Recent Advances in SERS-Based Detection of Organophosphorus Pesticides in Food: A Critical and Comprehensive Review
Abstract
1. Introduction
2. Fundamental Principles of SERS and Its Advantages in Molecular Detection
3. Evolution of SERS Substrates and Interface Engineering in OPP Detection
3.1. Electromagnetic Enhancement Properties of Noble Metal Nanostructures and the Corresponding Geometrical Modulation Strategies
3.2. Synergistic Role of Carbon-Based Substrates with Metallic Nanostructures in Hybrid SERS Platforms
3.3. Interfacial and Electronic Coupling in Bimetallic Structures
3.4. Emerging Material Platforms for Enhanced SERS Detection of Organophosphorus Pesticides
4. Summary of SERS Applications in the Detection of OPPs
4.1. SERS Detection and Vibrational Mode Analysis of Representative OPPs
4.1.1. Triazophos
4.1.2. Methyl Parathion
4.1.3. Phoxim
4.1.4. Dichlorvos (DDVP)
4.1.5. Malathion
4.2. Structural Enhancement Mechanisms and Application Summary of SERS in OPP Detection
5. Challenges and Prospects of SERS Technology in OPP Detection
6. Conclusions and Future Outlook
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, B.A.; Nadeem, M.A.; Nawaz, H.; Amin, M.M.; Abbasi, G.H.; Nadeem, M.; Ali, M.; Ameen, M.; Javaid, M.M.; Maqbool, R. Pesticides: Impacts on Agriculture Productivity, Environment, and Management Strategies. In Emerging Contaminants and Plants: Interactions, Adaptations and Remediation Technologies; Springer: Berlin/Heidelberg, Germany, 2023; pp. 109–134. [Google Scholar]
- Mohamed, M. Agricultural Sustainability in the Age of Deep Learning: Current Trends, Challenges, and Future Trajectories. Sustain. Mach. Intell. J. 2023, 4, 1–20. [Google Scholar] [CrossRef]
- Wang, J.J.; Ahmad, W.; Hassan, M.M.; Zareef, M.; Viswadevarayalu, A.; Arslan, M.; Li, H.H.; Chen, Q.S. Landing Microextraction Sediment Phase onto Surface Enhanced Raman Scattering to Enhance Sensitivity and Selectivity for Chromium Speciation in Food and Environmental Samples. Food Chem. 2020, 323, 126812. [Google Scholar] [CrossRef]
- Zhang, X.D.; Wang, P.; Mao, H.P.; Gao, H.Y.; Li, Q.L. Detection of the Nutritional Status of Phosphorus in Lettuce Using THz Time-Domain Spectroscopy. Eng. Agríc. 2021, 41, 599–608. [Google Scholar] [CrossRef]
- Mali, H.; Shah, C.; Raghunandan, B.H.; Prajapati, A.S.; Patel, D.H.; Trivedi, U.; Subramanian, R.B. Organophosphate Pesticides an Emerging Environmental Contaminant: Pollution, Toxicity, Bioremediation Progress, and Remaining Challenges. J. Environ. Sci. 2023, 127, 234–250. [Google Scholar] [CrossRef]
- Raj, R.S.; Krishnan, K.A. A Comprehensive Review on the Impact of Emerging Organophosphorous Pesticides and Their Remedial Measures: Special Focus on Acephate. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100813. [Google Scholar]
- Wang, P.Y.; Li, H.H.; Hassan, M.M.; Guo, Z.M.; Zhang, Z.Z.; Chen, Q.S. Fabricating an Acetylcholinesterase Modulated UCNPs-Cu2+ Fluorescence Biosensor for Ultrasensitive Detection of Organophosphorus Pesticides-Diazinon in Food. J. Agric. Food Chem. 2019, 67, 4071–4079. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.M.; Gao, Q.C.; Shi, L.; Li, Y.H.; Zhang, Z.Y.; Liang, Y. Residue Changes of Five Pesticides during the Production and Storage of Rice Flour. Food Addit. Contam. Part A 2022, 39, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.Y.; Tan, P.; Wang, R.J.; Li, S.L.; Liu, H.Z.; Yang, Y.; Wu, Z.L. Advances in Organophosphorus Pesticides Pollution: Current Status and Challenges in Ecotoxicological, Sustainable Agriculture, and Degradation Strategies. J. Hazard. Mater. 2022, 424, 127494. [Google Scholar] [CrossRef] [PubMed]
- MacIntyre, A.A. Why Pesticides Received Extensive Use in America: A Political Economy of Agricultural Pest Management to 1970. Nat. Resour. J. 1987, 27, 533–578. [Google Scholar]
- Pehkonen, S.O.; Zhang, Q. The Degradation of Organophosphorus Pesticides in Natural Waters: A Critical Review. Crit. Rev. Environ. Sci. Technol. 2002, 32, 17–72. [Google Scholar] [CrossRef]
- Pandey, D.K.; Mishra, R. Towards Sustainable Agriculture: Harnessing AI for Global Food Security. Artif. Intell. Agric. 2024, 12, 72–84. [Google Scholar] [CrossRef]
- Kumaravel, A.; Aishwarya, S.A.; Sathyamoorthi, S. Emerging Technologies for Sensitive Detection of Organophosphate Pesticides: A Review. Curr. Anal. Chem. 2024, 20, 383–409. [Google Scholar] [CrossRef]
- Salom, A.B. Development of Bioanalytical Approaches as Model Tools for the Rapid Detection of Pesticides. Ph.D. Thesis, Faculty of Medicine, Health and Life Sciences, Queen’s University Belfast, Belfast, UK, 2018. [Google Scholar]
- Yang, N.; Wang, P.; Xue, C.Y.; Sun, J.; Mao, H.P.; Oppong, P.K. A Portable Detection Method for Organophosphorus and Carbamates Pesticide Residues Based on Multilayer Paper Chip. J. Food Process Eng. 2018, 41, e12867. [Google Scholar] [CrossRef]
- Lv, R.Q.; Huang, X.Y.; Aheto, J.H.; Mu, L.J.; Tian, X.Y. Analysis of Fish Spoilage by Gas Chromatography–Mass Spectrometry and Electronic Olfaction Bionic System. J. Food Saf. 2018, 38, e12557. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, B.; Yu, M.; Han, J.; Wang, Y.; Tan, Z.J.; Yan, Y.S. Simultaneous Separation/Enrichment and Detection of Trace Ciprofloxacin and Lomefloxacin in Food Samples Using Thermosensitive Smart Polymers Aqueous Two-Phase Flotation System Combined with HPLC. Food Chem. 2016, 210, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Girotti, S.; Ghini, S.; Maiolini, E.; Bolelli, L.; Ferri, E.N. Trace Analysis of Pollutants by Use of Honeybees, Immunoassays, and Chemiluminescence Detection. Anal. Bioanal. Chem. 2013, 405, 555–571. [Google Scholar] [CrossRef]
- Lin, D.Y.; Yu, C.Y.; Ku, C.A.; Chung, C.K. Design, Fabrication, and Applications of SERS Substrates for Food Safety Detection. Micromachines 2023, 14, 1343. [Google Scholar] [CrossRef]
- Guo, Z.M.; Chen, P.; Yosri, N.; Chen, Q.S.; Elseedi, H.R.; Zou, X.B.; Yang, H.S. Detection of Heavy Metals in Food and Agricultural Products by Surface-Enhanced Raman Spectroscopy. Food Rev. Int. 2023, 39, 1440–1461. [Google Scholar] [CrossRef]
- Li, J.K.; Zuo, M.; Zhang, W.; Zou, X.B.; Sun, Z.B. Diazo Coupling-Based Ultrasensitive SERS Detection of Capsaicin and Its Application in Identifying Gutter Oil. Food Anal. Methods 2022, 15, 3468–3478. [Google Scholar] [CrossRef]
