | pH/Conditions | Mechanism/Notes | Removal Efficiency | Ref. |
|---|---|---|---|---|---|---|
| 1 | Surface water (intake) | PACl ≈ 10 mg/L | Optimized near-neutral (jar tests) | Adsorption on freshly formed Al(OH)3; charge neutralization; PACl pre-hydrolyzed cations | PFOA > 90% | [99] |
| 2 | Drinking water matrix (jar tests with NOM) | Alum 10–60 mg/L (conventional); >60 mg/L (enhanced) | Final pH 6.5–8.0 (conventional) vs. 4.5–6.5 (enhanced) | Sorption to nascent Al(OH)3 microflocs during early hydrolysis; flocculation time (2–90 min) not rate-limiting | ≤20% (conventional); higher under enhanced coagulation | [91] |
| 3 | Surface water (bench-scale) | FeCl3 100 mg/L + CTAC 1 mg/L; optional PAC | Near-neutral; cationic surfactant as aid; PAC co-dosing | Cationic-surfactant pairing & hydrophobic association; enhanced charge reversal; PAC synergy | PFOA/PFOS > 80%; with PAC + CTAC: PFBS/PFOA/PFOS > 98% | [98] |
| 4 | Synthetic & natural waters | FeCl3·6H2O 50 mg/L; bio-coagulant | Typical pH 5–8; jar tests | Fe(OH)3 sweep/co-adsorption; cationic proteins (bio-coagulant) enable bridging | FeCl3: PFOS ~32%, PFOA ~12%; Moringa: PFOS ~65%, PFOA ~72% | [100] |
| 5 | Coagulation with additives | Alum or FeCl3 + CTAB 0.58–0.87 mg/L; or PAC ≥ 40 mg/L | Near-neutral; additive-assisted coagulation | Cationic surfactant–PFOS association improves capture by flocs; PAC provides adsorptive sites | PFOS > 90–95% (CTAB ≥ 0.58–0.87 mg/L); with PAC ≥ 40 mg/L also >90% | [101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łukasiewicz, E. Coagulation–Sedimentation in Water and Wastewater Treatment: Removal of Pesticides, Pharmaceuticals, PFAS, Microplastics, and Natural Organic Matter. Water 2025, 17, 3048. https://doi.org/10.3390/w17213048
Łukasiewicz E. Coagulation–Sedimentation in Water and Wastewater Treatment: Removal of Pesticides, Pharmaceuticals, PFAS, Microplastics, and Natural Organic Matter. Water. 2025; 17(21):3048. https://doi.org/10.3390/w17213048
Chicago/Turabian StyleŁukasiewicz, Ewelina. 2025. "Coagulation–Sedimentation in Water and Wastewater Treatment: Removal of Pesticides, Pharmaceuticals, PFAS, Microplastics, and Natural Organic Matter" Water 17, no. 21: 3048. https://doi.org/10.3390/w17213048
APA StyleŁukasiewicz, E. (2025). Coagulation–Sedimentation in Water and Wastewater Treatment: Removal of Pesticides, Pharmaceuticals, PFAS, Microplastics, and Natural Organic Matter. Water, 17(21), 3048. https://doi.org/10.3390/w17213048