- Jiang, L.; Hassan, M.M.; Ali, S.; Li, H.H.; Sheng, R.; Chen, Q.S. Evolving Trends in SERS-Based Techniques for Food Quality and Safety: A Review. Trends Food Sci. Technol. 2021, 112, 225–240. [Google Scholar] [CrossRef]
- Duan, N.; Chang, B.Y.; Zhang, H.; Wang, Z.P.; Wu, S.J. Salmonella Typhimurium Detection Using a Surface-Enhanced Raman Scattering-Based Aptasensor. Int. J. Food Microbiol. 2016, 218, 38–43. [Google Scholar] [CrossRef]
- Li, H.H.; Chen, Q.S.; Ouyang, Q.; Zhao, J.W. Fabricating a Novel Raman Spectroscopy-Based Aptasensor for Rapidly Sensing Salmonella Typhimurium. Food Anal. Methods 2017, 10, 3032–3041. [Google Scholar] [CrossRef]
- Zalaffi, M.S. Metal Nanostructures Decorated with Silver Nanostars: A Novel Highly Efficient SERS Substrate for Dyes and Pigments Detection. Ph.D. Thesis, University of Trieste, Trieste, Italy, 2020. [Google Scholar]
- Sharma, B.; Frontiera, R.R.; Henry, A.I.; Ringe, E.; Van Duyne, R.P. SERS: Materials, Applications, and the Future. Mater. Today 2012, 15, 16–25. [Google Scholar] [CrossRef]
- Alvarez-Puebla, R.A.; Liz-Marzán, L.M. SERS Detection of Small Inorganic Molecules and Ions. Angew. Chem. Int. Ed. 2012, 51, 11214–11223. [Google Scholar] [CrossRef]
- Zhai, W.L.; You, T.Y.; Ouyang, X.H.; Wang, M. Recent Progress in Mycotoxins Detection Based on Surface—Enhanced Raman Spectroscopy. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1887–1909. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.M.; Zareef, M.; Xu, Y.; Li, H.H.; Chen, Q.S. SERS Based Sensor for Mycotoxins Detection: Challenges and Improvements. Food Chem. 2021, 344, 128652. [Google Scholar] [CrossRef] [PubMed]
- Pundir, C.S.; Malik, A.; Preety, N. Bio-Sensing of Organophosphorus Pesticides: A Review. Biosens. Bioelectron. 2019, 129, 42–58. [Google Scholar] [CrossRef] [PubMed]
- Li, S.H.; Zhang, S.; Wu, J.Z.; Khan, I.M.; Chen, M.; Jiao, T.H.; Wei, J.; Chen, X.M.; Chen, Q.M.; Chen, Q.S. Upconversion Fluorescence Nanosensor Based on Enzymatic Inhibited and Copper-Triggered O-Phenylenediamine Oxidation for the Detection of Dimethoate Pesticides. Food Chem. 2024, 453, 139666. [Google Scholar] [CrossRef]
- Xie, S.Z.; Chen, Y.C.; Guo, J.; Liu, Y.L.; Liu, Y.Q.; Fan, J.Y.; Wang, H.R.; Wu, J.F.; Xie, J.W. Discriminative Detection of Various Organophosphorus Nerve Agents and Analogues Based on Self-Trapping Probe Coupled with SERS. J. Hazard. Mater. 2025, 487, 137150. [Google Scholar] [CrossRef]
- Chamuah, N.; Bhuyan, N.; Das, P.P.; Ojah, N.; Choudhary, A.J.; Medhi, T.; Nath, P. Gold-Coated Electrospun PVA Nanofibers as SERS Substrate for Detection of Pesticides. Sens. Actuators B Chem. 2018, 273, 710–717. [Google Scholar] [CrossRef]
- Fernandes, T.; Fateixa, S.; Nogueira, H.I.S.; Daniel-da-Silva, A.L.; Trindade, T. Dendrimer-Based Gold Nanostructures for SERS Detection of Pesticides in Water. Eur. J. Inorg. Chem. 2020, 13, 1153–1162. [Google Scholar] [CrossRef]
- Liu, X.Y.; Deng, W.; Yang, Y.Z.; Xi, J.F.; Li, S.J.; Zhang, L.; Li, P.; Wu, W.B. Superhydrophobic Nanocellulose-Based Self-Assembled Flexible SERS Substrates for Pesticide Detection. Int. J. Biol. Macromol. 2024, 282, 137171. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.C.; Zhang, R.; Wang, S.Q.; Zhang, N.; Zhang, X.Y. A Pesticide Residue Detection Model for Food Based on NIR and SERS. PLoS ONE 2025, 20, e0282137171. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Cheng, J.; Zhou, N.; Zhang, L.Q.; Mao, H.Y.; Huang, C.J. SERS Devices with Hedgehog-Like Nanosphere Arrays for Detection of Trace Pesticides. J. Innov. Opt. Health Sci. 2021, 14, 2141005. [Google Scholar] [CrossRef]
- Zhu, A.F.; Ali, S.; Jiao, T.H.; Wang, Z.; Ouyang, Q.; Chen, Q.S. Advances in Surface—Enhanced Raman Spectroscopy Technology for Detection of Foodborne Pathogens. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1466–1494. [Google Scholar] [CrossRef]
- Shanmugam, S. Nanotechnology; MJP Publisher: Tamil Nadu, India, 2019. [Google Scholar]
- Konstantopoulos, G.; Koumoulos, E.P.; Charitidis, C.A. Digital Innovation Enabled Nanomaterial Manufacturing; Machine Learning Strategies and Green Perspectives. Nanomaterials 2022, 12, 2646. [Google Scholar] [CrossRef]
- Liang, Y.B.; Sun, M.Y.; Wang, C.; Zhou, H.P.; Zhang, Y.H.; Zhang, X.; Huang, M.; Chen, X.S.; Lu, W.; Li, J.; et al. Controllable Nanopore SERS Platform for Single-Molecule Level Biosensing. Coord. Chem. Rev. 2025, 530, 216476. [Google Scholar] [CrossRef]
- Wu, J.J.; Zhang, L.; Huang, F.; Ji, X.X.; Dai, H.Q.; Wu, W.B. Surface Enhanced Raman Scattering Substrate for the Detection of Explosives: Construction Strategy and Dimensional Effect. J. Hazard. Mater. 2020, 387, 121714. [Google Scholar] [CrossRef]
- Lin, Z.S.; He, L.L. Recent Advance in SERS Techniques for Food Safety and Quality Analysis: A Brief Review. Curr. Opin. Food Sci. 2019, 28, 82–87. [Google Scholar] [CrossRef]
- Liu, S.S.; Li, H.H.; Hassan, M.M.; Ali, S.; Chen, Q.S. SERS Based Artificial Peroxidase Enzyme Regulated Multiple Signal Amplified System for Quantitative Detection of Foodborne Pathogens. Food Control 2021, 123, 107733. [Google Scholar] [CrossRef]
- Yin, L.M.; You, T.Y.; El-Seedi, H.R.; El-Garawani, I.M.; Guo, Z.M.; Zou, X.B.; Cai, J.R. Rapid and Sensitive Detection of Zearalenone in Corn Using SERS-Based Lateral Flow Immunosensor. Food Chem. 2022, 396, 133707. [Google Scholar] [CrossRef]
- Schatz, G.C.; Young, M.A.; Van Duyne, R.P. Electromagnetic Mechanism of SERS. In Surface-Enhanced Raman Scattering: Physics and Applications; Springer: Berlin/Heidelberg, Germany, 2006; pp. 19–45. [Google Scholar]
- Hassan, M.M.; Ahmad, W.; Zareef, M.; Rong, Y.W.; Xu, Y.; Jiao, T.H.; He, P.H.; Li, H.H.; Chen, Q.S. Rapid Detection of Mercury in Food Via Rhodamine 6G Signal Using Surface-Enhanced Raman Scattering Coupled Multivariate Calibration. Food Chem. 2021, 358, 129844. [Google Scholar] [CrossRef]
- Hassan, M.M.; Xu, Y.; Zareef, M.; Li, H.H.; Rong, Y.W.; Chen, Q.S. Recent Advances of Nanomaterial-Based Optical Sensor for the Detection of Benzimidazole Fungicides in Food: A Review. Crit. Rev. Food Sci. Nutr. 2023, 63, 2851–2872. [Google Scholar] [CrossRef]
- Xia, L.X.; Chen, M.D.; Zhao, X.M.; Zhang, Z.L.; Xia, J.R.; Xu, H.X.; Sun, M.T. Visualized Method of Chemical Enhancement Mechanism on SERS and TERS. J. Raman Spectrosc. 2014, 45, 533–540. [Google Scholar] [CrossRef]
- Barimah, A.O.; Guo, Z.M.; Agyekum, A.A.; Guo, C.; Chen, P.; El-Seedi, H.R.; Zou, X.B.; Chen, Q.S. Sensitive Label-Free Cu2O/Ag Fused Chemometrics SERS Sensor for Rapid Detection of Total Arsenic in Tea. Food Control 2021, 130, 108341. [Google Scholar] [CrossRef]
- Wang, J.J.; Chen, Q.S.; Belwal, T.; Lin, X.Y.; Luo, Z.S. Insights into Chemometric Algorithms for Quality Attributes and Hazards Detection in Foodstuffs Using Raman/Surface Enhanced Raman Spectroscopy. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2476–2507. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, I.; Hu, G.H.; Ye, H.P.; Jensen, L. Toward Modeling the Complexity of the Chemical Mechanism in SERS. ACS Nano 2024, 18, 20835–20850. [Google Scholar] [CrossRef] [PubMed]
- Chinh, V.D.; Van, N.T.; Binh, P.T. SERS of Thiabendazole on Silver-Gold Bimetallic Nanoparticles: Adsorption Mechanism. Chem. Phys. Lett. 2023, 829, 140760. [Google Scholar] [CrossRef]
- Li, J.F.; Zhang, Y.J.; Ding, S.Y.; Panneerselvam, R.; Tian, Z.Q. Core–Shell Nanoparticle-Enhanced Raman Spectroscopy. Chem. Rev. 2017, 117, 5002–5069. [Google Scholar] [CrossRef]
- Nilghaz, A.; Mousavi, S.M.; Amiri, A.; Tian, J.F.; Cao, R.; Wang, X.G. Surface-Enhanced Raman Spectroscopy Substrates for Food Safety and Quality Analysis. J. Agric. Food Chem. 2022, 70, 5463–5476. [Google Scholar] [CrossRef]
- Quarin, S.M.; Macke, A.C.; Kissell, L.N.; Kelly, M.S.; Dayananda, A.; Ungvary, J.; Stan, G.; Dima, R.I.; Strobbia, P. Design, Rationalization, and Automation of a Catalytic Sensing Mechanism for Homogeneous SERS Biosensors. ACS Sens. 2023, 8, 2000–2010. [Google Scholar] [CrossRef]
- Oliveira, M.J.S.; Rubira, R.J.G.; Furini, L.N.; Batagin-Neto, A.; Constantino, C.J.L. Detection of Thiabendazole Fungicide/Parasiticide by SERS: Quantitative Analysis and Adsorption Mechanism. Appl. Surf. Sci. 2020, 517, 145786. [Google Scholar] [CrossRef]
- Kodali, A.K.; Llora, X.; Bhargava, R. Optimally Designed Nanolayered Metal-Dielectric Particles as Probes for Massively Multiplexed and Ultrasensitive Molecular Assays. Proc. Natl. Acad. Sci. USA 2010, 107, 13620–13625. [Google Scholar] [CrossRef]
- Zhan, C.; Chen, X.J.; Yi, J.; Li, J.F.; Wu, D.Y.; Tian, Z.Q. From Plasmon-Enhanced Molecular Spectroscopy to Plasmon-Mediated Chemical Reactions. Nat. Rev. Chem. 2018, 2, 216–230. [Google Scholar] [CrossRef]
- Lin, L.; Jiang, W.B.; Xu, X.S.; Xu, P. A Critical Review of the Application of Electromagnetic Fields for Scaling Control in Water Systems: Mechanisms, Characterization, and Operation. npj Clean Water 2020, 3, 25. [Google Scholar] [CrossRef]
- Li, C.C.; Huang, Y.M.; Li, X.Y.; Zhang, Y.R.; Chen, Q.L.; Ye, Z.W.; Alqarni, Z.; Bell, S.E.J.; Xu, Y.K. Towards Practical and Sustainable SERS: A Review of Recent Developments in the Construction of Multifunctional Enhancing Substrates. J. Mater. Chem. C 2021, 9, 11517–11552. [Google Scholar] [CrossRef]
- Lee, H.K.; Lee, Y.H.; Koh, C.S.L.; Phan-Quang, G.C.; Han, X.M.; Lay, C.L.; Sim, H.Y.F.; Kao, Y.C.; An, Q.; Ling, X.Y. Designing Surface-Enhanced Raman Scattering (SERS) Platforms Beyond Hotspot Engineering: Emerging Opportunities in Analyte Manipulations and Hybrid Materials. Chem. Soc. Rev. 2019, 48, 731–756. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.M.; Wang, M.M.; Barimah, A.O.; Chen, Q.S.; Li, H.H.; Shi, J.Y.; El-Seedi, H.R.; Zou, X.B. Label-Free Surface Enhanced Raman Scattering Spectroscopy for Discrimination and Detection of Dominant Apple Spoilage Fungus. Int. J. Food Microbiol. 2021, 338, 108990. [Google Scholar] [CrossRef]
- Li, H.H.; Geng, W.H.; Zheng, Z.H.; Haruna, S.A.; Chen, Q.S. Flexible SERS Sensor Using Ants-Assembled PDMS Film Coupled Chemometric Algorithms for Rapid Detection of Chloramphenicol in Food. Food Chem. 2023, 418, 135998. [Google Scholar] [CrossRef]
- Xu, Y.; Hassan, M.M.; Ali, S.; Li, H.H.; Ouyang, Q.; Chen, Q.S. Self-Cleaning-Mediated SERS Chip Coupled Chemometric Algorithms for Detection and Photocatalytic Degradation of Pesticides in Food. J. Agric. Food Chem. 2021, 69, 1667–1674. [Google Scholar] [CrossRef]
- Moldovan, R.; Iacob, B.C.; Farcău, C.; Bodoki, E.; Oprean, R. Strategies for SERS Detection of Organochlorine Pesticides. Nanomaterials 2021, 11, 304. [Google Scholar] [CrossRef]
- Cai, S.Q. Quantitative Analysis of Imidacloprid in Environmental Water Matrices by Surface-Enhanced Raman Spectroscopy. Master’s Thesis, University of Wisconsin–Madison, Madison, WI, USA, 2023. [Google Scholar]
- Baker, G.A.; Moore, D.S. Progress in Plasmonic Engineering of Surface-Enhanced Raman-Scattering Substrates toward Ultra-Trace Analysis. Anal. Bioanal. Chem. 2005, 382, 1751–1770. [Google Scholar] [CrossRef]
- Speed, J. Tailoring Plasmonic Substrates for SERS. Ph.D. Thesis, University of Southampton, Southampton, UK, 2011. [Google Scholar]
- Mahanty, S.; Majumder, S.; Paul, R.; Boroujerdi, R.; Valsami-Jones, E.; Laforsch, C. A Review on Nanomaterial-Based SERS Substrates for Sustainable Agriculture. Sci. Total Environ. 2024, 950, 174252. [Google Scholar] [CrossRef] [PubMed]
- Goel, R.; Chakraborty, S.; Awasthi, V.; Bhardwaj, V.; Dubey, S.K. Exploring the Various Aspects of Surface Enhanced Raman Spectroscopy (SERS) with Focus on the Recent Progress: SERS-Active Substrate, SERS-Instrumentation, SERS-Application. Sens. Actuators A Phys. 2024, 376, 115555. [Google Scholar] [CrossRef]
- Tian, X.Y.; Zhang, B.; Song, L.; Bao, J.W.; Yang, J.S.; Sun, L.B.; Pei, H.C.; Song, C.P. New Trends in SERS Substrates with Micro- and Nanostructures: Materials, Substrates, Preparation, and Applications. Battery Energy 2025, 7, 10023. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, L.; Wang, X.C.; Yao, W.T.; Zhang, Q. Recent Advances in Noble Metal Based Composite Nanocatalysts: Colloidal Synthesis, Properties, and Catalytic Applications. Nanoscale 2015, 7, 10559–10583. [Google Scholar] [CrossRef]
- Kadavath, J.K.; Krishnan, B.; Cienfuegos Pelaes, R.F.; Sepúlveda Guzman, S.; Garcia-Gomez, N.A.; Avellaneda Avellaneda, D.; Shaji, S. Ultrasensitive and Stable SERS Sensors by Incorporating Noble Metal/Bimetallic Nanoparticles Produced by Laser Ablation in Liquid. Microchem. J. 2025, 189, 108976. [Google Scholar] [CrossRef]
- Kutsanedzie, F.Y.H.; Agyekum, A.A.; Viswadevarayalu, A.; Chen, Q.S. Signal-Enhanced SERS-Sensors of CAR-PLS and GA-PLS Coupled AgNPs for Ochratoxin A and Aflatoxin B1 Detection. Food Chem. 2020, 315, 126231. [Google Scholar] [CrossRef]
- Hassan, M.M.; Zareef, M.; Jiao, T.H.; Liu, S.S.; Xu, Y.; Viswadevarayalu, A.; Li, H.H.; Chen, Q.S. Signal Optimized Rough Silver Nanoparticle for Rapid SERS Sensing of Pesticide Residues in Tea. Food Chem. 2021, 338, 127796. [Google Scholar] [CrossRef] [PubMed]
- Li, H.H.; Geng, W.H.; Hassan, M.M.; Zuo, M.; Wei, W.Y.; Wu, X.Y.; Ouyang, Q.; Chen, Q.S. Rapid Detection of Chloramphenicol in Food Using SERS Flexible Sensor Coupled Artificial Intelligent Tools. Food Control 2021, 128, 108186. [Google Scholar] [CrossRef]
- Li, H.H.; Hu, W.W.; Hassan, M.M.; Zhang, Z.Z.; Chen, Q.S. A Facile and Sensitive SERS-Based Biosensor for Colorimetric Detection of Acetamiprid in Green Tea Based on Unmodified Gold Nanoparticles. J. Food Meas. Charact. 2019, 13, 259–268. [Google Scholar] [CrossRef]
- Liu, S.S.; Li, H.H.; Hassan, M.M.; Zhu, J.J.; Wang, A.C.; Ouyang, Q.; Zareef, M.; Chen, Q.S. Amplification of Raman Spectra by Gold Nanorods Combined with Chemometrics for Rapid Classification of Four Pseudomonas. Int. J. Food Microbiol. 2019, 304, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Kutsanedzie, F.Y.H.; Hassan, M.M.; Zhu, J.J.; Ahmad, W.; Li, H.H.; Chen, Q.S. Mesoporous Silica Supported Orderly-Spaced Gold Nanoparticles SERS-Based Sensor for Pesticides Detection in Food. Food Chem. 2020, 315, 126300. [Google Scholar] [CrossRef]
- Chen, P.; Yin, L.M.; El-Seedi, H.R.; Zou, X.B.; Guo, Z.M. Green Reduction of Silver Nanoparticles for Cadmium Detection in Food Using Surface-Enhanced Raman Spectroscopy Coupled Multivariate Calibration. Food Chem. 2022, 394, 133481. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.F.; Xu, Y.; Ali, S.; Ouyang, Q.; Chen, Q.S. Au@Ag Nanoflowers Based SERS Coupled Chemometric Algorithms for Determination of Organochlorine Pesticides in Milk. LWT 2021, 150, 111978. [Google Scholar] [CrossRef]
- Wang, X.; Li, M.H.; Meng, L.Y.; Lin, K.Q.; Feng, J.M.; Huang, T.X.; Yang, Z.L.; Ren, B. Probing the Location of Hot Spots by Surface-Enhanced Raman Spectroscopy: Toward Uniform Substrates. ACS Nano 2014, 8, 528–536. [Google Scholar] [CrossRef]
- Campione, S.; Capolino, F. Electromagnetic Coupling and Array Packing Induce Exchange of Dominance on Complex Modes in 3D Periodic Arrays of Spheres with Large Permittivity. J. Opt. Soc. Am. B 2016, 33, 261–270. [Google Scholar] [CrossRef]
- Capek, I. Noble Metal Nanoparticles; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Xue, S.S.; Yin, L.M.; Gao, S.P.; Zhou, R.Y.; Zhang, Y.; Jayan, H.; El-Seedi, H.R.; Zou, X.B.; Guo, Z.M. A Film-Like SERS Aptasensor for Sensitive Detection of Patulin Based on GO@Au Nanosheets. Food Chem. 2024, 441, 138364. [Google Scholar]
- Lian, Z.; Lu, C.Q.; Sun, Q.; Cheng, J.L.; Miao, C.Y.; Chen, Z.Q. A Nonmetal Substrate of Surface—Enhanced Raman Spectroscopy for Trace Fentanyl Detection. J. Raman Spectrosc. 2023, 54, 580–586. [Google Scholar] [CrossRef]
- Quan, Y.N.; Tang, X.H.; Shen, W.; Li, P.H.; Yang, M.; Huang, X.J.; Liu, W.Q. Vacancies-Triggered High SERS Activity of Molybdenum Disulfide for Ultrasensitive Detection of Trace Diclofenac. Adv. Opt. Mater. 2022, 10, 2201395. [Google Scholar] [CrossRef]
- Zhang, R.F.; Zhang, Y.Y.; Wei, F. Horizontally Aligned Carbon Nanotube Arrays: Growth Mechanism, Controlled Synthesis, Characterization, Properties and Applications. Chem. Soc. Rev. 2017, 46, 3661–3715. [Google Scholar] [CrossRef]
- Wang, Z.X.; Huang, J.Y.; Mao, J.J.; Guo, Q.; Chen, Z.; Lai, Y.K. Metal–Organic Frameworks and Their Derivatives with Graphene Composites: Preparation and Applications in Electrocatalysis and Photocatalysis. J. Mater. Chem. A 2020, 8, 2934–2961. [Google Scholar] [CrossRef]
- Maluleke, R. Synthesis of Graphene Oxide (GO) Decorated CuInS2/ZnS Core/Shell Quantum Dots (QDs) as Fluorescence Probe for the Detection of Environmental Pollutants. Master’s Thesis, University of Johannesburg, Johannesburg, South Africa, 2020. [Google Scholar]
- Eder, D. Carbon Nanotube—Inorganic Hybrids. Chem. Rev. 2010, 110, 1348–1385. [Google Scholar] [CrossRef] [PubMed]
- Sacco, L.N.; Vollebregt, S. Overview of Engineering Carbon Nanomaterials Such as Carbon Nanotubes (CNTs), Carbon Nanofibers (CNFs), Graphene and Nanodiamonds and Other Carbon Allotropes inside Porous Anodic Alumina (PAA) Templates. Nanomaterials 2023, 13, 260. [Google Scholar] [CrossRef] [PubMed]
- Mallakpour, S.; Khadem, E. Carbon Nanotube–Metal Oxide Nanocomposites: Fabrication, Properties and Applications. Chem. Eng. J. 2016, 302, 344–367. [Google Scholar] [CrossRef]
- Ding, C.Y.; Shao, C.S.; Wu, S.S.; Ma, Y.; Liu, Y.; Ma, S.Q.; Hu, X.S.; Cao, Z.Y.; Ren, X.Z.; Zhong, B.; et al. A Review of 1D Carbon-Based Materials Assembly Design for Lightweight Microwave Absorption. Carbon 2023, 213, 118279. [Google Scholar] [CrossRef]
- Ashiagbor, K.; Jayan, H.; Yosri, N.; Amaglo, N.K.; Zou, X.B.; Guo, Z.M. Advancements in SERS-Based Systematic Evolution of Ligands by Exponential Enrichment for Detection of Pesticide Residues in Fruits and Vegetables. Food Chem. 2024, 463, 141394. [Google Scholar] [CrossRef]
- Chang, W.R.; Hsiao, C.; Chen, Y.F.; Kuo, C.F.J.; Chiu, C.W. Au Nanorods on Carbon-Based Nanomaterials as Nanohybrid Substrates for High-Efficiency Dynamic Surface-Enhanced Raman Scattering. ACS Omega 2022, 7, 41815–41826. [Google Scholar] [CrossRef]
- Li, G.J.; Zhang, W.S.; Luo, N.; Xue, Z.G.; Hu, Q.M.; Zeng, W.; Xu, J.Q. Bimetallic Nanocrystals: Structure, Controllable Synthesis and Applications in Catalysis, Energy and Sensing. Nanomaterials 2021, 11, 1926. [Google Scholar] [CrossRef]
- Wu, Z.P.; Shan, S.Y.; Zang, S.Q.; Zhong, C.J. Dynamic Core–Shell and Alloy Structures of Multimetallic Nanomaterials and Their Catalytic Synergies. Acc. Chem. Res. 2020, 53, 2913–2924. [Google Scholar] [CrossRef]
- Wei, S.Y.; Wang, Q.; Zhu, J.H.; Sun, L.Y.; Lin, H.F.; Guo, Z.H. Multifunctional Composite Core–Shell Nanoparticles. Nanoscale 2011, 3, 4474–4502. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.M.; Li, H.H.; Ahmad, W.; Zareef, M.; Wang, J.J.; Xie, S.C.; Wang, P.Y.; Ouyang, Q.; Wang, S.Y.; Chen, Q.S. Au@Ag Nanostructure Based SERS Substrate for Simultaneous Determination of Pesticides Residue in Tea Via Solid Phase Extraction Coupled Multivariate Calibration. LWT 2019, 105, 290–297. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Sun, Y.; Shi, J.Y.; Zhang, W.; Zhang, X.A.; Huang, X.W.; Zou, X.B.; Li, Z.H.; Wei, R.C. Facile Synthesis of Au@Ag Core–Shell Nanorod with Bimetallic Synergistic Effect for SERS Detection of Thiabendazole in Fruit Juice. Food Chem. 2022, 370, 131276. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.X.; Han, E.; Yin, L.M.; Xu, Q.; Zou, C.X.; Bai, J.W.; Wu, W.; Cai, J.R. Simultaneous Detection of Mixed Pesticide Residues Based on Portable Raman Spectrometer and Au@Ag Nanoparticles SERS Substrate. Food Control 2023, 153, 109951. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Osetsky, Y.N.; Weber, W.J. Tunable Chemical Disorder in Concentrated Alloys: Defect Physics and Radiation Performance. Chem. Rev. 2021, 122, 789–829. [Google Scholar] [CrossRef]
- Han, H.W.; Zhao, L.J.; Wu, X.M.; Zuo, B.; Bian, S.N.; Li, T.; Liu, X.Y.; Jiang, Y.H.; Chen, C.Y.; Bi, J.L.; et al. Advancements in Thermoelectric Materials: Optimization Strategies for Enhancing Energy Conversion. J. Mater. Chem. A 2024, 12, 24041–24083. [Google Scholar] [CrossRef]
- Candan, İ. Investigation of Plasmonic Ag-Au Alloy Nanoparticles. Int. J. Health Appl. Sci. 2023, 1, 14–23. [Google Scholar]
- Gao, C.B.; Hu, Y.X.; Wang, M.S.; Chi, M.F.; Yin, Y.D. Fully Alloyed Ag/Au Nanospheres: Combining the Plasmonic Property of Ag with the Stability of Au. J. Am. Chem. Soc. 2014, 136, 7474–7479. [Google Scholar] [CrossRef]
- Coviello, V.; Forrer, D.; Amendola, V. Recent Developments in Plasmonic Alloy Nanoparticles: Synthesis, Modelling, Properties and Applications. ChemPhysChem 2022, 23, e202200136. [Google Scholar] [CrossRef]
- Rebello Sousa Dias, M.; Leite, M.S. Alloying: A Platform for Metallic Materials with on-Demand Optical Response. Acc. Chem. Res. 2019, 52, 2881–2891. [Google Scholar] [CrossRef]
- Tian, L.; Su, M.K.; Yu, F.F.; Xu, Y.; Li, X.Y.; Li, L.; Liu, H.L.; Tan, W.H. Liquid-State Quantitative SERS Analyzer on Self-Ordered Metal Liquid-Like Plasmonic Arrays. Nat. Commun. 2018, 9, 3642. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Kim, T.; Kang, S.; Jin, H.; Lee, K.; Yoon, H.J. Ga-Based Liquid Metal Micro/Nanoparticles: Recent Advances and Applications. Small 2020, 16, 1903391. [Google Scholar] [CrossRef]
- Li, F.X.; Kuang, S.L.; Li, X.P.; Shu, J.; Li, W.H.; Tang, S.Y.; Zhang, S.W. Magnetically—And Electrically—Controllable Functional Liquid Metal Droplets. Adv. Mater. Technol. 2019, 4, 1800694. [Google Scholar] [CrossRef]
- Wang, L.; Kafshgari, M.H.; Meunier, M. Optical Properties and Applications of Plasmonic—Metal Nanoparticles. Adv. Funct. Mater. 2020, 30, 2005400. [Google Scholar] [CrossRef]
- Fu, Z.X.; Zhao, Z.L.; Dong, R.J.; Guo, J.Q.; Zhang, Y.L.; Xie, S.S.; Zhang, X.Z.; Lu, Q.J. Observation of the Liquid Metal Phase Transition in Optofluidic Microcavities. npj Nanophotonics 2024, 1, 23. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, Y.X.; Yan, J.W.; Mao, B.W.; Yao, J.L.; Tian, Z.Q. Hydrophilicity Dependent Distribution of Water at Ionic Liquids/Metal Interface Monitored by Electrochemical SERS. ACS Appl. Mater. Interfaces 2024, 16, 50054–50060. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Y.; Qiao, R.R.; Davis, T.P.; Tang, S.Y. Biomedical Applications of Liquid Metal Nanoparticles: A Critical Review. Biosensors 2020, 10, 196. [Google Scholar] [CrossRef]
- Yang, C.J.; Li, J.W.; Fiebig, M.; Pal, S. Terahertz Control of Many-Body Dynamics in Quantum Materials. Nat. Rev. Mater. 2023, 8, 518–532. [Google Scholar] [CrossRef]
- Song, G.; Sun, H.Z.; Chen, J.; Chen, Z.G.; Liu, B.Y.; Liu, Z.H.; Cong, S.; Zhao, Z.G. Quantum Effects Enter Semiconductor-Based SERS: Multiresonant MoO3·xH2O Quantum Dots Enabling Direct, Sensitive SERS Detection of Small Inorganic Molecules. Anal. Chem. 2022, 94, 5048–5054. [Google Scholar] [CrossRef]
- Pettine, J.; Nesbitt, D.J. Emerging Methods for Controlling Hot Carrier Excitation and Emission Distributions in Nanoplasmonic Systems. J. Phys. Chem. C 2022, 126, 14767–14780. [Google Scholar] [CrossRef]
- Li, D.X.; Luo, Y.F.; Lin, X.J.; Li, Y.; Gong, T.C.; Wang, C.T.; Yue, W.S. All-Au Nanodisc Metasurface for Surface-Enhanced Raman Scattering Detection of Bio and Chemical Molecules. Opt. Commun. 2025, 592, 132289. [Google Scholar] [CrossRef]
- Jakob, L.A.; Deacon, W.M.; Zhang, Y.; de Nijs, B.; Pavlenko, E.; Hu, S.; Carnegie, C.; Neuman, T.; Esteban, R.; Aizpurua, J.; et al. Giant Optomechanical Spring Effect in Plasmonic Nano-and Picocavities Probed by Surface-Enhanced Raman Scattering. Nat. Commun. 2023, 14, 3291. [Google Scholar] [CrossRef] [PubMed]
- Flores-Livas, J.A.; Boeri, L.; Sanna, A.; Profeta, G.; Arita, R.; Eremets, M. A Perspective on Conventional High-Temperature Superconductors at High Pressure: Methods and Materials. Phys. Rep. 2020, 856, 1–78. [Google Scholar] [CrossRef]
- Lucrezi, R.; Ferreira, P.P.; Aichhorn, M.; Heil, C. Temperature and Quantum Anharmonic Lattice Effects on Stability and Superconductivity in Lutetium Trihydride. Nat. Commun. 2024, 15, 441. [Google Scholar] [CrossRef]
- Zyuzin, A.A.; Zyuzin, A.Y. Superconductivity from Incoherent Cooper Pairs in the Strong-Coupling Regime. Phys. Rev. B 2025, 111, 174517. [Google Scholar] [CrossRef]
- Baumgartner, T. Insights on the Design and Electron-Acceptor Properties of Conjugated Organophosphorus Materials. Acc. Chem. Res. 2014, 47, 1613–1622. [Google Scholar] [CrossRef]
- Jyoti, J.M.; Pumera, M. Quantum Material-Based Self-Propelled Microrobots for the Optical “on-the-Fly” Monitoring of DNA. ACS Appl. Mater. Interfaces 2023, 15, 58548–58555. [Google Scholar] [CrossRef]
- Zhao, Y.C.; Su, Y.Q.; Guo, Y.Q.; Peng, J.; Zhao, J.Y.; Wang, C.Y.; Wang, L.J.; Wu, C.Z.; Xie, Y. Quantum Griffiths Singularity in a Layered Superconducting Organic–Inorganic Hybrid Superlattice. ACS Mater. Lett. 2021, 3, 210–216. [Google Scholar] [CrossRef]
- Balali-Mood, B. Chemistry and Classification of OP Compounds. In Basic and Clinical Toxicology of Organophosphorus Compounds; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–23. [Google Scholar]
- Vajitha, G.; Madan, K.P.; Tewari, C.; Sahoo, N.G.; Maliyekkal, S.M. Carbon-Based Filters for Water and Wastewater Treatment. In Technological Solutions for Water Sustainability: Challenges and Prospects; IWA Publishing: London, UK, 2023; pp. 155–180. [Google Scholar]
- Lv, M.C.; Pu, H.B.; Sun, D.W. Preparation of Fe3O4@UiO-66(Zr)@Ag NPs Core-Shell-Satellite Structured SERS Substrate for Trace Detection of Organophosphorus Pesticides Residues. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 294, 122548. [Google Scholar] [CrossRef]
- Lv, M.C.; Pu, H.B.; Sun, D.W. A Tailored Dual Core-Shell Magnetic SERS Substrate with Precise Shell-Thickness Control for Trace Organophosphorus Pesticides Residues Detection. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 316, 124336. [Google Scholar] [CrossRef]
- Yang, N.; Pu, H.B.; Sun, D.W. Developing a Magnetic SERS Nanosensor Utilizing Aminated Fe-Based MOF for Ultrasensitive Trace Detection of Organophosphorus Pesticides in Apple Juice. Food Chem. 2024, 446, 138846. [Google Scholar] [CrossRef]
- Wu, H.X.; Luo, Y.; Huang, Y.K.; Dong, Q.C.; Hou, C.J.; Huo, D.Q.; Zhao, J.; Lei, Y. A Simple SERS-Based Trace Sensing Platform Enabled by AuNPs-Analyte/AuNPs Double-Decker Structure on Wax-Coated Hydrophobic Surface. Front. Chem. 2018, 6, 482. [Google Scholar] [CrossRef] [PubMed]
- Holden, A.J.; Chen, L.; Shaw, I.C. Thermal Stability of Organophosphorus Pesticide Triazophos and Its Relevance in the Assessment of Risk to the Consumer of Triazophos Residues in Food. J. Agric. Food Chem. 2001, 49, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.B.; Peng, J.Y.; Wang, X.T.; Hou, X.H. Enhanced Peroxidase-Like Activity of Fe3O4@MIL-100(Fe) Aroused by ATP for One-Step Colorimetric Sensing toward Cholesterol. ACS Sustain. Chem. Eng. 2022, 10, 9315–9324. [Google Scholar] [CrossRef]
- Zhai, K.R. Gold-Core Silver-Shell Nanoparticle as a SERS Substrate for the Detection of Pesticides in Tea. Master’s Thesis, University of Missouri, Columbia, MO, USA, 2023. [Google Scholar]
- Yaseen, T.; Pu, H.B.; Sun, D.W. Rapid Detection of Multiple Organophosphorus Pesticides (Triazophos and Parathion-Methyl) Residues in Peach by SERS Based on Core-Shell Bimetallic Au@Ag NPs. Food Addit. Contam. Part A 2019, 36, 762–778. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.X.; Guo, Z.Z.; Peng, M.; Cai, C.Y.; Chen, Y.; Cao, Y.P.; Zhang, W.Y. Methyl Parathion Degrading Enzyme-Based Nano-Hybrid Biosensor for Enhanced Methyl Parathion Recognition. Electroanalysis 2016, 28, 1591–1596. [Google Scholar] [CrossRef]
- Zhang, M.P.; Pan, H.; Zeng, Y.F.; Meng, X.; Chen, W.W.; Jin, M.; Shao, H.; Wei, H.Y.; Wang, C.J. Rapid Enrichment and SERS Detection of Fenitrothion and Methyl Parathion in Vegetable and Fruit Juices Using a Dual-Functionalized Microneedle. Curr. Res. Food Sci. 2025, 10, 101106. [Google Scholar] [CrossRef]
- Vargas-Zamarripa, M.; Rivera, A.A.; Sierra, U.; Salas, P.; Serafín-Muñoz, A.H.; Ramírez-García, G. Improved Charge-Transfer Resonance in Graphene Oxide/ZrO2 Substrates for Plasmonic-Free SERS Determination of Methyl Parathion. Chemosphere 2023, 320, 138081. [Google Scholar] [CrossRef]
- Xie, J.; Li, L.Y.; Khan, I.M.; Wang, Z.P.; Ma, X.Y. Flexible Paper-Based SERS Substrate Strategy for Rapid Detection of Methyl Parathion on the Surface of Fruit. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 231, 118104. [Google Scholar] [CrossRef]
- Wang, X.R.; Zang, X.F.; Wang, X.; Zhang, W.J.; Fang, Y.S.; Cui, B. Molecularly Imprinted Electrochemiluminescence-Colorimetric Dual-Mode Sensor Based on Mn@Nc Nanozyme Amplification for the Detection of Phoxim. Chem. Eng. J. 2024, 484, 146432. [Google Scholar] [CrossRef]
- Zhao, Z.L.; Cao, M.S.; Wei, D.Z.; Li, X.Y.; Wang, M.; Zhai, W.L. Constructing Graphene Oxide/Au Nanoparticle Cellulose Membranes for SERS Detection of Mixed Pesticide Residues in Edible Chrysanthemum. Analyst 2024, 149, 1151–1159. [Google Scholar] [CrossRef]
- Mishra, A.; Kumar, J.; Melo, J.S.; Sandaka, B.P. Progressive Development in Biosensors for Detection of Dichlorvos Pesticide: A Review. J. Environ. Chem. Eng. 2021, 9, 105642. [Google Scholar] [CrossRef]
- Yu, H.; Wang, M.; Cao, J.; She, Y.X.; Zhu, Y.A.; Ye, J.M.; Wang, J.; Lao, S.B.; Abd El-Aty, A.M. Determination of Dichlorvos in Pears by Surface-Enhanced Raman Scattering (SERS) with Catalysis by Platinum-Coated Gold Nanoparticles. Anal. Lett. 2022, 55, 427–437. [Google Scholar] [CrossRef]
- Augustine, S.; Sooraj, K.P.; Pachchigar, V.; Krishna, C.M.; Ranjan, M. SERS Based Detection of Dichlorvos Pesticide Using Silver Nanoparticles Arrays: Influence of Array Wavelength/Amplitude. Appl. Surf. Sci. 2021, 544, 148878. [Google Scholar] [CrossRef]
- Aheto, J.H.; Huang, X.Y.; Tian, X.Y.; Zhang, X.R.; Zhang, W.H.; Yu, S.S. Activated Carbon@Silver Nanoparticles Conjugates as SERS Substrate for Capturing Malathion Analyte Molecules for SERS Detection. J. Food Saf. 2023, 43, e12997. [Google Scholar] [CrossRef]
- Shu, Y.Y.; Li, J.J.; Bai, H.Y.; Liang, A.H.; Wen, G.Q.; Jiang, Z.L. A New SERS Quantitative Analysis Method for Trace Malathion with Recognition and Catalytic Amplification Difunctional MOFTb@Au@MIP Nanoprobe. Talanta 2024, 267, 125166. [Google Scholar] [CrossRef] [PubMed]
- Shao, F.; Cao, J.Y.; Ying, Y.; Liu, Y.; Wang, D.; Guo, X.Y.; Wu, Y.P.; Wen, Y.; Yang, H.F. Preparation of Hydrophobic Film by Electrospinning for Rapid SERS Detection of Trace Triazophos. Sensors 2020, 20, 4120. [Google Scholar] [CrossRef]
- Zhai, W.L.; Cao, M.S.; Xiao, Z.Y.; Li, D.; Wang, M. Rapid Detection of Malathion, Phoxim and Thiram on Orange Surfaces Using Ag Nanoparticle Modified PDMS as Surface-Enhanced Raman Spectroscopy Substrate. Foods 2022, 11, 3597. [Google Scholar] [CrossRef]
- Gao, S.Q.; Wei, Q.Y.; Pu, H.B. UiO-66@TiO2/Au Heterojunction-Like SERS Substrate Based on Adsorption-Induced Aggregation for Detection of Thiamethoxam and Triazophos in Apple Juice. Sens. Actuators B Chem. 2025, 436, 137398. [Google Scholar] [CrossRef]
- Qin, C.Y.; Zhang, D.; Wu, Z.Q.; Ni, D.J.; Yu, Z.; Liang, P. Construction of an Efficient Molecular Enrichment and Magnetic Separation Flow with Fe3O4@Ag@COF for Ratiometric SERS Detection of Methamidophos. Chem. Eng. J. 2024, 496, 154177. [Google Scholar] [CrossRef]
- Zhang, X.X.; Chen, L.L.; Fang, X.J.; Shang, Y.S.; Gu, H.X.; Jia, W.L.; Yang, G.H.; Gu, Y.Q.; Qu, L.L. Rapid and Non-Invasive Surface-Enhanced Raman Spectroscopy (SERS) Detection of Chlorpyrifos in Fruits Using Disposable Paper-Based Substrates Charged with Gold Nanoparticle/Halloysite Nanotube Composites. Microchim. Acta 2022, 189, 197. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Guo, X.Y.; Xu, L.; Ying, Y.; Wu, Y.P.; Wen, Y.; Yang, H.F. Template-Free Synthesis of SERS-Active Gold Nanopopcorn for Rapid Detection of Chlorpyrifos Residues. Sens. Actuators B Chem. 2017, 241, 1008–1013. [Google Scholar] [CrossRef]
- Zhu, J.J.; Agyekum, A.A.; Kutsanedzie, F.Y.H.; Li, H.H.; Chen, Q.S.; Ouyang, Q.; Jiang, H. Qualitative and Quantitative Analysis of Chlorpyrifos Residues in Tea by Surface-Enhanced Raman Spectroscopy (SERS) Combined with Chemometric Models. LWT–Food Sci. Technol. 2018, 97, 760–769. [Google Scholar] [CrossRef]
- Chen, X.J.; Huang, X.X.; Chen, S.L.; Ali, S.; Chen, X.; Yuan, L.M.; Shi, W.; Huang, G.Z. Alkali Hydrolysis and Lewis Acids Assisted Enhancement Based Highly Sensitive and Quantitative Detection of Malathion in Tea Using SERS and Multivariate Analysis. Sens. Actuators B Chem. 2022, 359, 131584. [Google Scholar] [CrossRef]
- Peng, D.D.; Hu, Z.M.; Zheng, W.X.; Pang, X.B.; Wang, D.M.; Fan, M.K. Ameliorating SERS Sensitivity for Pesticide Malathion Detection with Synergistic Boosting Effect by Hydrogen Cations and Chloride Anions. Langmuir 2022, 38, 15656–15661. [Google Scholar] [CrossRef]
- Chen, J.N.; Dong, D.M.; Ye, S. Detection of Pesticide Residue Distribution on Fruit Surfaces Using Surface-Enhanced Raman Spectroscopy Imaging. RSC Adv. 2018, 8, 4726–4730. [Google Scholar] [CrossRef]
- Huang, D.D.; Zhao, J.C.; Wang, M.L.; Zhu, S.H. Snowflake-Like Gold Nanoparticles as SERS Substrates for the Sensitive Detection of Organophosphorus Pesticide Residues. Food Control 2020, 108, 106835. [Google Scholar] [CrossRef]
- Elaine, A.A.; Krisyanto, S.I.; Hasanah, A.N. Dual-Functional Monomer MIPs and Their Comparison to Mono-Functional Monomer MIPs for SPE and as Sensors. Polymers 2022, 14, 3498. [Google Scholar] [CrossRef]
- Huang, Y.K.; Pan, J.M.; Liu, Y.; Wang, M.; Deng, S.Y.; Xia, Z.N. A SPE Method with Two MIPs in Two Steps for Improving the Selectivity of MIPs. Anal. Chem. 2019, 91, 13246–13253. [Google Scholar] [CrossRef]
- Zhang, Z.P.; Zhang, Y.; Jayan, H.; Gao, S.P.; Zhou, R.Y.; Yosri, N.; Zou, X.B.; Guo, Z.M. Recent and Emerging Trends of Metal-Organic Frameworks (MOFs)-Based Sensors for Detecting Food Contaminants: A Critical and Comprehensive Review. Food Chem. 2024, 448, 139051. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.P.; Zhou, R.Y.; Ke, L.J.; Li, J.B.; Jayan, H.; El-Seedi, H.R.; Zou, X.B.; Guo, Z.M. Development of Multifunctional Metal-Organic Frameworks (MOFs)-Based Nanofiller Materials in Food Packaging: A Comprehensive Review. Trends Food Sci. Technol. 2024, 154, 104771. [Google Scholar] [CrossRef]
- Zhang, Z.P.; Zhang, Y.; Wang, C.; Liu, X.J.; El-Seedi, H.R.; Gómez, P.L.; Alzamora, S.M.; Zou, X.B.; Guo, Z.M. Enhanced Composite Co-MOF-Derived Sodium Carboxymethyl Cellulose Visual Films for Real-Time and in Situ Monitoring Fresh-Cut Apple Freshness. Food Hydrocoll. 2024, 157, 110475. [Google Scholar] [CrossRef]
- Zhang, Z.P.; Gao, M.J.; Zhang, L.; Li, J.B.; El-Seedi, H.R.; Zou, X.B.; Guo, Z.M. Smartphone-Assisted Fluorescent Film Based on the Flu Grafted on Eu-MOF for Real-Time Monitoring of Fresh-Cut Fruit Freshness. Biosens. Bioelectron. 2025, 277, 117278. [Google Scholar] [CrossRef] [PubMed]





| Classification | Substrate | Cost and Difficulty | Repeatability | Main Advantage | Main Limitations | Ref. | 
|---|---|---|---|---|---|---|
| Noble metal nano-component materials | AgNPs | Low and Simple | Moderate (spot-to-spot RSD ≤ ~10–15%) | High plasmonic activity enables ultrasensitive detection with cost-effective synthesis. | Prone to oxidation and batch variability, limiting stability and reproducibility | [75] | 
| AuNPs | Low and Simple | Good under controlled conditions, but affected by aggregation and sample matrix effects. | High chemical stability, simple synthesis, broad linear range, and good sensitivity | Limited target affinity without modification; performance affected by matrix interference and hotspot uniformity | [77] | |
| Carbon-based and two-dimensional nonmetallic materials | Defect-Engineered MoS | Low material cost, but defect engineering adds complexity | Moderate—Uneven distribution of defects may cause hotspot variability and batch-to-batch inconsistency | Strong chemical enhancement; tunable electronic properties; good for non-metal-interacting targets; biocompatible | Lower SERS enhancement than noble metals; CE-dominant mechanism; sensitive to preparation parameters; limited stability | [88] | 
| Aligned Carbon Nanotube Arrays | Needs CVD and precise alignment control | Growth uniformity affects results | High surface area; excellent electrical conductivity; flexible integration | Complex fabrication; limited Raman enhancement; poor SERS activity without modification | [89] | |
| MOF/Graphene Composites | Requires multi-step synthesis and post-treatment | Needs control of MOF loading and dispersion | High surface area, tunable chemistry, synergistic enhancement with graphene | Complex synthesis; stability may vary under different conditions | [90] | |
| GO–CuInS2/ZnS QD Composite | GO and QDs are individually accessible, but integration is multi-step | Depends on QD uniformity and GO dispersion | Broad spectral response; high sensitivity due to QD fluorescence and GO adsorption | Complex interface control; potential quenching or photobleaching effects | [91] | |
| Bimetallic composite structures | Au–Ag Core Shell NPs | Requires controlled seed-mediated growth of Au and Ag shells | Good under optimized prep | Strong synergistic enhancement; high sensitivity and stability in juice matrix | Sensitive to Ag oxidation; requires precise shell thickness control | [102] | 
| Au@Ag NPs | Requires multi-step synthesis with precise Ag shell growth | Good under controlled conditions; sensitive to shell thickness and oxidation | High enhancement factor, broad-spectrum detection, portable SERS compatibility | Ag shell prone to oxidation; shell thickness control affects performance | [103] | |
| Ag–Au alloy NPs | Requires precise control over alloy ratio and uniformity | Sensitive to synthesis conditions and aging | Tunable plasmonic properties; better stability than pure Ag | Alloy composition affects reproducibility; costlier than monometallics | [106] | |
| Emerging Material Platforms | Ga-based liquid metal NPs | Requires inert atmosphere, sonication, or microfluidic fabrication methods | Sensitive to oxidation and handling | Excellent biocompatibility, reconfigurability, and self-healing surfaces | Easily oxidized; synthesis not yet scalable; surface control is complex | [111] | 
| Quantum-cofined nanostructures | High—Requires complex synthesis like MBE, PLD, or ultrafast laser systems | Low/moderate sensitivity to external fields and fabrication defects | Enables tunable many-body interactions and nonlinear optical properties | Limited reproducibility; high sensitivity to environment and defects | [117] | |
| III–V MQW Dielectric Metasurfaces | Highly requires epitaxial growth and nanofabrication | Precision-dependent | Active tunability, sharp spectral response, CMOS compatibility | High fabrication cost; integration into wet SERS setups is challenging | [120] | 
| Classification of OPPs | Pesticide | Characteristic Raman Peaks (cm−1) | Substrate | Characteristics | Analytical Performance | Ref. | 
|---|---|---|---|---|---|---|
| No Sulfur Atom | Dichlorvos (DDVP) | P=O (1265) and C-Cl (745) | Au@PtNPs | AChE-mediated SERS sensor enables sensitive dichlorvos detection using Au@PtNPs. | Linear range: 0.02–2 mg/L LOD: 20 μg/L | [145] | 
| Dichlorvos (DDVP) | P=O (1265) and C-Cl (745) | AgNPs | Rippled Si SERS substrate detects 1 ppm Dichlorvos with ~107 enhancement, no binder needed. | Linear range: 1–100 ppm LOD: 1 ppm | [146] | |
| One Sulfur Atom | Triazophos | P=O (1270) and C-N (1000) | Fe3O4@MIL-100(Fe)@Ag | Magnetic MOF-based SERS substrate enables rapid, sensitive triazophos detection with high recovery and low LOD. | Linear range: 0.1–50 mg/L LOD: 21 μg/L | [130] | 
| Triazophos | P=O (1270) and C-N (1000) | Au@AgNPs | Au@AgNPs-based SERS enables rapid, sensitive detection of triazophos and methyl-parathion in peaches. | Linear range: 0.005–10 mg/kg LOD: 0.001 mg/kg | [137] | |
| Triazophos | P=O (1270) and C-N (1000) | Ag/SB | Ag/SB films enable flexible, stable SERS detection of triazophos with a 2.5 × 10−8 M LOD. | Linear range: 0.5–50 μM LOD: 25 nM | [149] | |
| Methyl Parathion | P=S (1335) and C-O (1150) | GO/ZrO2 | Hybrid GO/ZrO2 SERS substrate enables rapid, sensitive, and label-free detection of methyl parathion via efficient charge transfer. | Linear range: 0.12–10 μM LOD: 0.12 μM | [140] | |
| Methyl Parathion | P=S (1335) and C-O (1150) | AuNPs | Flexible AuNPs paper SERS detects methyl parathion on-site with 0.011 μg/cm2 LOD and high recovery. | Linear range: 0.018–0.354 μg/cm2 LOD: 0.011 μg/cm2 | [141] | |
| Phoxim | P=O (1275), C-N (1010), and aromatic ring (970) | Fe3O4@UiO-66(Zr)@Ag nanocomposites | Fe3O4@UiO-66(Zr)@AgNPs enable sensitive and reliable SERS detection of phoxim. | Linear range: 0.1–50 mg/L LOD: 0.041 mg/L | [136] | |
| Phoxim | P=O (1275), C-N (1010), and aromatic ring (970) | AgNPs-PDMS | Flexible AgNPs-PDMS SERS enables rapid, accurate detection of multiple pesticides on produce. | Linear range: 50–5000 μg/L LOD: 15.69 μgL−1 | [150] | |
| Thiamethoxam | C-N (739) and N-O (866) | UiO-66@TiO2 | UiO-66@TiO2/Au enables rapid SERS detection of thiamethoxam and triazophos in apple juice | Linear range: 10–10,000 μg LOD: 3.51 μg/L | [151] | |
| Methamidophos | C-S (675) and P-N (938) | Fe3O4@Ag@COF | Fe3O4@Ag@COF-based ratiometric SERS sensor enables sensitive, reproducible methamidophos detection in complex matrices, including green tea | Linear range: 0.001–100 μg/L LOD: 8.3 × 10−5 mg/kg | [152] | |
| Chlorpyrifos | P=S (567) and C-Cl (634) | AuNP/HNT | The AuNP/HNT paper substrate enables ultrasensitive, reproducible, and stable detection of chlorpyrifos in agricultural products. | Linear range: 0.01–10 μM LOD: 7.9 nM | [153] | |
| Chlorpyrifos | P=S (567) and C-Cl (634) | AuNPs-NF | Popcorn-like AuNPs enable portable SERS detection of chlorpyrifos in fruit with 1 μM sensitivity | Linear range: 1.5–6.25μM LOD: 1 μM | [154] | |
| Chlorpyrifos | P=S (567) and C-Cl (634) | Au@AgNPS | SERS with chemometrics enables rapid, accurate detection of chlorpyrifos residues in tea | Linear range: 3 × 10−9–10−4 M (Data mining) | [155] | |
| Two Sulfur Atoms | Malathion | P=S (1330) and C-O (1145) | MOFTb@Au@MIP | MOFTb@Au@MIP enables sensitive trimode detection of malathion via SERS, RRS, and Abs signals. | Linear range: 4.54–63.6 nM LOD: 0.182 nM | [148] | 
| Malathion | P=S (1330) and C-O (1145) | AgNPs | Ag NPs-based SERS enables sensitive, rapid malathion detection in tea with low LOD and high precision | Linear range: 0.1–5 ppm LOD: 0.05 ppm | [156] | |
| Malathion | P=S (1330) and C-O (1145) | AC@Ag | AC@AgNPs substrate enables rapid, sensitive malathion detection in wheat with strong signals and high model accuracy. | Linear range: 0.1–10 μg/mL LOD: 0.95 mg/L | [129] | |
| Malathion | P=S (1330) and C-O (1145) | AgNPs | Cl−-enhanced AgNPs-SERS detects malathion at 3 ppb with high fruit sample recovery. | Linear range: 5–2000 ppb LOD: 3 ppb | [157] | |
| Fenthion | P=O (1150) and Aromatic ring (1600) | FCUAA | FCUAA substrate enables rapid, sensitive SERS detection of trace OPs in vegetables. | Linear range: 0.02–10 mg/kg LOD: 12.1 ng/kg | [131] | |
| Omethoate | P-S (413) | AuNRs | Gold nanoparticle-enhanced SERS enables rapid, quantitative detection and distribution mapping of omethoate and chlorpyrifos residues on apple surfaces. | Linear range: 1.64–8.43 μg cm−2 LOD: 1.63 μg cm−2 | [158] | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, K.; Shang, X.; Qin, Z.; Zhang, Y.; Shi, J.; Zou, X.; Zhang, M. Recent Advances in SERS-Based Detection of Organophosphorus Pesticides in Food: A Critical and Comprehensive Review. Foods 2025, 14, 3683. https://doi.org/10.3390/foods14213683
Zheng K, Shang X, Qin Z, Zhang Y, Shi J, Zou X, Zhang M. Recent Advances in SERS-Based Detection of Organophosphorus Pesticides in Food: A Critical and Comprehensive Review. Foods. 2025; 14(21):3683. https://doi.org/10.3390/foods14213683
Chicago/Turabian StyleZheng, Kaiyi, Xianwen Shang, Zhou Qin, Yang Zhang, Jiyong Shi, Xiaobo Zou, and Meng Zhang. 2025. "Recent Advances in SERS-Based Detection of Organophosphorus Pesticides in Food: A Critical and Comprehensive Review" Foods 14, no. 21: 3683. https://doi.org/10.3390/foods14213683
APA StyleZheng, K., Shang, X., Qin, Z., Zhang, Y., Shi, J., Zou, X., & Zhang, M. (2025). Recent Advances in SERS-Based Detection of Organophosphorus Pesticides in Food: A Critical and Comprehensive Review. Foods, 14(21), 3683. https://doi.org/10.3390/foods14213683
 
        


 
                         
       